JPH05209073A - Porous film - Google Patents

Porous film

Info

Publication number
JPH05209073A
JPH05209073A JP1516892A JP1516892A JPH05209073A JP H05209073 A JPH05209073 A JP H05209073A JP 1516892 A JP1516892 A JP 1516892A JP 1516892 A JP1516892 A JP 1516892A JP H05209073 A JPH05209073 A JP H05209073A
Authority
JP
Japan
Prior art keywords
porous film
film
polyester resin
aliphatic polyester
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1516892A
Other languages
Japanese (ja)
Other versions
JP3135154B2 (en
Inventor
Yoshiki Ochi
与志貴 越智
Tetsuo Kuwaki
哲男 桑木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP1516892A priority Critical patent/JP3135154B2/en
Publication of JPH05209073A publication Critical patent/JPH05209073A/en
Application granted granted Critical
Publication of JP3135154B2 publication Critical patent/JP3135154B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To provide a porous film which is flexible, hardly broken during molding and handling because of its high breaking strength and ultimate elongation, and highly degradable by microorganisms, etc., in the natural environment. CONSTITUTION:The objective film comprises 100 pts.wt. aliph. polyester resin, e.g. poly-epsilon-caprolactone, and 30-500 inorg. filler, e.g. barium sulfate dispersed therein, has an open-cell structure with the maximum cell diameter of 5mum or lower and a void content of 10-70%, and has been molecularly oriented by stretching.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自然条件下において微
生物により容易に分解される多孔性フィルムに関する。
FIELD OF THE INVENTION The present invention relates to a porous film which is easily decomposed by microorganisms under natural conditions.

【0002】[0002]

【従来の技術】ポリオレフィン樹脂に代表されるプラス
チック類は化学的に安定であり、使用済みプラスチック
類は自然界において長時間にわたり原形を保つこと、ま
た、プラスチック類の密度が小さいため重量の割には体
積の大きい廃棄物であることから、その処理が大きな社
会問題になっている。
2. Description of the Related Art Plastics typified by polyolefin resins are chemically stable, and used plastics maintain their original shape for a long time in the natural world. Also, since the density of plastics is low, the weight of plastics is relatively low. Since it is a large volume waste, its treatment has become a big social problem.

【0003】プラスチックの廃棄処理問題を解決するた
めに、でんぷん等の有機物を混合することが行われてい
る。この方法では、プラスチックの成形物の形は崩壊す
る傾向にあるが、樹脂自体の分解にはかなりの時間を要
する。
[0003] In order to solve the problem of waste disposal of plastics, organic substances such as starch have been mixed. In this method, the shape of the plastic molding tends to collapse, but the decomposition of the resin itself requires a considerable amount of time.

【0004】このために、自然界において細菌やかび等
の微生物により樹脂自体が容易に分解されるプラスチッ
クの開発が行われている。このようなプラスチックとし
て、ポリε−カプロラクトン、ポリグリコリドやポリ乳
酸に代表される化学合成されたポリエステル樹脂やポリ
ヒドロキシブチレート、ヒドロキシブチレート−ヒドロ
キシバリレート共重合体に代表される微生物生産ポリエ
ステル樹脂等が知られている。
For this reason, in the natural world, development of plastics in which the resin itself is easily decomposed by microorganisms such as bacteria and fungi has been developed. As such a plastic, a chemically synthesized polyester resin typified by poly ε-caprolactone, polyglycolide or polylactic acid, or a microbial-produced polyester resin typified by polyhydroxybutyrate or hydroxybutyrate-hydroxyvalerate copolymer. Etc. are known.

【0005】また、上記のポリエステル樹脂を多孔化す
ることも知られている。例えば、結晶界面剥離法(特開
昭60−137402号公報)、および低分子量成分の
抽出法(特開昭62−164743号公報)によって多
孔化されたポリエステル樹脂が提案されている。
It is also known to make the above polyester resin porous. For example, a polyester resin which has been made porous by a crystal interface peeling method (JP-A-60-137402) and an extraction method of low molecular weight components (JP-A-62-164743) has been proposed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記の
結晶界面剥離法による多孔フィルムは結晶化度が高く、
結晶が配向しているため、フィルムの長さ方向の破断強
度は大きいが、それと垂直な方向の破断強度が弱く、機
械強度のアンバランスなフィルムである。また、破断伸
度が低く、高結晶化度のため硬くしなやかさのないフィ
ルムである。さらに、上記の多孔フィルムは、結晶化度
が高いために多孔化による生分解性の向上はほとんど見
られず、分解速度は無孔性フィルムとほとんどかわらな
い。
However, the porous film formed by the above-described crystal interface peeling method has a high crystallinity,
Since the crystals are oriented, the breaking strength in the lengthwise direction of the film is large, but the breaking strength in the direction perpendicular thereto is weak and the film has an unbalanced mechanical strength. Further, the film has a low breaking elongation and a high crystallinity, and thus is a film that is hard and pliable. Furthermore, since the above-mentioned porous film has a high degree of crystallinity, the biodegradability is hardly improved due to the porosity, and the decomposition rate is almost the same as that of the non-porous film.

【0007】また、低分子量成分の抽出法により得られ
る多孔フィルムは、多孔化による生分解性の向上は見ら
れるが、破断伸度および破断強度は十分ではないため
に、製品加工時や使用中に破損しやすいという問題があ
る。
The porous film obtained by the method of extracting low molecular weight components has improved biodegradability due to porosity, but since the elongation at break and the strength at break are not sufficient, during processing or during use of the product. There is a problem that it is easily damaged.

【0008】[0008]

【課題を解決するための手段】本発明者らは上記問題点
に対し、加工中、使用中は十分な強度を有し、自然界に
廃棄された場合は細菌やかび等の微生物により短期間に
容易に水と炭酸ガスに分解され、環境に対して負荷の少
ないフィルムを得るために鋭意検討を重ねた結果、脂肪
族ポリエステル樹脂に炭酸カルシウム、硫酸バリウム等
の無機充填材を充填し、延伸して脂肪族ポリエステル樹
脂と無機充填材との間に界面剥離による孔を形成させる
ことで、分解速度が速くかつ強度の優れた多孔性フィル
ムを得ることに成功し、本発明を提案するに至った。
[Means for Solving the Problems] In order to solve the above problems, the present inventors have sufficient strength during processing and use, and when discarded in the natural world, due to microorganisms such as bacteria and fungi As a result of repeated intensive studies to obtain a film that is easily decomposed into water and carbon dioxide and has a low impact on the environment, an aliphatic polyester resin is filled with an inorganic filler such as calcium carbonate or barium sulfate and stretched. By forming pores due to interfacial peeling between the aliphatic polyester resin and the inorganic filler, the inventors succeeded in obtaining a porous film having a high decomposition rate and excellent strength, and led to the present invention. ..

【0009】即ち、本発明は脂肪族ポリエステル樹脂1
00重量部と該脂肪族ポリエステル樹脂中に分散された
無機充填材30〜500重量部とよりなり、最大細孔径
が5μm以下の連通孔よりなる網状構造を有し、空隙率
が10〜70%であり、延伸により分子配向してなる多
孔性フィルムである。
That is, the present invention relates to an aliphatic polyester resin 1
00 parts by weight and 30 to 500 parts by weight of the inorganic filler dispersed in the aliphatic polyester resin, and has a network structure composed of communicating pores having a maximum pore diameter of 5 μm or less and a porosity of 10 to 70%. And is a porous film that is molecularly oriented by stretching.

【0010】本発明で用いられる脂肪族ポリエステル樹
脂は、分子鎖中に芳香環を含まない公知のポリエステル
樹脂が何等制限なく用いられる。例えば、化学合成され
た脂肪族ポリエステル樹脂、微生物により発酵合成され
た脂肪族ポリエステル樹脂及びこれらの混合物のいずれ
も使用可能である。化学合成された脂肪族ポリエステル
樹脂としては、ポリε−カプロラクトン等のラクトンの
開環重合体;ポリエチレンアジペート、ポリエチレンア
ゼレート、ポリテトラメチレンサクシネート等の二塩基
酸とジオールからなる飽和脂肪族ポリエステル樹脂;ポ
リブテンセバケート等の不飽和脂肪酸ポリエステル樹
脂;ポリラクチド、ポリグリコリド及びその共重合体等
の乳酸やグリコール酸の重合体;上記した脂肪族ポリエ
ステル樹脂のエステル結合の一部、例えば、50%以下
がアミド結合、エーテル結合、ウレタン結合等に置き換
えられた脂肪族ポリエステル樹脂等を挙げることができ
る。一方、微生物により生産される脂肪族ポリエステル
樹脂としては、ポリヒドロキシブチレート、ヒドロキシ
ブチレートとヒドロキシバリレートとの共重合体等をあ
げることができる。
As the aliphatic polyester resin used in the present invention, known polyester resins containing no aromatic ring in the molecular chain can be used without any limitation. For example, a chemically synthesized aliphatic polyester resin, an aliphatic polyester resin fermentatively synthesized by a microorganism, or a mixture thereof can be used. Examples of the chemically synthesized aliphatic polyester resin include ring-opening polymers of lactones such as poly ε-caprolactone; saturated aliphatic polyester resins composed of dibasic acid and diol such as polyethylene adipate, polyethylene azelate and polytetramethylene succinate. Unsaturated fatty acid polyester resins such as polybutene sebacate; polymers of lactic acid or glycolic acid such as polylactide, polyglycolide and copolymers thereof; a part of ester bonds of the above aliphatic polyester resins, for example, 50% or less Examples thereof include aliphatic polyester resins substituted with amide bonds, ether bonds, urethane bonds and the like. On the other hand, examples of the aliphatic polyester resin produced by a microorganism include polyhydroxybutyrate and a copolymer of hydroxybutyrate and hydroxyvalerate.

【0011】これらの樹脂をフィルム状に成形するとき
の成形性、多孔性フィルムへの加工性、多孔性フィルム
の機械強度を勘案した場合、脂肪族ポリエステル樹脂の
重量平均分子量は10,000以上、好ましくは40,
000以上が好適である。
Considering the moldability when molding these resins into a film, the processability into a porous film, and the mechanical strength of the porous film, the weight average molecular weight of the aliphatic polyester resin is 10,000 or more, Preferably 40,
000 or more is suitable.

【0012】本発明において使用される無機充填材は、
公知のものが何ら制限なく使用できる。例えば、周期律
表第IIA族、第IIIA族、第IVA族及び第IVB族よりな
る群から選ばれた1種の金属の酸化物、水酸化物、炭酸
塩又は硫酸塩等を挙げることができる。これらの無機充
填材を具体的に例示すると、周期律表第IIA族の金属と
してはカルシウム、マグネシウム、バリウム等のアルカ
リ土類金属であり、第IIIA族の金属としてはホウ素、
アルミニウム等の金属であり、第IVA族の金属としては
シリコンであり、また、第IVB族の金属としてはチタ
ン、ジルコニウム、ハフニウム等の金属が好適である。
これらの金属の酸化物、水酸化物、炭酸塩又は硫酸塩は
特に限定されず用いうる。特に好適に使用される無機充
填剤をより具体的に例示すれば、酸化カルシウム、酸化
マグネシウム、酸化バリウム、酸化アルミニウム、酸素
ホウ素、酸化ケイ素、酸化チタン、酸化ジルコニウム等
の酸化物;炭酸カルシウム、炭酸マグネシウム、炭酸バ
リウム等の炭酸塩;水酸化マグネシウム、水酸化カルシ
ウム、水酸化アルミニウム等の水酸化物;硫酸カルシウ
ム、硫酸バリウム、硫酸アルミニウム等の硫酸塩等であ
る。
The inorganic filler used in the present invention is
Known materials can be used without any restrictions. Examples thereof include oxides, hydroxides, carbonates and sulfates of one kind of metal selected from the group consisting of Group IIA, Group IIIA, Group IVA and Group IVB of the Periodic Table. .. Specific examples of these inorganic fillers include alkaline earth metals such as calcium, magnesium, and barium as the Group IIA metal of the periodic table, and boron as the Group IIIA metal.
A metal such as aluminum, a metal of Group IVA is silicon, and a metal of Group IVB is metal such as titanium, zirconium, or hafnium.
Oxides, hydroxides, carbonates or sulfates of these metals can be used without particular limitation. More specifically, inorganic fillers that are particularly preferably used include oxides of calcium oxide, magnesium oxide, barium oxide, aluminum oxide, boron oxide, silicon oxide, titanium oxide, zirconium oxide; calcium carbonate, carbonic acid. Carbonates such as magnesium and barium carbonate; hydroxides such as magnesium hydroxide, calcium hydroxide and aluminum hydroxide; sulfates such as calcium sulfate, barium sulfate and aluminum sulfate.

【0013】これらの無機充填材は、必要に応じ撥水性
の表面処理剤により表面処理を施して使用することが好
ましい。特に無機充填材の平均粒径が小さいときは、無
機充填材を脂肪族ポリエステル樹脂中に均一に分散させ
難いために、表面処理することが好適である。撥水性の
表面処理剤としては、シロキサン系表面処理剤、シラン
系表面処理剤等を好適に使用することができる。シロキ
サン系表面処理剤としては変性ポリシロキサン、例え
ば、アミノ変性、エポキシ変性、カルボキシル変性等の
ポリシロキサンが好適に用いられる。また、シラン系表
面処理剤としては下記一般式で表されるモノアルキルシ
ランが好適に使用される。
These inorganic fillers are preferably used after being surface-treated with a water-repellent surface-treating agent, if necessary. Particularly when the average particle size of the inorganic filler is small, it is difficult to uniformly disperse the inorganic filler in the aliphatic polyester resin, and therefore it is preferable to perform the surface treatment. As the water repellent surface treatment agent, a siloxane surface treatment agent, a silane surface treatment agent, or the like can be preferably used. As the siloxane-based surface treatment agent, modified polysiloxanes such as amino-modified, epoxy-modified, and carboxyl-modified polysiloxanes are preferably used. As the silane-based surface treatment agent, monoalkylsilane represented by the following general formula is preferably used.

【0014】SiRX3 (但し、Rは、炭素数1から30の直鎖状のアルキル
基、好ましくはアルキル基の水素の一部をフッ素で置換
したもの、例えば、CF3(CH2)n−(nは1から2
9の整数である。)等が好適であり、Xは、塩素または
臭素等のハロゲン原子、アルコキシ基、アミノ基等が適
している。)本発明に用いられる無機充填材は、平均粒
径が0.01〜10μmの範囲であることが、均一な孔
の分布した多孔性フィルムが得られるため、また、表面
の平滑な多孔性フィルムが得られるために好適である。
また、平均粒径が4μm以上の無機充填材を用いた場合
には、上記の表面処理剤を用いなくても脂肪族ポリエス
テル樹脂中に無機充填材を容易に分散させることができ
る。
SiRX 3 (where R is a linear alkyl group having 1 to 30 carbon atoms, preferably an alkyl group in which a part of hydrogen atoms is replaced by fluorine, for example, CF 3 (CH 2 ) n- (N is 1 to 2
It is an integer of 9. ) And the like are preferable, and X is preferably a halogen atom such as chlorine or bromine, an alkoxy group, an amino group and the like. The average particle diameter of the inorganic filler used in the present invention is in the range of 0.01 to 10 μm, so that a porous film having uniform pore distribution can be obtained. It is suitable for obtaining
When an inorganic filler having an average particle size of 4 μm or more is used, the inorganic filler can be easily dispersed in the aliphatic polyester resin without using the surface treatment agent.

【0015】本発明における脂肪族ポリエステル樹脂と
無機充填材との配合割合は、脂肪族ポリエステル樹脂1
00重量部に対して無機充填材30〜500重量部とな
るように選ぶ必要があり、50〜300重量部とするこ
とが好ましい。無機充填材の量が30重量部より少ない
場合は、脂肪族ポリエステル樹脂と無機充填材との間で
均一な界面剥離が生じず、厚みの均一な多孔性フィルム
を成形することができない。また、無機充填材の量が5
00重量部を越える場合は押出機等を用いてフィルム状
に成膜することが困難になるため好ましくない。
The blending ratio of the aliphatic polyester resin and the inorganic filler in the present invention is such that the aliphatic polyester resin 1
It is necessary to select 30 to 500 parts by weight of the inorganic filler with respect to 00 parts by weight, preferably 50 to 300 parts by weight. When the amount of the inorganic filler is less than 30 parts by weight, uniform interfacial peeling does not occur between the aliphatic polyester resin and the inorganic filler, and a porous film having a uniform thickness cannot be formed. In addition, the amount of inorganic filler is 5
If it exceeds 100 parts by weight, it becomes difficult to form a film using an extruder or the like, which is not preferable.

【0016】本発明の多孔性フィルムの空隙率は10〜
70%でなければならない。空隙率が10%以下であれ
ば無機充填材の周囲にできた空隙同士が連結されず、フ
ィルムの両面を連結する連通孔が形成されない。このた
めフィルムの表面積は増加せず、分解速度も増加しな
い。また、多孔性フィルムの特性である通気性や透湿性
も十分ではない。一方、空隙率が70%を越える場合
は、フィルムの機械的強度が不足し、加工工程において
フィルム破断や使用中の破れ等の問題を生じる。特に多
孔性フィルムの機械的物性及び分解性の両者を満足させ
るためには、空隙率は25〜65%であることが好まし
い。
The porosity of the porous film of the present invention is 10 to 10.
Must be 70%. When the porosity is 10% or less, the voids formed around the inorganic filler are not connected to each other, and the communication holes connecting both sides of the film are not formed. Therefore, the surface area of the film does not increase and the decomposition rate does not increase. Further, the air permeability and moisture permeability which are the characteristics of the porous film are not sufficient. On the other hand, when the porosity exceeds 70%, the mechanical strength of the film is insufficient, and problems such as film breakage and breakage during use occur in the processing step. In particular, in order to satisfy both mechanical properties and decomposability of the porous film, the porosity is preferably 25 to 65%.

【0017】本発明の多孔性フィルムは、脂肪族ポリエ
ステル樹脂と無機充填材との間に延伸によって界面剥離
させた5μm以下の最大細孔径(以下、Dmaxともい
う)の連通孔よりなる網状構造を有している。また、脂
肪族ポリエステル樹脂の部分は延伸によって分子配向さ
れてなる。
The porous film of the present invention has a network structure composed of continuous pores having a maximum pore diameter of 5 μm or less (hereinafter, also referred to as Dmax), which is interfacially separated by stretching between the aliphatic polyester resin and the inorganic filler. Have The aliphatic polyester resin portion is molecularly oriented by stretching.

【0018】本発明の多孔性フィルムの厚みは、十分な
機械的強度と十分なしなやかさを発揮させるためには、
一般には0.02〜1.5mmであることが好ましい。
The thickness of the porous film of the present invention is such that it exhibits sufficient mechanical strength and sufficient flexibility.
Generally, it is preferably 0.02 to 1.5 mm.

【0019】本発明の多孔性フィルムは、フィルムの片
面からもう一方の面に連通する連通孔を有するために通
気性を有している。通気性は、通常、100〜10,0
00秒/100ccの範囲であることが、後述する用途
に使用する場合に好適である。通気性は、空隙率と密接
な関係を有しており、空隙率が大きいときは通気性も大
きくなる。
The porous film of the present invention has air permeability because it has a communicating hole that communicates from one surface of the film to the other surface. Breathability is usually 100 to 10,0
The range of 00 seconds / 100 cc is suitable when used for the purpose described later. The air permeability has a close relationship with the porosity, and when the porosity is large, the air permeability also becomes large.

【0020】また、本発明の多孔性フィルムは、成形加
工および使用中の破断を防ぐために十分な破断強度と破
断伸度を有することが好ましい。破断強度は、通常、
0.8〜1.5kg/mm2であることが好ましく、ま
た、破断伸度は200〜500%であることが好まし
い。従来の低分子量物質の抽出法で得られた多孔フィル
ムでは、このような高い破断強度及び破断伸度は得られ
ておらず、結晶界面剥離法による多孔フィルムでは、結
晶の配向方向に高い破断強度を有するが、結晶の配向方
向と直角方向の破断強度は低く、また、破断伸度が著し
く低い。
The porous film of the present invention preferably has sufficient breaking strength and breaking elongation to prevent breakage during molding and use. Breaking strength is usually
It is preferably 0.8 to 1.5 kg / mm 2 , and the breaking elongation is preferably 200 to 500%. In the conventional porous film obtained by the extraction method of low molecular weight substances, such high breaking strength and breaking elongation have not been obtained, in the porous film by the crystal interface peeling method, high breaking strength in the crystal orientation direction. However, the breaking strength in the direction perpendicular to the crystal orientation direction is low, and the breaking elongation is extremely low.

【0021】さらに、本発明の多孔性フィルムは、後述
する衣料や衛生材料等の用途に使用する場合には、十分
なしなやかさ、例えば、曲げ堅さで表して0.008〜
0.02gf・cm2/cmのしなやかさを有している
ことが好ましい。
Further, when the porous film of the present invention is used for applications such as clothes and sanitary materials described later, it has a sufficient flexibility, for example, a bending hardness of 0.008-.
It preferably has a suppleness of 0.02 gf · cm 2 / cm.

【0022】本発明の多孔性フィルムは、次の方法によ
って好適に製造可能である。即ち、脂肪族ポリエステル
樹脂100重量部と無機充填材30〜500重量部を混
合し、次にフィルム状に溶融成形し、その後、少なくと
も一方向に面積倍率で1.5〜20倍延伸することによ
って製造することができる。
The porous film of the present invention can be preferably produced by the following method. That is, 100 parts by weight of the aliphatic polyester resin and 30 to 500 parts by weight of the inorganic filler are mixed, then melt-formed into a film, and then stretched in at least one direction by an area ratio of 1.5 to 20 times. It can be manufactured.

【0023】脂肪族ポリエステル樹脂と無機充填材は、
公知の方法、例えば、ヘンシェルミキサー等を用いて混
合される。次いで、シートに成形する方法は、一般にイ
ンフレーション成形法やT−ダイを用いる押出成形法が
好ましく利用される。また、引続く延伸加工は、テンタ
ー延伸機、エヤーインフレーション延伸機、マンドレル
延伸機等により少なくとも一軸方向に延伸される。二軸
延伸を行う場合は、縦方向及び横方向に逐次二軸延伸す
るか、あるいは同時に縦及び横方向に延伸する二軸延伸
法が採用される。延伸条件としては、一般に延伸温度が
常温以上、脂肪族ポリエステル樹脂の融点以下で実施さ
れ、延伸倍率としては縦及び横方向にそれぞれ 1.3
〜3.0倍とすることが、優れた強度特性、透湿度及び
耐水圧を得る上で好適である。また、一般にかかる延伸
加工後、熱処理を行うことやコロナ放電処理等の表面処
理を行うこともできる。
The aliphatic polyester resin and the inorganic filler are
It is mixed using a known method, for example, a Henschel mixer. Next, as a method for forming a sheet, generally, an inflation molding method or an extrusion molding method using a T-die is preferably used. In the subsequent stretching process, a tenter stretching machine, an air inflation stretching machine, a mandrel stretching machine or the like is used to stretch in at least one axial direction. When biaxial stretching is carried out, a biaxial stretching method is adopted in which biaxial stretching is carried out sequentially in the machine direction and the transverse direction, or simultaneously in the machine direction and the transverse direction. The stretching conditions are generally such that the stretching temperature is room temperature or higher and the melting point of the aliphatic polyester resin or lower, and the stretching ratio is 1.3 in the longitudinal and transverse directions, respectively.
It is preferable to set it to 3.0 times in order to obtain excellent strength characteristics, moisture permeability and water pressure resistance. Further, generally, after such stretching, heat treatment or surface treatment such as corona discharge treatment can be performed.

【0024】[0024]

【発明の効果】本発明の多孔性フィルムは、同様の組成
から得られる無孔フィルムに比べて生分解性が格段に優
れている。具体的には、本発明の多孔質フィルムは、分
解酵素溶液に浸漬した場合の重量減少速度が無孔フィル
ムの約1.5倍であった。また、本発明の多孔性フィル
ムは破断強度および破断伸度が大きいために、成形加工
および取扱い中に破断しにくく、また、十分なしなやか
さがある。
EFFECT OF THE INVENTION The porous film of the present invention is remarkably excellent in biodegradability as compared with a non-porous film obtained from the same composition. Specifically, the porous film of the present invention had a weight reduction rate of about 1.5 times that of a non-porous film when immersed in a degrading enzyme solution. In addition, since the porous film of the present invention has high breaking strength and breaking elongation, it is hard to break during molding and handling, and has sufficient flexibility.

【0025】本発明の多孔性シートは上記のように自然
界で微生物等により優れた分解性を有するため、埋め立
てによる廃棄処理が可能である。また、上記のような優
れた機械的性質を有するために加工性が良好である。従
って、本発明の多孔性シートは、農業用フィルム、紙お
むつ用バックシート、各種包装材料、簡易衣料、医療用
シート、医療用衣料、衛生材料等の使い捨ての素材に有
用である。
Since the porous sheet of the present invention has excellent decomposability by microorganisms in nature as described above, it can be disposed of by landfill. Further, it has good workability because it has the above-mentioned excellent mechanical properties. Therefore, the porous sheet of the present invention is useful as a disposable material such as an agricultural film, a back sheet for disposable diapers, various packaging materials, simple clothing, medical sheets, medical clothing, sanitary materials and the like.

【0026】[0026]

【実施例】以下、本発明を更に具体的に説明するために
実施例を示すが、本発明はこれらの実施例に限定される
ものではない。
EXAMPLES Examples will be shown below to more specifically describe the present invention, but the present invention is not limited to these examples.

【0027】尚、実施例及び比較例に示す物性は下記の
方法により測定した。
The physical properties shown in Examples and Comparative Examples were measured by the following methods.

【0028】(1) 空隙率 比重測定法により測定。(1) Porosity Measured by a specific gravity measuring method.

【0029】空隙率=(d0−d1)/d00:多孔化前のフィルムの比重 d1:多孔化後のフィルムの比重 (2)最大細孔径 メタノールバブルポイント法にて測定。Porosity = (d 0 −d 1 ) / d 0 d 0 : Specific gravity of film before porosification d 1 : Specific gravity of film after porosification (2) Maximum pore size Measured by the methanol bubble point method.

【0030】(3)破断強度・破断伸度 ASTM−882に準じて測定。尚、表1中のMDはフ
ィルムの巻取り方向、TDはフィルムの巻取り方向と垂
直な方向を表す。
(3) Breaking strength / breaking elongation Measured according to ASTM-882. In Table 1, MD represents the film winding direction, and TD represents the direction perpendicular to the film winding direction.

【0031】(4)通気性 JIS−P−8117(ガーレ通気度)に従って測定。(4) Air permeability Measured according to JIS-P-8117 (Gurley air permeability).

【0032】(5)しなやかさ カトーテック株式会社製純曲げ試験機(KES−FB
2)を用いて曲げかたさを測定。
(5) Suppleness Kato Tech Co., Ltd. pure bending tester (KES-FB)
Measure the bending hardness using 2).

【0033】(6)分解速度の評価 0.04規定のリン酸緩衝溶液1リットルにリパーゼ酵
素を3mg溶解させた。この水溶液中に100mgのフ
ィルムを浸漬し、37℃のオーブン中でフィルムの重量
減少により分解速度を評価した。分解速度はフィラー充
填量を考慮し、分解開始後3時間での樹脂成分の減少量
(mg)で示した。
(6) Evaluation of decomposition rate 3 mg of lipase enzyme was dissolved in 1 liter of 0.04 N phosphate buffer solution. A 100 mg film was immersed in this aqueous solution, and the decomposition rate was evaluated by weight reduction of the film in an oven at 37 ° C. The decomposition rate was represented by the amount of decrease (mg) of the resin component 3 hours after the start of decomposition in consideration of the filler filling amount.

【0034】以下の実施例、比較例で用いた脂肪族ポリ
エステル樹脂及び表面処理剤は以下の通りである。
The aliphatic polyester resins and surface treatment agents used in the following examples and comparative examples are as follows.

【0035】脂肪族ポリエステル樹脂 PCL:ポリカプロラクトン P(HB−HV):ハイドロキシブチレートとハイドロ
キシバリレート共重合体(共重合体組成(モル比)8
0:20) PBS:ポリテトラメチレンサクシネート 表面処理剤 シロキサン系表面処理剤:信越シリコーン(株)製 K
PN−3504 シラン系表面処理剤:信越シリコーン(株)製 KBM
−7803 尚、表面処理剤はフィラー100重量部に対して0.5
重量部添加した。
Aliphatic polyester resin PCL: polycaprolactone P (HB-HV): hydroxybutyrate and hydroxyvalerate copolymer (copolymer composition (molar ratio) 8
0:20) PBS: polytetramethylene succinate surface treatment agent siloxane-based surface treatment agent: Shin-Etsu Silicone Co., Ltd. K
PN-3504 Silane-based surface treatment agent: Shin-Etsu Silicone Co., Ltd. KBM
-7803 The surface treatment agent is 0.5 with respect to 100 parts by weight of the filler.
Parts by weight was added.

【0036】実施例1 表1に示すような脂肪族ポリエステル樹脂と無機充填材
との組成物をスーパーミキサーで5分間混合した後、1
80℃で二軸押出機を用いてストランド状に押出した
後、ペレット状に切断した。
Example 1 A composition of an aliphatic polyester resin and an inorganic filler as shown in Table 1 was mixed with a super mixer for 5 minutes, and then 1
The mixture was extruded into a strand at 80 ° C. using a twin-screw extruder and then cut into pellets.

【0037】得られたペレットを、スクリュー径30m
mφ、L/D=24の押出機に取付けたリップ開度0.
8mm、幅150mmのTダイを用いて180℃で押出
し、内部が30℃の水が循環する直径100mmφの冷
却ロールに接触せしめ、0.8m/分で引き取りシート
状物を得た。このシート状物を、回転速度の異なる2対
の加熱ニップロール間で50℃で延伸倍率2.0倍に一
軸延伸した。更に該一軸延伸フィルムを一軸延伸方向と
垂直な方向に延伸温度50℃にて延伸倍率2.0倍にな
るようにテンター延伸機で延伸し、厚み40μmの多孔
性フィルムを得た。得られた多孔性フィルムは、いずれ
も最大細孔径が表1に示した値の連通孔よりなる網状構
造を有するものであった。得られた多孔性フィルムの物
性及び分解性を表1に示した。
The pellets obtained were screwed to a diameter of 30 m.
Lip opening of 0.m attached to the extruder of mφ, L / D = 24.
It was extruded at 180 ° C. using a T-die having a width of 8 mm and a width of 150 mm, brought into contact with a cooling roll having a diameter of 100 mmφ in which water having a temperature of 30 ° C. circulates, and a take-up sheet-like material was obtained at 0.8 m / min. This sheet material was uniaxially stretched at a stretching ratio of 2.0 times at 50 ° C. between two pairs of heating nip rolls having different rotation speeds. Further, the uniaxially stretched film was stretched in a direction perpendicular to the uniaxially stretched direction at a stretching temperature of 50 ° C. by a tenter stretching machine so as to have a stretching ratio of 2.0 times to obtain a porous film having a thickness of 40 μm. Each of the obtained porous films had a network structure composed of communicating pores having the maximum pore diameters shown in Table 1. Table 1 shows the physical properties and degradability of the obtained porous film.

【0038】比較例1 次の方法によって結晶界面剥離法による多孔フィルムを
製造した。ロール表面温度20℃のロール上に樹脂をス
クリュー径30mmφ、L/D=24の押出機に取り付
けたリップ開度4mmのTダイを用いて融点より50℃
高い温度で押し出し、引き取り速度10m/分でフィル
ムを製膜した。結晶化を進めるために、該フィルムを融
点より10℃下の温度で熱処理した。次に、このフィル
ムを回転速度の異なる2対の加熱ニップロール間で、長
さ方向に2.0倍に延伸し、結晶界面を剥離し、厚み4
0μmの多孔フィルムを得た。得られた多孔フィルムの
物性及び分解性を表1に併記した。
Comparative Example 1 A porous film was manufactured by the crystal interface peeling method by the following method. 50 ° C from the melting point using a T-die with a lip opening of 4 mm in which a resin with a screw diameter of 30 mmφ and L / D = 24 was mounted on a roll with a roll surface temperature of 20 ° C.
The film was formed by extrusion at a high temperature and a take-up speed of 10 m / min. The film was heat treated at a temperature 10 ° C. below its melting point to promote crystallization. Next, this film was stretched 2.0 times in the length direction between two pairs of heating nip rolls having different rotation speeds to peel off the crystal interface, and the thickness 4
A 0 μm porous film was obtained. The physical properties and degradability of the obtained porous film are also shown in Table 1.

【0039】比較例2 次の方法によって抽出法による多孔フィルムを製造し
た。低分子脂肪族ポリエーテルと脂肪族ポリエステル樹
脂をスーパーミキサーにより混合した。フィルム製膜は
実施例と同様の方法により行い、厚み40μmのフィル
ムを得た。次にこのフィルムから低分子量ポリエーテル
をアセトンにて抽出し、多孔フィルムを得た。得られた
多孔フィルムの物性及び分解性を表1に併記した。
Comparative Example 2 A porous film was prepared by the extraction method according to the following method. The low molecular weight aliphatic polyether and the aliphatic polyester resin were mixed with a super mixer. Film formation was carried out in the same manner as in the example to obtain a film having a thickness of 40 μm. Next, low molecular weight polyether was extracted from this film with acetone to obtain a porous film. The physical properties and degradability of the obtained porous film are also shown in Table 1.

【0040】[0040]

【表1】 [Table 1]

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C08L 67/02 KJR 8933−4J // C08L 67:02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location C08L 67/02 KJR 8933-4J // C08L 67:02

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】脂肪族ポリエステル樹脂100重量部と該
脂肪族ポリエステル樹脂中に分散された無機充填材30
〜500重量部とよりなり、最大細孔径が5μm以下の
連通孔よりなる網状構造を有し、空隙率が10〜70%
であり、延伸により分子配向してなる多孔性フィルム。
1. 100 parts by weight of an aliphatic polyester resin and an inorganic filler 30 dispersed in the aliphatic polyester resin.
.About.500 parts by weight, having a network structure composed of communicating pores having a maximum pore diameter of 5 .mu.m or less, and having a porosity of 10 to 70%.
And a porous film that is molecularly oriented by stretching.
JP1516892A 1992-01-30 1992-01-30 Porous film Expired - Lifetime JP3135154B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1516892A JP3135154B2 (en) 1992-01-30 1992-01-30 Porous film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1516892A JP3135154B2 (en) 1992-01-30 1992-01-30 Porous film

Publications (2)

Publication Number Publication Date
JPH05209073A true JPH05209073A (en) 1993-08-20
JP3135154B2 JP3135154B2 (en) 2001-02-13

Family

ID=11881277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1516892A Expired - Lifetime JP3135154B2 (en) 1992-01-30 1992-01-30 Porous film

Country Status (1)

Country Link
JP (1) JP3135154B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06143407A (en) * 1992-11-10 1994-05-24 Agency Of Ind Science & Technol Molded article of synthetic resin having biodegradability and molding method thereof
JPH06172621A (en) * 1992-05-13 1994-06-21 Showa Highpolymer Co Ltd Polyester resin composition
JPH0762213A (en) * 1993-08-20 1995-03-07 E I Du Pont De Nemours & Co Stabilization of poly(hydroxy acid)
JP2001323176A (en) * 2000-05-16 2001-11-20 Maruzen Polymer Kk Composition for mulching film and mulching film
JP2003138148A (en) * 1993-09-14 2003-05-14 Fujitsu Ltd Biodegradable plastic molded article
JP2004143310A (en) * 2002-10-25 2004-05-20 Toppan Printing Co Ltd Resin composition having drying ability, and laminate and packaging form using the same
WO2004104077A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Plastics, Inc. Aliphatic polyester based resin reflection film and reflection plate
WO2005056656A1 (en) * 2003-11-21 2005-06-23 Kimberly-Clark Worldwide, Inc. Biodegradable and breathable polymer film
WO2007046342A1 (en) 2005-10-19 2007-04-26 Kao Corporation Porous sheet
US8012570B2 (en) 2004-09-10 2011-09-06 Yupo Corporation Printing paper
CN102791465A (en) * 2010-03-30 2012-11-21 尤妮佳股份有限公司 Film having moisture permeability and water-proof properties, and process for production thereof
WO2014156952A1 (en) * 2013-03-26 2014-10-02 東レ株式会社 Film

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172621A (en) * 1992-05-13 1994-06-21 Showa Highpolymer Co Ltd Polyester resin composition
JPH06143407A (en) * 1992-11-10 1994-05-24 Agency Of Ind Science & Technol Molded article of synthetic resin having biodegradability and molding method thereof
JPH0762213A (en) * 1993-08-20 1995-03-07 E I Du Pont De Nemours & Co Stabilization of poly(hydroxy acid)
JP2003138148A (en) * 1993-09-14 2003-05-14 Fujitsu Ltd Biodegradable plastic molded article
JP2001323176A (en) * 2000-05-16 2001-11-20 Maruzen Polymer Kk Composition for mulching film and mulching film
JP2004143310A (en) * 2002-10-25 2004-05-20 Toppan Printing Co Ltd Resin composition having drying ability, and laminate and packaging form using the same
WO2004104077A1 (en) * 2003-05-20 2004-12-02 Mitsubishi Plastics, Inc. Aliphatic polyester based resin reflection film and reflection plate
US7754324B2 (en) 2003-05-20 2010-07-13 Mitsubishi Plastics, Inc. Aliphatic polyester based resin reflection film and reflection plate
US8197929B2 (en) 2003-05-20 2012-06-12 Mitsubishi Plastics, Inc. Aliphatic polyester based resin reflection film and reflection plate
WO2005056656A1 (en) * 2003-11-21 2005-06-23 Kimberly-Clark Worldwide, Inc. Biodegradable and breathable polymer film
US8012570B2 (en) 2004-09-10 2011-09-06 Yupo Corporation Printing paper
WO2007046342A1 (en) 2005-10-19 2007-04-26 Kao Corporation Porous sheet
CN102791465A (en) * 2010-03-30 2012-11-21 尤妮佳股份有限公司 Film having moisture permeability and water-proof properties, and process for production thereof
WO2014156952A1 (en) * 2013-03-26 2014-10-02 東レ株式会社 Film
JPWO2014156952A1 (en) * 2013-03-26 2017-02-16 東レ株式会社 the film

Also Published As

Publication number Publication date
JP3135154B2 (en) 2001-02-13

Similar Documents

Publication Publication Date Title
AU2002344595B2 (en) Biaxially oriented polylactic acid-based resin films
CA2032822C (en) Biodisintegrable thermoplastic resin foam and a process for producing same
JP3731838B2 (en) Polyglycolic acid oriented film and method for producing the same
US5763513A (en) L-lactic acid polymer composition, molded product and film
JPH073138A (en) Resin composition, porous film obtained therefrom, and production of the same film
JP3135154B2 (en) Porous film
CA2091185A1 (en) Packaging thermoplastics from lactic acid
PT98914A (en) METHOD FOR PREPARING POLYMERIC COMPOSITIONS AND FILMS CONTAINING POLYHYDROXY ACID AND A COMPATIBILITY AGENT
JPH09157408A (en) Stretched polylactic acid film or sheet
JP2004513200A (en) Method for treating plastic articles digestible by hot alkali treatment
JP2007186543A (en) Biodegradable flexible sheet
JP3512970B2 (en) Biodegradable porous film
JP3472644B2 (en) L-lactic acid polymer composition, molded product and film
JPH10147653A (en) Biodegradable oriented film
JPH05212790A (en) Shrink film for label
JP3321379B2 (en) Biodegradable porous film
JPH09272794A (en) Biodegradable film
JP3572162B2 (en) Biodegradable porous film
JP3464317B2 (en) Porous film
WO2022202397A1 (en) Multifilament, method for manufacturing multifilament, staple, and method for manufacturing staple
JPH0812813A (en) Natural rubber composition
JP4294814B2 (en) Polylactic acid flat yarn
JP2005112456A (en) Packing band made of lactic acid type polymer composition
JP3615841B2 (en) Biodegradable fishing line and method for producing the same
JP3490241B2 (en) Degradable films or sheets, molded articles made of these, and methods for decomposing them

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20111201

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121201

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20121201