JPH05206533A - Method of using piezoelectric element - Google Patents

Method of using piezoelectric element

Info

Publication number
JPH05206533A
JPH05206533A JP4014830A JP1483092A JPH05206533A JP H05206533 A JPH05206533 A JP H05206533A JP 4014830 A JP4014830 A JP 4014830A JP 1483092 A JP1483092 A JP 1483092A JP H05206533 A JPH05206533 A JP H05206533A
Authority
JP
Japan
Prior art keywords
temperature
piezoelectric
voltage
polarization
piezo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4014830A
Other languages
Japanese (ja)
Inventor
Noriaki Nishino
典明 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP4014830A priority Critical patent/JPH05206533A/en
Publication of JPH05206533A publication Critical patent/JPH05206533A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To increase the displacement level of a piezoelectric element in the voltage impressed time by a method wherein the temperature is controlled within the range from the temperature higher than the temperature whereat the residual polarization of a piezoelectric plate starts to decline to the temperature lower than the Curie temperature of the piezo-electric plate simultaneously impressing a pair of electrodes with the voltage higher than the withstanding voltage of the piezo-electric plate. CONSTITUTION:The title piezoelectric element is used within the high temperature range wherein the application of the piezo-electric element is conventionally prohibited i.e., from the temperature higher than the temperature whereat the residual polarization of a piezoelectric plate starts to decline to the temperature lower than the Curie temperature of the piezo-electric plate. The element can be hardly used at the temperature higher than the Curie temperature whereat the piezoelectric characteristics are to be lost. Besides, the displacement level of the piezoelectric element can not be increased at the temperature lower than the temperature whereat the residual polarization of the piezo-electric plate starts to decline while at the temperature near the Curie temperature, the residual polarization is to notably decline. However, the polarization level higher than that of the same voltage at the conventionally applicable temperature can be caused by impressing a pair of electrodes with the voltage higher than the withstand voltage of the piezoelectric plate thereby enabling the displacement level to be increased. That is, the polarization can be hardly caused by impressing the pair of electrodes with the voltage lower than the withstand voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、圧電アクチュエータと
して利用される圧電素子の使用方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of using a piezoelectric element used as a piezoelectric actuator.

【0002】[0002]

【従来の技術】近年、電磁力を利用したアクチュエータ
に代わって、圧電特性を利用した圧電アクチュエータが
利用されている。例えばPbTiO3 −PbZrO3
セラミックス(PZT)は優れた圧電特性を示し、圧電
アクチュエータとして多用されている。
2. Description of the Related Art In recent years, piezoelectric actuators utilizing piezoelectric characteristics have been used in place of actuators utilizing electromagnetic force. For example, PbTiO 3 —PbZrO 3 system ceramics (PZT) shows excellent piezoelectric characteristics and is widely used as a piezoelectric actuator.

【0003】ところで、なるべく低い印加電圧でPZT
などの圧電材料の圧電特性を最大に引き出すためには、
圧電材料から薄い板状の圧電板を形成し、その表裏両面
に電圧を印加して用いることが必要である。しかし薄い
板状では変位量が極めて小さい。そこで圧電板の表裏両
面に銀ペーストなどから電極を形成して圧電素子とし、
この圧電素子を電極板と交互に複数枚積層した圧電積層
体として、それぞれの圧電素子の変位の合計で所定の変
位量を得ている。
By the way, PZT is applied at a voltage as low as possible.
In order to maximize the piezoelectric characteristics of piezoelectric materials such as
It is necessary to form a thin plate-shaped piezoelectric plate from the piezoelectric material and apply a voltage to both the front and back surfaces thereof. However, with a thin plate, the displacement is extremely small. Therefore, electrodes are formed on both sides of the piezoelectric plate from silver paste etc. to form piezoelectric elements,
As a piezoelectric laminate in which a plurality of piezoelectric elements are alternately laminated with electrode plates, a predetermined displacement amount is obtained by the total displacement of the piezoelectric elements.

【0004】なお、圧電素子の圧電特性の尺度として、
電圧1V当たりの変位量に相当する圧電定数(以下d定
数という)が代表的に用いられている。そしてこのd定
数は、図1に示すように温度が上昇するにつれて徐々に
大きくなるが、キュリー温度近傍で大幅に低下すること
が知られている。そのため従来はキュリー温度よりもか
なり低い温度で使用されるのが常識であり、むしろ熱膨
張差によるクラックの発生などを防止するために冷却し
ながら使用する方法まで提案されている。
As a measure of the piezoelectric characteristics of the piezoelectric element,
A piezoelectric constant (hereinafter referred to as d constant) corresponding to the amount of displacement per 1 V of voltage is typically used. It is known that the d constant gradually increases as the temperature rises, as shown in FIG. 1, but it greatly decreases near the Curie temperature. Therefore, conventionally, it is common sense to use it at a temperature considerably lower than the Curie temperature, and rather, a method of using it while cooling is proposed in order to prevent generation of cracks due to a difference in thermal expansion.

【0005】[0005]

【発明が解決しようとする課題】ところが従来の圧電素
子では、電圧印加時の変位量が小さいという不具合があ
る。すなわち圧電素子が複数個積層されてなる積層型圧
電アクチュエータであっても、同一長さの電磁アクチュ
エータなどに比べて変位量が小さく、油圧機構やリンク
機構を利用した機械的な変位拡大機構を利用せざるを得
なかった。したがって部品点数が増大するとともに配置
スペースも大きくなり、使用するためのコストの上昇を
招いていた。
However, the conventional piezoelectric element has a drawback that the displacement amount when a voltage is applied is small. That is, even with a laminated piezoelectric actuator in which a plurality of piezoelectric elements are laminated, the displacement amount is smaller than that of an electromagnetic actuator of the same length, and a mechanical displacement magnifying mechanism using a hydraulic mechanism or a link mechanism is used. I had to do it. Therefore, the number of parts increases and the arrangement space also increases, resulting in an increase in cost for use.

【0006】このように圧電素子の変位量が小さい理由
は、以下のように説明される。すなわち、圧電材料の変
位量は電圧印加時の分極の程度に依存し、分極が大きい
ほど変位量が大きくなる。ところで圧電材料の電界と分
極の程度との関係は、図4に示すようなヒステリシス曲
線を描く。図4からわかるように、電界がゼロとなって
も分極はゼロとならず一定の値を示している。これを残
留分極といい図4のb点で示される。一般の積層型圧電
アクチュエータでは、それぞれの圧電素子は分極処理さ
れ残留分極を保持した状態で市販されている。したがっ
て使用時に例えば正の電圧を印加すると、分極の最大値
は図4のa点となり、結局電圧印加時にはaとbの分極
の差に相当する変位量しか得られないこととなる。
The reason why the displacement of the piezoelectric element is small is explained as follows. That is, the amount of displacement of the piezoelectric material depends on the degree of polarization when a voltage is applied, and the greater the polarization, the greater the amount of displacement. By the way, the relationship between the electric field of the piezoelectric material and the degree of polarization shows a hysteresis curve as shown in FIG. As can be seen from FIG. 4, even if the electric field becomes zero, the polarization does not become zero and shows a constant value. This is called remanent polarization and is indicated by point b in FIG. In a general laminated piezoelectric actuator, each piezoelectric element is marketed in a state where polarization processing is performed and the residual polarization is retained. Therefore, for example, when a positive voltage is applied during use, the maximum value of the polarization becomes the point a in FIG. 4, and after all, when the voltage is applied, only a displacement amount corresponding to the difference between the polarizations of a and b can be obtained.

【0007】本発明はこのような事情に鑑みてなされた
ものであり、電圧印加時の圧電素子の変位量を増大させ
ることを目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to increase the amount of displacement of the piezoelectric element when a voltage is applied.

【0008】[0008]

【課題を解決するための手段】ところが本発明者は鋭意
研究の結果、従来はキュリー温度よりもかなり低い温度
で使用されるのが常識である圧電素子をキュリー温度近
傍の温度に加熱した状態で抗電圧以上の電圧を印加する
と、d定数は大幅に低下するのに反して変位量が大幅に
増大することを発見し、本発明を完成したものである。
However, as a result of diligent research, the present inventor has found that the piezoelectric element, which is conventionally used at a temperature considerably lower than the Curie temperature, is heated to a temperature near the Curie temperature. The present invention has been completed by discovering that when a voltage equal to or higher than the coercive voltage is applied, the d constant greatly decreases, but the displacement amount greatly increases.

【0009】すなわち上記課題を解決する本発明の圧電
素子の使用方法は、圧電板と圧電板の表裏両面に形成さ
れた一対の電極とからなる圧電素子の使用方法であっ
て、圧電板の残留分極が低下し始める温度以上で圧電板
のキュリー温度未満の温度範囲に制御するとともに、一
対の電極に圧電板の抗電圧以上の電圧を印加することを
特徴とする。
That is, a method of using the piezoelectric element of the present invention for solving the above-mentioned problems is a method of using a piezoelectric element including a piezoelectric plate and a pair of electrodes formed on both front and back surfaces of the piezoelectric plate. It is characterized in that the temperature is controlled to a temperature range below the Curie temperature of the piezoelectric plate above the temperature at which polarization begins to decrease, and a voltage above the coercive voltage of the piezoelectric plate is applied to the pair of electrodes.

【0010】圧電素子は圧電板と一対の電極とから構成
される。圧電板はPZTなどの圧電材料から形成された
従来と同様のものを用いることができ、電極は銀ペース
トなどから従来と同様に形成することができる。すなわ
ち、本発明に用いられる圧電素子は、従来の圧電素子を
そのまま用いることができる。本発明の最大の特徴は、
上記圧電素子を従来使用不可とされていた高温すなわ
ち、圧電板の残留分極が低下し始める温度以上で圧電板
のキュリー温度未満の温度範囲で使用するところにあ
る。使用温度がキュリー温度以上となると、圧電特性が
破壊されるので使用が困難である。また圧電板の残留分
極が低下し始める温度より低い温度で使用したのでは、
従来の使用条件とほとんど同一となり変位量の増大が得
られない。なお圧電板の残留分極が低下し始める温度
は、圧電板の材質によって異なるけれども、d定数が低
下し始める温度とほぼ等しい温度となることがわかって
いる。またキュリー温度における静電容量の50%以内
の静電容量となる温度ということもできる。
The piezoelectric element is composed of a piezoelectric plate and a pair of electrodes. The piezoelectric plate may be made of a piezoelectric material such as PZT and may be the same as the conventional one, and the electrodes may be made of silver paste or the like in the conventional manner. That is, as the piezoelectric element used in the present invention, the conventional piezoelectric element can be used as it is. The greatest feature of the present invention is
The piezoelectric element is used at a high temperature which is conventionally unusable, that is, at a temperature above the temperature at which the residual polarization of the piezoelectric plate begins to decrease and below the Curie temperature of the piezoelectric plate. When the operating temperature is higher than the Curie temperature, the piezoelectric characteristics are destroyed and it is difficult to use. Also, if it is used at a temperature lower than the temperature at which the remanent polarization of the piezoelectric plate begins to decrease,
Almost the same as the conventional usage conditions, and no increase in displacement can be obtained. It is known that the temperature at which the remanent polarization of the piezoelectric plate begins to decrease is approximately equal to the temperature at which the d constant begins to decrease, although it depends on the material of the piezoelectric plate. It can also be said to be a temperature at which the capacitance is within 50% of the capacitance at the Curie temperature.

【0011】本発明のもう一つの特色は、圧電板の抗電
圧以上の電圧を印加して使用するところにある。ここで
抗電圧とは圧電板の分極が反転し始める電圧をいう。キ
ュリー温度近傍では、残留分極が大幅に低下している。
しかし抗電圧以上の電圧を印加することにより再度分極
し、しかも後述するように従来の使用温度における同電
圧の分極量より大きい分極が得られるため、変位量が増
大する。抗電圧より低い電圧を印加したのでは、再度の
分極が困難となり変位量が得られない。なお、抗電圧は
温度が上昇するほど低下するので、キュリー温度近傍の
ような高温で使用する本発明においては、従来と同様の
変位量を得るのであれば印加電圧を従来より小さくする
ことも可能である。
Another feature of the present invention is that a voltage higher than the coercive voltage of the piezoelectric plate is applied for use. Here, the coercive voltage means a voltage at which the polarization of the piezoelectric plate begins to be reversed. Near the Curie temperature, the remanent polarization is significantly reduced.
However, when a voltage equal to or higher than the coercive voltage is applied, polarization is performed again, and moreover, as will be described later, a polarization larger than the polarization amount of the same voltage at the conventional operating temperature is obtained, so that the displacement amount increases. If a voltage lower than the coercive voltage is applied, it is difficult to re-polarize and the amount of displacement cannot be obtained. Since the coercive voltage decreases as the temperature rises, in the present invention used at a high temperature such as near the Curie temperature, the applied voltage can be made smaller than the conventional one as long as the same displacement amount as the conventional one can be obtained. Is.

【0012】[0012]

【作用】キュリー温度近傍の温度においては、電界と分
極の程度との関係は図3のようになる。すなわち温度上
昇により分子運動が活発となるため結晶の動きも活発化
し、残留分極(b点)は低下している。したがって電圧
の印加が無い状態では、変位量は残留分極に依存し極め
て小さい。そして抗電圧以上の電圧を印加することによ
り、分極していない結晶が再度分極し、かつ熱膨張や分
子運動の活発さの影響などにより従来よりも大きな分極
(a点)が得られる。したがってaとbの差に基づく変
位量は極めて大きくなる。
At a temperature near the Curie temperature, the relationship between the electric field and the degree of polarization is as shown in FIG. That is, since the molecular motion becomes active due to the temperature increase, the crystal motion also becomes active, and the remanent polarization (point b) is decreased. Therefore, when no voltage is applied, the amount of displacement depends on the residual polarization and is extremely small. By applying a voltage equal to or higher than the coercive voltage, the unpolarized crystal is repolarized, and a larger polarization (point a) than the conventional one can be obtained due to the influence of thermal expansion and the activity of molecular motion. Therefore, the displacement amount based on the difference between a and b becomes extremely large.

【0013】なお、d定数が低下するのに変位量が増大
するという矛盾は、以下のように説明される。すなわ
ち、d定数は電気機械結合定数や静電容量から求めら
れ、測定装置上の関係から比較的低い電圧で測定せざる
を得ない。そのため本発明の使用温度域では、再度の分
極が困難となってd定数が急激に低下していた。しかし
抗電圧以上の電圧を印加することにより、再度の分極が
可能となったのである。したがって抗電圧以上の電圧印
加状態でd定数を測定することができるなら、キュリー
温度近傍では高いd定数を示すはずである。
The contradiction that the displacement amount increases while the d constant decreases is explained as follows. That is, the d constant is obtained from the electromechanical coupling constant and the electrostatic capacity, and it is unavoidable that the d constant is measured at a comparatively low voltage due to the relationship of the measuring device. Therefore, in the operating temperature range of the present invention, re-polarization becomes difficult, and the d constant sharply decreases. However, by applying a voltage equal to or higher than the coercive voltage, repolarization became possible. Therefore, if the d-constant can be measured under a voltage applied above the coercive voltage, it should show a high d-constant near the Curie temperature.

【0014】[0014]

【実施例】以下、実施例により具体的に説明する。 (実施例)主成分の成分比がPb(Zr0.52Ti0.48
3 で表されるように、酸化鉛(PbO)50モル%、
酸化ジルコニウム(ZrO2 )26モル%、酸化チタン
(TiO2 )24モル%の割合にした粉末、及びこれに
副成分として五酸化ニオブ(Nb2 5 )を0.1〜3
モル%加えた粉末を、蒸留水とともにボールミルにて4
8時間混合した。これを脱水乾燥後、空気中で900℃
にて1時間仮焼を行った。
EXAMPLES The present invention will be specifically described below with reference to examples. (Example) The component ratio of the main component is Pb (Zr 0.52 Ti 0.48 ).
As represented by O 3 , 50 mol% of lead oxide (PbO),
Powder containing zirconium oxide (ZrO 2 ) 26 mol% and titanium oxide (TiO 2 ) 24 mol%, and niobium pentoxide (Nb 2 O 5 ) 0.1 to 3 as an accessory component.
The powder added with mol% was mixed with distilled water in a ball mill.
Mix for 8 hours. After dehydration and drying of this, 900 ℃ in air
It was calcined for 1 hour.

【0015】仮焼粉は再び48時間湿式混合し、脱水乾
燥した。そして乾燥粉末にバインダーとしてPVA(ポ
リビニルアルコール)を1重量%加えて造粒後、成形圧
力1000kg/cm3 で直径20mm、厚さ0.4m
mの円板に成形し、1250℃で1時間焼成して圧電板
を得た。この圧電板のキュリー温度は235℃である。
The calcined powder was wet mixed again for 48 hours, dehydrated and dried. Then, 1% by weight of PVA (polyvinyl alcohol) was added to the dry powder as a binder, and after granulation, a molding pressure of 1000 kg / cm 3 gave a diameter of 20 mm and a thickness of 0.4 m.
A m-shaped disk was formed and fired at 1250 ° C. for 1 hour to obtain a piezoelectric plate. The Curie temperature of this piezoelectric plate is 235 ° C.

【0016】この圧電板の表裏両面に銀ペーストをスク
リーン印刷し、乾燥させて一対の電極を形成した。そし
て100℃のシリコンオイル中にて、両電極間に50k
v/cmの電圧を印加し、30分間分極処理を行って圧
電素子とした。この圧電板を、ステンレス製電極板と交
互に68枚積層して、圧電アクチュエータ1を製造し
た。そして図2に示す制御装置中に配置して駆動させ、
そのときの変位量を求めた。
Silver paste was screen-printed on both front and back surfaces of this piezoelectric plate and dried to form a pair of electrodes. Then, in silicon oil at 100 ° C, 50k between both electrodes
A voltage of v / cm was applied and polarization treatment was performed for 30 minutes to obtain a piezoelectric element. The piezoelectric actuator 1 was manufactured by alternately stacking 68 piezoelectric plates and stainless electrode plates. Then, it is arranged in the control device shown in FIG.
The amount of displacement at that time was obtained.

【0017】この制御装置は、圧電アクチュエータ1
と、圧電アクチュエータ1の外周に配置された筒状のヒ
ータ3と、電気回路とからなる。圧電アクチュエータ1
は駆動電源2により矩形電圧が印加されて間欠的に連続
駆動される。圧電アクチュエータ1中には温度センサ4
が配設されている。温度センサ4の信号はヒータコント
ロール回路5へ入力されている。ヒータコントロール回
路5では温度センサ4からの信号を規定値と比較し、ヒ
ータ3を加熱するヒータ電源6を制御している。これに
より圧電アクチュエータ1は所定温度に加熱されその温
度に保たれるように構成されている。
This control device has a piezoelectric actuator 1.
And a cylindrical heater 3 arranged on the outer periphery of the piezoelectric actuator 1, and an electric circuit. Piezoelectric actuator 1
A rectangular voltage is applied by the driving power source 2 to intermittently continuously drive. A temperature sensor 4 is provided in the piezoelectric actuator 1.
Are arranged. The signal from the temperature sensor 4 is input to the heater control circuit 5. The heater control circuit 5 compares the signal from the temperature sensor 4 with a specified value and controls the heater power supply 6 for heating the heater 3. Thereby, the piezoelectric actuator 1 is configured to be heated to a predetermined temperature and kept at that temperature.

【0018】この制御装置を用い、圧電アクチュエータ
1の内部温度が230±2℃となるように制御しつつ、
無負荷状態で400Vの矩形電圧を印加した。なお、こ
の圧電素子では、230℃における抗電圧は約30Vで
ある。その結果、圧電アクチュエータ1には最大約75
μmの変位量が得られた。なお、実施例の駆動条件で、
駆動温度だけを変化させたときの変位量の変化を図1に
示す。図1からわかるように、残留分極が低下し始める
195℃近傍までは変位量は温度の増大とともに緩やか
に増大するが、増大量は僅かである。しかし残留分極が
低下し始める温度を越えると、キュリー温度までは残留
分極の低下に伴って変位量が急激に増大している。 (比較例)実施例と同一の圧電アクチュエータ1を用
い、室温(25℃)雰囲気にて無負荷状態で400Vの
矩形電圧を印加した。その結果、圧電アクチュエータ1
には最大約30μmの変位量が得られた。 (評価)すなわち実施例の使用方法によれば、従来の室
温下での使用時に比べて変位量が最大で2.5倍増大し
た。
Using this controller, while controlling the internal temperature of the piezoelectric actuator 1 to be 230 ± 2 ° C.,
A rectangular voltage of 400 V was applied under no load. In addition, in this piezoelectric element, the coercive voltage at 230 ° C. is about 30V. As a result, the piezoelectric actuator 1 has a maximum of about 75
A displacement amount of μm was obtained. In the driving conditions of the example,
FIG. 1 shows a change in the displacement amount when only the driving temperature is changed. As can be seen from FIG. 1, the displacement amount gradually increases with increasing temperature up to around 195 ° C. where the remanent polarization starts to decrease, but the increase amount is slight. However, when the temperature exceeds the temperature at which the remanent polarization starts to decrease, the amount of displacement sharply increases with the decrease in the remanent polarization up to the Curie temperature. (Comparative Example) Using the same piezoelectric actuator 1 as in Example, a rectangular voltage of 400 V was applied in a room temperature (25 ° C.) atmosphere in an unloaded state. As a result, the piezoelectric actuator 1
A maximum displacement of about 30 μm was obtained. (Evaluation) That is, according to the method of use of the example, the displacement amount increased by a maximum of 2.5 times as compared with the conventional use at room temperature.

【0019】[0019]

【発明の効果】すなわち本発明の圧電素子の使用方法に
よれば、極めて高い変位量が得られるため、従来必要で
あった変位拡大機構が不要となり、コンパクトな圧電ア
クチュエータとすることができるとともにコストの低減
を図ることができる。
That is, according to the method of using the piezoelectric element of the present invention, an extremely high displacement amount can be obtained, so that the displacement magnifying mechanism which has been conventionally required is not required, and a compact piezoelectric actuator can be obtained and the cost can be reduced. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】温度変化に対応する変位量変化と残留分極及び
d定数の変化を示すグラフである。
FIG. 1 is a graph showing changes in displacement amount corresponding to changes in temperature, residual polarization, and changes in d constant.

【図2】本発明の一実施例で使用した制御装置のブロッ
クダイアグラムである。
FIG. 2 is a block diagram of a control device used in an embodiment of the present invention.

【図3】本発明の使用方法における電界と分極の関係を
示すグラフである。
FIG. 3 is a graph showing the relationship between electric field and polarization in the method of use of the present invention.

【図4】従来の使用方法における電界と分極の関係を示
すグラフである。
FIG. 4 is a graph showing the relationship between electric field and polarization in a conventional method of use.

【符号の説明】[Explanation of symbols]

1:圧電アクチュエータ 2:駆動電源
3:ヒータ 4:温度センサ 5:ヒータコントロール回路
6:ヒータ電源
1: Piezoelectric actuator 2: Driving power supply
3: Heater 4: Temperature sensor 5: Heater control circuit
6: Heater power supply

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 圧電板と該圧電板の表裏両面に形成され
た一対の電極とからなる圧電素子の使用方法であって、 該圧電板の残留分極が低下し始める温度以上で該圧電板
のキュリー温度未満の温度範囲に制御するとともに、該
一対の電極に該圧電板の抗電圧以上の電圧を印加するこ
とを特徴とする圧電素子の使用方法。
1. A method of using a piezoelectric element comprising a piezoelectric plate and a pair of electrodes formed on both front and back surfaces of the piezoelectric plate, wherein the piezoelectric plate has a temperature above a temperature at which residual polarization of the piezoelectric plate begins to decrease. A method of using a piezoelectric element, which comprises controlling the temperature within a Curie temperature range and applying a voltage equal to or higher than a coercive voltage of the piezoelectric plate to the pair of electrodes.
JP4014830A 1992-01-30 1992-01-30 Method of using piezoelectric element Pending JPH05206533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4014830A JPH05206533A (en) 1992-01-30 1992-01-30 Method of using piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4014830A JPH05206533A (en) 1992-01-30 1992-01-30 Method of using piezoelectric element

Publications (1)

Publication Number Publication Date
JPH05206533A true JPH05206533A (en) 1993-08-13

Family

ID=11871959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4014830A Pending JPH05206533A (en) 1992-01-30 1992-01-30 Method of using piezoelectric element

Country Status (1)

Country Link
JP (1) JPH05206533A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519427A2 (en) 2003-09-24 2005-03-30 TDK Corporation Piezoelectric ceramic composition and manufacturing the same, and piezoelectric element
GB2450620A (en) * 2007-06-27 2008-12-31 Fluke Corp System and method of providing a thermally stabilised fixed frequency piezoelectric optical modulator
US7772747B2 (en) * 2008-03-21 2010-08-10 Fujifilm Corporation Process for producing a piezoelectric film, film forming apparatus, and piezoelectric film
JPWO2018131343A1 (en) * 2017-01-10 2020-02-06 国立大学法人大阪大学 Scanner and scanning probe microscope

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1519427A2 (en) 2003-09-24 2005-03-30 TDK Corporation Piezoelectric ceramic composition and manufacturing the same, and piezoelectric element
EP1519427B1 (en) * 2003-09-24 2009-12-16 TDK Corporation Piezoelectric ceramic composition and manufacturing the same, and piezoelectric element
GB2450620A (en) * 2007-06-27 2008-12-31 Fluke Corp System and method of providing a thermally stabilised fixed frequency piezoelectric optical modulator
GB2450620B (en) * 2007-06-27 2010-07-07 Fluke Corp System for providing a thermally stabilized fixed frequency piezoelectric optical modulator
US8008839B2 (en) 2007-06-27 2011-08-30 Fluke Corporation System and method of providing a thermally stabilized fixed frequency piezoelectric optical modulator
US7772747B2 (en) * 2008-03-21 2010-08-10 Fujifilm Corporation Process for producing a piezoelectric film, film forming apparatus, and piezoelectric film
JPWO2018131343A1 (en) * 2017-01-10 2020-02-06 国立大学法人大阪大学 Scanner and scanning probe microscope
US10884022B2 (en) 2017-01-10 2021-01-05 Osaka University Scanner and scanning probe microscope

Similar Documents

Publication Publication Date Title
Uchino Materials issues in design and performance of piezoelectric actuators: an overview
JP4001362B2 (en) Piezoelectric ceramic and manufacturing method thereof
JPH05206533A (en) Method of using piezoelectric element
JPH05206535A (en) Method of controlling piezoelectric actuator
JP2003277143A (en) Piezoelectric ceramics
JP4779243B2 (en) Piezoelectric ceramic
JP3365832B2 (en) Piezoelectric element
JP2820000B2 (en) Piezoelectric material composition for actuator
JP2001294482A (en) Piezoelectric ceramic
Uchino et al. Inverse hysteresis of field induced elastic deformation in the solid solution 90 mol% Pb (Mg 1/3 Nb 2/3) O 3-10 mol% PbTiO 3
JP3106365B2 (en) Functionally graded piezoelectric
JP3070799B2 (en) Polarization method for piezoelectric ceramics
JPH11100265A (en) Piezoelectric ceramic composition
JPH06224486A (en) Polarizing method for piezoelectric ceramics
JPS5936440B2 (en) Electrical/mechanical conversion element
JP2825029B2 (en) Piezoelectric ceramic composition
JP2922769B2 (en) Piezoelectric ceramic composition for actuator
KR100562988B1 (en) Piezoeletric Ceramic Composition for Bimorph
JP3161175B2 (en) Piezoelectric ceramic composition
JP3830345B2 (en) Piezoelectric ceramic
Park et al. Temperature dependence of the electric field induced strains in Pb (Mg1/3Nb2/3) O3-based relaxor ferroelectrics
JP3061224B2 (en) Bismuth layered compound polarization method
JPH0519506B2 (en)
JPH06305817A (en) Ferrodielectric piezoelectric porcelain composition
JP4788936B2 (en) Piezoelectric ceramic