JPH05206531A - Manufacture of superconducting device - Google Patents
Manufacture of superconducting deviceInfo
- Publication number
- JPH05206531A JPH05206531A JP3345939A JP34593991A JPH05206531A JP H05206531 A JPH05206531 A JP H05206531A JP 3345939 A JP3345939 A JP 3345939A JP 34593991 A JP34593991 A JP 34593991A JP H05206531 A JPH05206531 A JP H05206531A
- Authority
- JP
- Japan
- Prior art keywords
- srtio
- layer
- conductive layer
- underneath
- srtio3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000002887 superconductor Substances 0.000 claims abstract description 27
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 14
- 239000002184 metal Substances 0.000 claims abstract description 12
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 238000000034 method Methods 0.000 claims abstract description 12
- 229910002367 SrTiO Inorganic materials 0.000 claims description 46
- 238000000151 deposition Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 239000013049 sediment Substances 0.000 claims 1
- 229910002370 SrTiO3 Inorganic materials 0.000 abstract description 7
- 239000004065 semiconductor Substances 0.000 abstract description 6
- 239000000758 substrate Substances 0.000 description 14
- 238000010586 diagram Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000000059 patterning Methods 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は,超伝導デバイスの製造
方法,特にSrTiO3 下地を用いた超伝導デバイスの
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a superconducting device, and more particularly to a method for manufacturing a superconducting device using an SrTiO 3 underlayer.
【0002】超伝導体を用いた電子デバイスは,高速動
作が可能で,消費電力が小さいことから,盛んに研究開
発が行われている。Electronic devices using superconductors have been actively researched and developed because they can operate at high speed and consume little power.
【0003】[0003]
【従来の技術】SrTiO3 は,不純物としてTa,N
b,Zrなどをドープしたり,高温でアニールして酸素
を抜くことにより,キャリアが生成されてn型の半導体
になる。2. Description of the Related Art SrTiO 3 contains Ta and N as impurities.
Carriers are generated to become an n-type semiconductor by doping b, Zr, etc., or by annealing at a high temperature to remove oxygen.
【0004】また,SrTiO3 は,酸化物超伝導体と
類似のペロブスカイト結晶構造を持ち,格子定数が近
い,酸化物超伝導体薄膜を堆積した時に相互拡散しにく
いことから,高温超伝導体とのヘテロ接合も形成しやす
い。Further, SrTiO 3 has a perovskite crystal structure similar to that of an oxide superconductor, has a lattice constant close to each other, and is unlikely to interdiffuse when an oxide superconductor thin film is deposited, and thus is a high-temperature superconductor. Is also easy to form.
【0005】このような半導体あるいは絶縁体SrTi
O3 を用いて,次のようなトランジスタが考えられてい
る。 (1)超伝導FET[図7(a)] これは,n−SrTiO3 基板41の表面に,互いに離
隔して超伝導体ソース電極43および超伝導体ドレイン
電極44を形成し,ソースおよびドレインの間に,ノン
ドープSrTiO3 層45を介して超伝導体ゲート電極
46を形成したものである。Such a semiconductor or insulator SrTi
The following transistors have been considered using O 3 . (1) Superconducting FET [FIG. 7 (a)] The superconducting source electrode 43 and the superconducting drain electrode 44 are formed on the surface of the n-SrTiO 3 substrate 41 so as to be separated from each other. In between, a superconductor gate electrode 46 is formed via a non-doped SrTiO 3 layer 45.
【0006】超伝導体ソース電極43および超伝導体ド
レイン電極44と,n−SrTiO 3 基板41とのコン
タクトをとるために,超伝導体ソース電極43および超
伝導体ドレイン電極44の下部のn−SrTiO3 基板
41を高濃度にドープして,n+ −SrTiO3 領域4
2a,42bを形成している。Superconductor source electrode 43 and superconductor source electrode 43
Rain electrode 44 and n-SrTiO 3Board 41
In order to obtain the tact, the superconductor source electrode 43 and the superconductor
N-SrTiO under the conductor drain electrode 443substrate
41 is highly doped,+-SrTiO3Area 4
2a and 42b are formed.
【0007】(2)誘電体ベーストランジスタ[図7
(b)] これは,ノンドープSrTiO3 基板51の表面に,低
誘電率絶縁層54を介して超伝導体エミッタ電極55を
形成し,このエミッタ電極55を囲むように,超伝導体
コレクタ電極53を形成し,ノンドープSrTiO3 基
板51の裏面に超伝導金属ベース電極56を形成したも
のである。(2) Dielectric base transistor [Fig. 7
(B)] This is a superconductor emitter electrode 55 formed on the surface of the non-doped SrTiO 3 substrate 51 via a low dielectric constant insulating layer 54, and the superconductor collector electrode 53 is formed so as to surround the emitter electrode 55. And a superconducting metal base electrode 56 is formed on the back surface of the non-doped SrTiO 3 substrate 51.
【0008】超伝導体コレクタ電極53とノンドープS
rTiO3 基板51とのコンタクトをとるために,超伝
導体コレクタ電極53の下部のノンドープSrTiO3
基板51を高濃度にドープして,n+ −SrTiO3 領
域52a,52bを形成している。Superconductor collector electrode 53 and non-doped S
In order to make contact with the rTiO 3 substrate 51, non-doped SrTiO 3 under the superconductor collector electrode 53 is formed.
The substrate 51 is heavily doped to form n + -SrTiO 3 regions 52a and 52b.
【0009】[0009]
【発明が解決しようとする課題】従来のSrTiO3 を
用いた超伝導デバイスは,超伝導体ソース電極,超伝導
体ドレイン電極,および超伝導体コレクタ電極と,Sr
TiO3 基板とのコンタクトを良好にするために,超伝
導体ソース電極,超伝導体ドレイン電極,および超伝導
体コレクタ電極の下部のSrTiO3 基板を高濃度にド
ープしていた。A conventional superconducting device using SrTiO 3 is a superconducting source electrode, a superconducting drain electrode, a superconducting collector electrode, and a Sr
In order to make good contact with the TiO 3 substrate, the SrTiO 3 substrate below the superconductor source electrode, the superconductor drain electrode, and the superconductor collector electrode was heavily doped.
【0010】しかし,SrTiO3 基板を選択的に高濃
度にドープしてコンタクト領域を形成することは,極め
て難しく,また形成されたコンタクト領域のコンタクト
抵抗は,要求を満たすほど低くない,という問題があっ
た。However, it is extremely difficult to form a contact region by selectively doping the SrTiO 3 substrate with a high concentration, and the contact resistance of the formed contact region is not low enough to meet the requirements. there were.
【0011】本発明は,上記の問題点を解決して,Sr
TiO3 下地とその上に堆積する酸化物超伝導体や金属
とのコンタクト抵抗の低減,およびSrTiO3 下地中
への導電層や抵抗層の形成を可能にする超伝導デバイス
の製造方法,特にSrTiO 3 下地を用いた超伝導デバ
イスの製造方法を提供することを目的とする。The present invention solves the above problems and solves the problem of Sr.
TiO3Substrate and oxide superconductor or metal deposited on it
Of contact resistance with SrTiO3Under ground
Device that enables formation of conductive and resistive layers on
Manufacturing method, especially SrTiO 3 3Superconducting device using base
It is intended to provide a method for manufacturing a chair.
【0012】[0012]
【課題を解決するための手段】上記の目的を達成するた
めに,本発明に係る超伝導デバイスの製造方法は,次の
ように構成する。In order to achieve the above object, a method for manufacturing a superconducting device according to the present invention is configured as follows.
【0013】(1)SrTiO3 下地上に,電気的に接
続された酸化物超伝導体や金属を堆積する超伝導デバイ
スの製造方法であって,SrTiO3 下地の表面にイオ
ンビームを選択的に照射して,該SrTiO3 下地の表
面に表面導電層を形成する工程と,該表面導電層上に酸
化物超伝導体や金属を堆積して,該堆積物とSrTiO
3 下地とを電気的に接続する工程とを含むように構成す
る。[0013] (1) on the SrTiO 3 underlayer, an electrically connected oxide superconducting device manufacturing method of depositing a superconductor and a metal, SrTiO 3 on the surface of the underlying selectively ion beam The step of irradiating to form a surface conductive layer on the surface of the SrTiO 3 base, and depositing an oxide superconductor or a metal on the surface conductive layer, and depositing the deposit and SrTiO 3
(3) a step of electrically connecting to the base.
【0014】(2)SrTiO3 下地中に導電層や抵抗
層を形成する超伝導デバイスの製造方法であって,Sr
TiO3 下地の表面にイオンビームを選択的に照射し
て,SrTiO3 下地の表面に表面導電層を形成する工
程を含むように構成する。(2) A method of manufacturing a superconducting device in which a conductive layer and a resistance layer are formed in an SrTiO 3 underlayer, which comprises Sr
The surface of the TiO 3 underlayer is selectively irradiated with an ion beam to form a surface conductive layer on the surface of the SrTiO 3 underlayer.
【0015】[0015]
【作用】SrTiO3 は,アルゴン(Ar)イオンビー
ムなどの高速イオン粒子を表面に照射すると,表面に導
電層が形成される。表面導電層の面抵抗は,イオンビー
ム照射の強さおよび時間によって変化する。イオンビー
ムの加速電圧を200〜1000V,イオン電流密度を
0.2〜1mA/cm2 として,1〜20分間のアルゴ
ン(Ar)イオンビーム照射を行うと,SrTiO3 表
面の面抵抗は,2MΩ〜100Ωまで変化する。When SrTiO 3 is irradiated with fast ion particles such as an argon (Ar) ion beam on the surface, a conductive layer is formed on the surface. The sheet resistance of the surface conductive layer changes depending on the intensity and time of ion beam irradiation. When the accelerating voltage of the ion beam is 200 to 1000 V, the ion current density is 0.2 to 1 mA / cm 2 , and the argon (Ar) ion beam irradiation is performed for 1 to 20 minutes, the sheet resistance of the SrTiO 3 surface is 2 MΩ to It changes up to 100Ω.
【0016】SrTiO3 の表面が導電体になる原因と
して,次のことが考えられる。 表面に結晶のダメージが入り,表面電荷層が生成さ
れる。 イオンビームによって,SrTiO3 表面の酸素が
抜けて酸素欠損の結晶ができ,内部でキャリアが生成さ
れる。The following are possible causes for the surface of SrTiO 3 to become a conductor. Crystal damage occurs on the surface and a surface charge layer is generated. By the ion beam, oxygen on the surface of SrTiO 3 escapes to form oxygen-deficient crystals, and carriers are generated inside.
【0017】以上述べた方法を用いて,SrTiO3 の
表面だけを選択的に高ドープ状態にし,その上に形成さ
れる酸化物超伝導体や金属とのコンタクト抵抗を下げる
ことが可能になる。また,選択的にドープすることによ
り,絶縁体SrTiO3 中に半導体配線層や抵抗層を形
成することが可能になる。By using the method described above, it becomes possible to selectively bring only the surface of SrTiO 3 into a highly doped state and reduce the contact resistance with the oxide superconductor or the metal formed thereon. Further, by selectively doping, it becomes possible to form a semiconductor wiring layer and a resistance layer in the insulator SrTiO 3 .
【0018】以下,図1を用いて具体的に説明する。 (1)コンタクト抵抗の低減 図(a)に示すように,SrTiO3 下地11上にレジ
スト12を塗布した後,堆積物の形状の開口部を形成す
るように,レジストをパターニングし,表面にイオンビ
ームを照射して,開口部に露出したSrTiO3 下地1
1の表面に表面導電層13を形成する。A detailed description will be given below with reference to FIG. (1) Reduction of contact resistance As shown in FIG. 1 (a), after applying a resist 12 on an SrTiO 3 underlayer 11, the resist is patterned so as to form an opening in the shape of a deposit, and ions are formed on the surface. Beam-irradiated SrTiO 3 substrate 1 exposed at the opening 1
A surface conductive layer 13 is formed on the surface of 1.
【0019】次いで,図(b−1)に示すように,表面
導電層13上に,酸化物超伝導体や金属14を堆積し
て,この堆積物14とSrTiO3 下地11とを電気的
に接続する。Then, as shown in FIG. 1 (b-1), an oxide superconductor or a metal 14 is deposited on the surface conductive layer 13, and the deposit 14 and the SrTiO 3 underlayer 11 are electrically connected. Connecting.
【0020】(2)絶縁体SrTiO3 中への半導体配
線層や抵抗層の形成 図(a)に示すように,SrTiO3 下地11上にレジ
スト12を塗布した後,導電層や抵抗層の形状の開口部
を形成するように,レジストをパターニングし,表面に
イオンビームを照射して,開口部に露出したSrTiO
3 下地11の表面に表面導電層13を形成する。この表
面導電層13を,図(b−2)に示すように,半導体配
線層や抵抗層として用いる。(2) Formation of Semiconductor Wiring Layer and Resistive Layer in Insulator SrTiO 3 As shown in FIG. 3A, after applying resist 12 on SrTiO 3 underlayer 11, the shape of conductive layer and resistive layer Patterning the resist so as to form the openings, and irradiating the surface with an ion beam to expose the SrTiO 3 in the openings.
3 A surface conductive layer 13 is formed on the surface of the base 11. This surface conductive layer 13 is used as a semiconductor wiring layer or a resistance layer as shown in FIG.
【0021】[0021]
【実施例】図2〜図6は,本発明を誘電体ベーストラン
ジスタの製造に適用した例の各工程を示す図である。以
下,工程順に説明する。2 to 6 are views showing respective steps of an example in which the present invention is applied to manufacture of a dielectric base transistor. The steps will be described below in order.
【0022】[工程1,図2]SrTiO3 基板21上
に,エミッタ電極材料として,SiO2 (22)および
Nb(23)を,スパッタ法により,それぞれ2nm,
100nmの厚さに堆積する。[Step 1, FIG. 2] On the SrTiO 3 substrate 21, SiO 2 (22) and Nb (23) as emitter electrode materials were formed to a thickness of 2 nm by sputtering, respectively.
Deposit to a thickness of 100 nm.
【0023】表面に第1レジスト24を塗布した後,エ
ミッタ電極の形状にパターニングする。 [工程2,図2,図3]第1レジスト24をマスクとし
て,RIEによりNb(23)およびSiO2 (22)
をエッチングしてエミッタ電極25を形成する。After the first resist 24 is applied on the surface, it is patterned into the shape of the emitter electrode. [Step 2, FIG. 2 and FIG. 3] Nb (23) and SiO 2 (22) by RIE using the first resist 24 as a mask
Is etched to form the emitter electrode 25.
【0024】第1レジスト24を剥離した後,全面に第
2レジスト26を塗布する。第2レジスト26を,コレ
クタ電極を形成すべき部分が開口するように,パターニ
ングする。After removing the first resist 24, a second resist 26 is applied on the entire surface. The second resist 26 is patterned so that the portion where the collector electrode is to be formed is open.
【0025】表面に,アルゴン(Ar)イオンビームを
照射し,開口部に露出したSrTiO3 基板21の表面
に表面電荷層を生成して,コレクタコンタクト層27
a,27bを形成する。イオンビームの加速電圧は50
0V,イオン電流密度は1mA/cm2 で,5分間の照
射を行った。The surface of the collector contact layer 27 is irradiated with an argon (Ar) ion beam to form a surface charge layer on the surface of the SrTiO 3 substrate 21 exposed in the opening.
a and 27b are formed. Ion beam acceleration voltage is 50
Irradiation was performed for 5 minutes at 0 V and an ion current density of 1 mA / cm 2 .
【0026】[工程3,図3,図4]第2レジスト26
を剥離した後,スパッタ法により,全面にNb(28)
を堆積する。[Step 3, FIG. 3 and FIG. 4] Second resist 26
After peeling off the Nb (28)
Deposit.
【0027】全面に第3レジスト29を塗布した後,コ
レクタ電極の形状にパターニングする。 [工程4,図4,図5]第3レジスト29a,29bを
マスクとし,RIEによりNb(28)をエッチングし
て,コレクタ電極30a,30bを形成する。After applying the third resist 29 on the entire surface, patterning is performed in the shape of the collector electrode. [Step 4, FIG. 4, FIG. 5] Nb (28) is etched by RIE using the third resists 29a, 29b as masks to form collector electrodes 30a, 30b.
【0028】全面に第4レジスト31を塗布した後,エ
ミッタ電極上およびコレクタ電極上のみに残るようにパ
ターニングする。スパッタ法により,全面にSiO
2 (32)を堆積する。After coating the fourth resist 31 on the entire surface, patterning is performed so that it remains only on the emitter electrode and the collector electrode. The entire surface is SiO 2 by the sputtering method.
2 (32) is deposited.
【0029】[工程5,図5,図6]エミッタ電極25
およびコレクタ電極30a,30b上の第4レジスト3
1a,31b,31cおよびSiO2 (32b,32
d,32f)をリフトオフして,エミッタコンタクト孔
およびコレクタコンタクト孔を開口する。[Step 5, FIG. 5, FIG. 6] Emitter electrode 25
And the fourth resist 3 on the collector electrodes 30a and 30b
1a, 31b, 31c and SiO 2 (32b, 32
d, 32f) are lifted off to open the emitter contact hole and the collector contact hole.
【0030】基板の表面および裏面にNb(33)をス
パッタ法により堆積した後,パターニングしてエミッタ
電極33b,コレクタ電極33a,33c,およびベー
ス電極33dを形成する。Nb (33) is deposited on the front and back surfaces of the substrate by sputtering and then patterned to form emitter electrode 33b, collector electrodes 33a and 33c, and base electrode 33d.
【0031】以上の各工程を経て,本発明を適用した誘
電体ベーストランジスタが完成する。Through the above steps, the dielectric base transistor to which the present invention is applied is completed.
【0032】[0032]
【発明の効果】本発明によれば,SrTiO3 下地を用
いた超伝導デバイスの製造方法において,SrTiO3
下地とその上に堆積する酸化物超伝導体や金属とのコン
タクト抵抗の低減,およびSrTiO3 下地中への導電
層や抵抗層の形成が可能になる。According to the present invention, in a method of manufacturing a superconducting device using a SrTiO 3 underlayer, SrTiO 3
It is possible to reduce the contact resistance between the underlayer and the oxide superconductor or metal deposited on it, and to form a conductive layer or a resistance layer in the SrTiO 3 underlayer.
【図1】本発明の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of the present invention.
【図2】実施例の一工程を示す図である。FIG. 2 is a diagram showing one process of an example.
【図3】実施例の一工程を示す図である。FIG. 3 is a diagram showing one process of the example.
【図4】実施例の一工程を示す図である。FIG. 4 is a diagram showing one process of the example.
【図5】実施例の一工程を示す図である。FIG. 5 is a diagram showing one process of the example.
【図6】実施例の一工程を示す図である。FIG. 6 is a diagram showing one process of the example.
【図7】従来例を示す図である。FIG. 7 is a diagram showing a conventional example.
11 SrTiO3 下地 12 レジスト 13 表面導電層 14 酸化物超伝導体または金属11 SrTiO 3 Underlayer 12 Resist 13 Surface Conductive Layer 14 Oxide Superconductor or Metal
Claims (2)
れた酸化物超伝導体や金属を堆積する超伝導デバイスの
製造方法であって, SrTiO3 下地の表面にイオンビームを選択的に照射
して,該SrTiO3 下地の表面に表面導電層を形成す
る工程と, 該表面導電層上に酸化物超伝導体や金属を堆積して,該
堆積物とSrTiO3 下地とを電気的に接続する工程と
を含むことを特徴とする超伝導デバイスの製造方法。To 1. A SrTiO 3 base on a method for manufacturing a superconducting device for depositing electrically connected to the oxide superconductor and metal, selectively irradiated with an ion beam to the surface of the SrTiO 3 underlying to, and forming a surface conductive layer on the SrTiO 3 underlying surface, and depositing an oxide superconductor and a metal on the surface conductive layer, electrically connecting the said sediments and SrTiO 3 base A method of manufacturing a superconducting device, comprising:
形成する超伝導デバイスの製造方法であって, SrTiO3 下地の表面にイオンビームを選択的に照射
して,SrTiO3 下地の表面に表面導電層を形成する
工程を含むことを特徴とする超伝導デバイスの製造方
法。2. A method for producing a superconducting device for forming a conductive layer and a resistive layer in the SrTiO 3 base, and selectively irradiating the ion beam on the surface of the SrTiO 3 underlying the surface of the SrTiO 3 underlying A method of manufacturing a superconducting device, comprising the step of forming a surface conductive layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3345939A JPH05206531A (en) | 1991-12-27 | 1991-12-27 | Manufacture of superconducting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3345939A JPH05206531A (en) | 1991-12-27 | 1991-12-27 | Manufacture of superconducting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05206531A true JPH05206531A (en) | 1993-08-13 |
Family
ID=18380030
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3345939A Withdrawn JPH05206531A (en) | 1991-12-27 | 1991-12-27 | Manufacture of superconducting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05206531A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012032690A (en) * | 2010-08-02 | 2012-02-16 | Seiko Epson Corp | Optical article and manufacturing method thereof |
-
1991
- 1991-12-27 JP JP3345939A patent/JPH05206531A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012032690A (en) * | 2010-08-02 | 2012-02-16 | Seiko Epson Corp | Optical article and manufacturing method thereof |
US8789944B2 (en) | 2010-08-02 | 2014-07-29 | Hoya Lens Manufacturing Philippines Inc. | Optical article and optical article production method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS61114585A (en) | Electric connection structure and formation thereof | |
JP2002522927A (en) | Electrically stabilized thin film high temperature superconductor and method of manufacturing the same | |
JPS5893347A (en) | Metal oxide semiconductor type semiconductor device and its manufacture | |
JP3382588B2 (en) | Use of ion implantation to create normal layers during superconducting-normal-superconducting Josephson junctions | |
JP3365945B2 (en) | In-line resistor for superconducting circuit and method of manufacturing the same | |
US4536781A (en) | Fabrication of superconductive tunneling junction resistors and short circuits by ion implantation | |
JPH05206531A (en) | Manufacture of superconducting device | |
JPS6146081A (en) | Manufacture of josephson junction element | |
JP2682136B2 (en) | Method of manufacturing Josephson device | |
JPH039572A (en) | Manufacture of semiconductor device | |
JPH10125864A (en) | Manufacture of semiconductor device | |
JPS63245972A (en) | Weak coupling type josephson element | |
JPH05183207A (en) | Manufacture of superconducting device | |
US4536780A (en) | Superconductive tunneling junction resistor and method of fabrication | |
JPH08227743A (en) | Metal electrode for oxide superconductor | |
JP4104323B2 (en) | Method for fabricating Josephson junction | |
JP2641970B2 (en) | Superconducting element and fabrication method | |
JP2835244B2 (en) | Superconducting device and manufacturing method thereof | |
JP3203878B2 (en) | Quantum well structure and method of manufacturing the same | |
JPS60113484A (en) | Manufacture of josephson ic device | |
JPS61144892A (en) | Production of josephson integrated circuit | |
JP4056575B2 (en) | Superconducting device and manufacturing method thereof | |
JPS63266889A (en) | Josephson junction device | |
JP2641966B2 (en) | Superconducting element and fabrication method | |
JP2616745B2 (en) | Contact structure between superconducting layers and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990311 |