JPH0520520B2 - - Google Patents
Info
- Publication number
- JPH0520520B2 JPH0520520B2 JP20288087A JP20288087A JPH0520520B2 JP H0520520 B2 JPH0520520 B2 JP H0520520B2 JP 20288087 A JP20288087 A JP 20288087A JP 20288087 A JP20288087 A JP 20288087A JP H0520520 B2 JPH0520520 B2 JP H0520520B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- plating layer
- nickel
- phosphorus
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 139
- 238000007747 plating Methods 0.000 claims description 88
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 68
- 229910052759 nickel Inorganic materials 0.000 claims description 64
- 229910045601 alloy Inorganic materials 0.000 claims description 63
- 239000000956 alloy Substances 0.000 claims description 63
- 229910052698 phosphorus Inorganic materials 0.000 claims description 62
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 61
- 239000011574 phosphorus Substances 0.000 claims description 61
- 238000000034 method Methods 0.000 claims description 49
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 40
- 239000010949 copper Substances 0.000 claims description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 26
- 229910052802 copper Inorganic materials 0.000 claims description 26
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 claims description 24
- JXTHNDFMNIQAHM-UHFFFAOYSA-N dichloroacetic acid Chemical compound OC(=O)C(Cl)Cl JXTHNDFMNIQAHM-UHFFFAOYSA-N 0.000 claims description 22
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 claims description 22
- 238000005868 electrolysis reaction Methods 0.000 claims description 18
- 229940106681 chloroacetic acid Drugs 0.000 claims description 12
- 229960005215 dichloroacetic acid Drugs 0.000 claims description 11
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000001276 controlling effect Effects 0.000 claims description 2
- 238000010828 elution Methods 0.000 description 24
- 230000000694 effects Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 239000000126 substance Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 229910000990 Ni alloy Inorganic materials 0.000 description 4
- 229910001096 P alloy Inorganic materials 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000570 Cupronickel Inorganic materials 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 2
- 229910018104 Ni-P Inorganic materials 0.000 description 2
- 229910018536 Ni—P Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 150000001243 acetic acids Chemical class 0.000 description 1
- 239000003788 bath preparation Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000009878 intermolecular interaction Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000011536 re-plating Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
Description
[産業上の利用分野]
本発明はニツケルおよび燐からなる合金めつき
層の剥離液および剥離方法に関し、さらに詳しく
は、ニツケルおよび燐からなる合金めつき層が設
けられている銅または銅合金より銅または銅合金
を損傷することなくニツケルおよび燐からなる合
金めつき層を容易に剥離することができる剥離液
および剥離方法に関する。
[従来の技術]
一般に、めつきの剥離方法を大別すると、機械
的剥離方法、化学的剥離方法、電気化学的剥離方
法の3つに分類される。
機械的剥離方法は研摩等によりめつき層を削り
取る方法であり、また、化学的剥離方法は素材を
溶解することなく、その上のめつき層を溶解する
方法であり、さらに、電気化学的剥離方法は剥離
液中で定電位電解を行なうことにより、素材を溶
解することなくめつき層のみを溶解する方法であ
る。そして、種々のめつき層の剥離は、めつき層
を設けた素材との組み合わせ或いは形状によつて
上記いずれかの剥離方法を選択して行なわれる。
しかして、機械的剥離方法は種々のめつきに対
して行なわれるが、めつきの下地である素材表面
を削る恐れがあるため、寸法精度の要求される物
品に使用するのは困難であり、また、複雑な形状
の物品には行なえない。
また、化学的剥離方法は銅めつき層、金めつき
層、ニツケルめつき層、クロムめつき層等のめつ
き層等に対して行なわれており、例えば、銅素材
上のクロムめつき層は塩酸中に浸漬することによ
つて、激しく反応して短時間で除去され、そし
て、この方法は形状の複雑な物品上のめつき層の
剥離には有効であるが、めつき金属と素材金属の
組み合わせによつては適当な剥離液がない場合が
多い。
さらに、電気化学的剥離方法は上記の化学的剥
離方法同様に銅めつき層、金めつき層、ニツケル
めつき層等の種々のめつき層に適用されており、
比較的速く剥離が行なえる点で優れているが、形
状の複雑な物品は対極の形状を適当に選択しない
と均一な剥離ができず、部分的にめつき層が残る
ため必要以上に時間がかかるという欠点をもつて
いる。そして、この方法も化学的剥離方法と同様
にめつき金属と素材金属との組み合わせによつて
剥離液を選択し、かつ、電解方法、電位等の条件
を適当に制御する必要がある。
次に、ニツケルおよび燐からなる合金めつき層
の剥離について説明すると、このニツケルおよび
燐からなる合金めつきは優れた耐蝕性、耐摩耗
性、耐熱性を有しているから、電解法或いは無電
解法により種々の製品に設けられており、例え
ば、各種機械部品、リードフレーム、鉄鋼用鋳造
型等に使用されている。
これら製品の製造途中のめつき不良或いは使用
後に再びめつきを行なう場合、素材を損傷するこ
となくニツケルおよび燐からなる合金めつきを剥
離する必要がある。
そして、機械的剥離方法はヤスリ、サンドペー
パー等で研摩する方法であるが、ニツケルおよび
燐合金めつき層の硬度はHv600〜1100と高いた
め、長時間を必要とし、かつ、素材を損傷する恐
れがある。
従つて、ニツケルおよび燐からなる合金めつき
層の剥離方法としては、化学的剥離方法が広く利
用されており、剥離液も数種類程度市販されてい
る。そして、これらの剥離液は強アルカリ性で、
使用する場合は90℃前後の高温において物品を浸
漬してニツケルおよび燐からなる合金めつき層を
剥離するのである。この化学的剥離方法は、剥離
しようとするニツケルおよび燐からなる合金めつ
き層が設けられている物品の形状には無関係に剥
離が行なえるという利点があり、また、電源等の
特別な装置が必要としない利点があるが、剥離速
度は建浴時の最大値でも1時間当たり10μmと遅
く、鋳造用鋳型等のように数十μmのめつきを設
けた物品では剥離に長時間を必要とする。また、
剥離液は常温で自然消耗し、使用する際は高温で
あるために一層の分解消耗が激しく、短時間で寿
命に達するという問題がある。
さらに、電気化学的剥離方法は、ニツケルおよ
び燐からなる合金めつき層の剥離に行なわれた例
はなく、ニツケルめつき層の剥離に行なわれてい
ることがある。この方法は、50体積%硫酸中で陽
極電解するものであり、これをそのまま銅板上の
ニツケルおよび燐からなる合金めつき層の剥離に
適用したところ、めつき層表面は黒化し、20μm
のニツケルおよび燐からなる合金めつき層を剥離
するのに約4時間を要し、かつ、銅素地面が荒れ
ていた。従つて、ニツケルめつき層の電気化学的
剥離方法ではニツケルおよび燐からなる合金めつ
き層の剥離を行なうのは適当ではない。
1例として、特公昭60−056800号公報および特
開昭59−166700号公報にめつき層の電解剥離につ
いて記載があるが、これらのいずれもニツケルお
よび燐からなる合金めつき層の剥離法ではない。
[発明が解決しようとする問題点]
本発明は上記に説明した各種のめつき層の剥離
方法の種々の問題点やニツケルおよび燐からなる
合金めつき層の剥離方法の問題点に鑑み、本発明
者が鋭意研究を行ない、検討を重ねた結果、従来
の化学的剥離方法、電気化学的剥離方法等の問題
点を解決し、銅および銅合金の素地を損傷するこ
となく、剥離速度が速い、かつ、剥離液の自然消
耗のない長寿命のニツケルおよび燐からなる合金
めつき層の剥離液および剥離方法を開発したので
ある。
[問題点を解決するための手段]
本発明に係るニツケルおよび燐からなる合金め
つき層の剥離液および剥離方法は、
(1) 硫酸50〜70wt%、
モノクロロ酢酸、ジクロロ酢酸、トリクロロ
酢酸の内から選んだ少なくとも1種のクロロ酢
酸1〜15g/
を含有することを特徴とする銅または銅合金上
のニツケルおよび燐からなる合金めつき層の剥
離液を第1の発明とし、
(2) 硫酸50〜70wt%、
モノクロロ酢酸、ジクロロ酢酸、トリクロロ
酢酸の内から選んだ少なくとも1種のクロロ酢
酸1〜15g/
を含有する剥離液中で、めつき層が設けられて
いる物品の剥離液に対する電位を測定し、その
電位をニツケルおよび燐からなる合金めつき層
が溶出する電位以上で、かつ、銅または銅合金
の溶出する電位以下に正確に規制し、次いで、
陽極電解を行うことを特徴とする銅または銅合
金上のニツケルおよび燐からなる合金めつき層
の剥離方法を第2の発明とし、
(3) 硫酸50〜70wt%、
モノクロロ酢酸、ジクロロ酢酸、トリクロロ
酢酸の内から選んだ少なくとも1種のクロロ酢
酸1〜15g/
を含有する剥離液中で、めつき層が設けられて
いる物品の剥離液に対する電位を測定し、その
電位をニツケルおよび燐からなる合金めつき層
が溶出する電位以上で、かつ、銅または銅合金
が不動態化し、溶出し難い範囲の電位で正確に
規制しながら、陽極電解を行うことを特徴とす
る銅または銅合金上のニツケルおよび燐からな
る合金めつき層の剥離方法を第3の発明とする
3つの発明よりなるものである。
本発明に係るニツケルおよび燐からなる合金め
つき層の剥離液および剥離方法について、以下詳
細に説明する。
先ず、本発明に係るニツケルおよび燐からなる
合金めつき層の剥離液について説明する。
硫酸濃度は50wt%未満の薄い濃度では銅また
は銅合金が不動態化し難く、この濃度で剥離作業
を行なうと、ニツケルおよび燐からなる合金めつ
き層が溶解されて除去された後で、素地の銅また
は銅合金が溶出し、素地表面を侵蝕される恐れが
あり、特に、寸法精度が要求される物品には使用
できず、また、硫酸濃度が70wt%を越える高濃
度の硫酸中では電流が流れにくくなり、剥離速度
が低下する。よつて、硫酸濃度は50〜70wt%と
する。
クロロ酢酸を剥離液に含有させるのは、クロロ
酢酸を含有させることによつて、ニツケルおよび
燐からなる合金めつき層の溶出電位(その金属の
溶解が起こり始める電位)を負側に移行させるこ
とができるからであり、これによつて銅または銅
合金の溶出電位との電位差を大きくし、ニツケル
および燐からなる合金めつき層の溶出電位と銅ま
たは銅合金の溶出電位との間の電位において陽極
電解することができるようになり、ニツケルおよ
び燐合金めつき層のみを銅または銅合金の素地表
面を損傷することなく剥離することができる。そ
して、このクロロ酢酸はニツケルおよび燐合金め
つき層の黒化を防ぐことによつてニツケルおよび
燐合金めつき層そのものの溶解速度を大きくする
作用を有している。
このクロロ酢酸は、1g/未満では上記の効
果は得られず、また、15g/を越える多量のク
ロロ酢酸を含有させても上記の効果は飽和してし
まう。よつて、クロロ酢酸含有量は1〜15g/
とする。
なお、クロロ酢酸としては、モノクロロ酢酸、
ジクロロ酢酸、トリクロロ酢酸がある。
本発明に係るニツケルおよび燐からなる合金め
つき層の剥離方法については、以下の実施例から
明らかになる。
[実施例]
本発明に係るニツケルおよび燐からなる合金め
つき層の剥離液および剥離方法の実施例を説明す
る。
実施例 1
Ni3.2wt%、Si0.7wt%、Zn0.3wt%、残部Cuか
らなる銅合金の板(25mm×50mm×1mm)5枚とこ
の板の上にニツケルおよび燐からなる合金めつき
層を50μmを設けた板5枚を用意し、1cm2を除い
てエポキシ系塗料でマスクをし、次いで、30wt
%、50wt%、70wt%、80wt%硫酸、70wt%硫酸
とトリクロロ酢酸5g/を含有する5種類の液
中での銅合金とニツケルおよび燐からなる合金め
つき層の電位−電流曲線を測定した。
第1図は70wt%硫酸にトリクロロ酢酸5g/
を溶解した溶液中での電位−電流曲線をであ
る。
なお、本発明に係るニツケルおよび燐からなる
合金めつき層の剥離液および剥離方法の第2の発
明(第1図Aで示す。)により行なうと、Ni−P
のみが溶解して好ましいのであるが、電位の幅が
小さいため実際に使用して剥離液に変化が起こつ
たりして、この電位の範囲から外れるという危険
がある。
また、本発明に係るニツケルおよび燐からなる
合金めつき層の剥離液および剥離方法の第3の発
明(第1図でBで示す。)、Ni−Pは溶出し、Cu
は不動態化し、僅か微量溶解するが、第1図は縦
軸は対数で示してあることからわかるように、
Ni−PとCuとの溶出量は2桁以上の差があるの
で、略Ni−Pめつきのみが溶出し、Cuは溶出し
ない。また、この範囲は広いので実際的には行な
い易いという有利性がある。
比較例として、第3図は、30wt%硫酸、第4
図は50wt%硫酸、第5図は70wt%硫酸、第6図
は80wt%硫酸中における電位−電流曲線である。
第3図〜第6図において、硫酸濃度が小さいほ
ど銅合金の不動態化が進まず、0.8Vにおける電
流値は硫酸濃度が30wt%、50wt%、70wt%、
80wt%と大きくなるに従つて、2.50A/dm2、
1.02A/dm2、0.07A/dm2、0.01A/dm2と小さ
くなつている。よつて、硫酸濃度が小さいと素地
の銅合金を損傷する恐れがある。
第1図の70wt%硫酸にトリクロロ酢酸5g/
を溶解した液中の電位−電流曲線と、第5図の
70wt%硫酸中の電位−電流曲線を比較すると、
トリクロロ酢酸5g/含有することによつてニ
ツケルおよび燐からなる合金めつき層と銅合金の
溶出電位の差が大きくなつている。
即ち、第5図において、銅合金の溶出電位は−
0.07V、ニツケルおよび燐からなる合金めつき層
の溶出電位は−0.15Vであるのに対して、第1図
における銅合金の溶出電位は−0.05V、ニツケル
および燐からなる合金めつき層の溶出電位は−
0.30Vであり、銅合金とニツケルおよび燐からな
る合金めつき層の溶出電位差は0.08Vから0.25V
と大きくなつている。
このようなことから、ニツケルおよび燐からな
る合金めつき層の溶出電位以上で、かつ、銅合金
の溶出電位以下の電位における電解によつて、ニ
ツケルおよび燐からなる合金めつき層のみを選択
的に溶出することができる。
実施例 2
実施例1と同様の銅合金板上に、20μmのニツ
ケルおよび燐からなる合金めつき層を設け、1cm2
の面積を除いてエポキシ系塗料によりマスキング
を行なつた。
この試験片を複数枚用意し、第1表に示す硫酸
とトリクロロ酢酸等を含む溶液中で、陽極である
物品の電位を規制して定電位電解を行ない、ニツ
ケルおよび燐からなる合金めつき層が溶出して無
くなるまでの時間を測定した。
第2図は第1表のNo.3、No.4およびNo.10の定電
位電解中の電流値の変化を時間に対して表したも
のである。
硫酸の濃度の影響をトリクロロ酢酸5g/と
一定として、30wt%、50wt%、70wt%、80wt%
と硫酸濃度を変化させて、剥離時間および剥離後
の銅合金素地表面の状態を観察した。
硫酸濃度30wt%のNo.8は剥離時間は短いが、
銅合金表面も一部溶出したために表面状態が悪
い。
また、No.1およびNo.3の硫酸濃度50wt%、
70wt%の場合は剥離時間が短く、素地表面状態
も良好であつた。
硫酸濃度80wt%のNo.9では剥離時間が21分と
長い。
このことは、硫酸の濃度が低いと実施例1で示
したように、銅合金も溶出するため素地表面が荒
れ、また、硫酸濃度が高いと電流が流れにくくな
ることを示している。
次に、トリクロロ酢酸の含有量の影響を、硫酸
濃度を70wt%と一定にして、0g/、1g/
、5g/、15g/、20g/と変化させ
て、剥離時間および剥離後の銅合金素地の表面状
態を観察した。
第1表に示すように、No.10、No.2、No.3、No.
4、No.11とトリクロロ酢酸の量を増加していく
と、剥離時間は短くなつているが、No.4とNo.11と
では殆ど同じであつた。
また、No.10のトリクロロ酢酸を含まないもの
は、ニツケルおよび燐からなる合金めつき層が黒
化して残つており、完全に剥離していなかつた。
このように、トリクロロ酢酸を含有させること
によつて、剥離速度が大きくなることを示してお
り、15g/以上ではトリクロロ酢酸の量と関係
なく、効果は一定になることをしめしている。
また、No.10、No.3、No.4について行なつた結果
を示した第2図から見ると、トリクロロ酢酸の量
が多くなるに従つて、電解開始後の電流値が大き
く、電流が流れ易くなつていることを示してお
り、よつて、トリクロロ酢酸にはニツケルおよび
燐からなる合金めつき層の黒化を防ぎ溶出を促進
する作用のあることがわかる。
以上の説明は、ニツケルおよび燐からなる合金
めつき層の剥離を、ニツケルおよび燐からなる合
金めつき層の溶出電位以上で銅合金が不動態化を
起こし、溶出し難い範囲の電位である+0.30Vで
行なつた場合である。
次に、ニツケルおよび燐からなる合金めつき層
の溶出電位以上で、かつ、銅合金の溶出電位以下
の電位である−0.10Vに物品の電位を保ち、定電
位電解した例をNo.5に示した。剥離時間は13分で
他の例に比べても短い時間であり、銅合金の溶出
が生じない電位で電解しているので剥離後の素地
表面は良好である。
このように、ニツケルおよび燐からなる合金め
つき層の溶出電位以上で、かつ、銅合金の溶出電
位以下で電解本発明に係るニツケルおよび燐から
なる合金めつき層の剥離液および剥離方法の第2
の発明により行なうと、銅合金は溶解することが
ない筈であるが、実際の剥離作業においては、剥
離液を使用しているうちに溶け込んだ金属イオン
等の影響で剥離液の組成が変化して、陽極電位の
変化が起こるので剥離可能な電位範囲で狭い本発
明に係るニツケルおよび燐からなる合金めつき層
の剥離液および剥離方法の第2の発明は、電位を
規制するのが難かしいという欠点があり、従つ
て、実際の剥離作業としては電解時の陽極電位
は、ニツケルおよび燐からなる合金めつき層の溶
出電位以上で、かつ、銅または銅合金が不動態化
し、溶出し難い範囲に規制して行なう本発明に係
るニツケルおよび燐からなる合金めつき層の剥離
液および剥離方法の第3の発明により行なうのが
剥離液の組成変化等に対しても影響されにくいの
で好ましい。
次に、ジクロロ酢酸、モノクロロ酢酸の例につ
いて説明すると、No.6は70wt%硫酸にジクロロ
酢酸を1g/溶解し、電位を+0.30Vに保つて
電解を行なつた場合であり、No.7はNo.6と同様に
モノクロロ酢酸5g/を溶解した場合である。
これらの何れの場合においても、トリクロロ酢
酸の場合と同様に、ジクロロ酢酸とモノクロロ酢
酸を含まない場合に比べて剥離時間が短縮するこ
とは明らかである。
また、これらジクロロ酢酸とモノクロロ酢酸を
混合して用いても、互いのクロロ酢酸の間で分子
間の相互作用があるとは考えられず、効果は相乗
加算されるものである。
[Industrial Application Field] The present invention relates to a stripping solution and a method for stripping an alloy plating layer made of nickel and phosphorus, and more specifically, to a stripping solution and a method for stripping an alloy plating layer made of nickel and phosphorus. The present invention relates to a stripping solution and a stripping method that can easily strip an alloy plating layer made of nickel and phosphorus without damaging copper or copper alloy. [Prior Art] Generally, plating removal methods can be broadly classified into three types: mechanical separation methods, chemical separation methods, and electrochemical separation methods. The mechanical peeling method is a method of scraping off the plating layer by polishing, etc., and the chemical peeling method is a method of dissolving the plating layer on it without dissolving the material. The method involves performing constant potential electrolysis in a stripping solution to dissolve only the plating layer without dissolving the material. The various plating layers are peeled off by selecting one of the above-mentioned peeling methods depending on the combination or shape of the material on which the plating layer is provided. Although mechanical peeling methods are used for various types of plating, it is difficult to use for products that require dimensional accuracy because there is a risk of scraping the surface of the material that is the base of the plating. , cannot be applied to articles with complex shapes. In addition, chemical peeling methods are performed on plating layers such as copper plating layer, gold plating layer, nickel plating layer, chrome plating layer, etc. For example, chrome plating layer on copper material When immersed in hydrochloric acid, it reacts violently and is removed in a short period of time. Although this method is effective for peeling off the plating layer on articles with complex shapes, it There are many cases where there is no suitable stripping solution for some combinations of metals. Furthermore, the electrochemical peeling method, like the chemical peeling method described above, is applied to various plated layers such as copper plated layer, gold plated layer, nickel plated layer, etc.
It is excellent in that it can be peeled off relatively quickly, but if the shape of the object is complex, it will not be possible to peel it off evenly unless the shape of the counter electrode is selected appropriately. It has the disadvantage of being expensive. Similar to the chemical stripping method, this method also requires selecting a stripping solution depending on the combination of the plated metal and the raw metal, and appropriately controlling conditions such as the electrolytic method and electric potential. Next, I will explain about the peeling of the alloy plating layer made of nickel and phosphorus.Since this alloy plating made of nickel and phosphorus has excellent corrosion resistance, abrasion resistance, and heat resistance, it can be removed by electrolytic method or non-electrolytic method. It is provided in various products by the electrolytic method, and is used, for example, in various mechanical parts, lead frames, casting molds for steel, etc. If these products have poor plating during manufacture or if they are to be replated after use, it is necessary to remove the alloy plating made of nickel and phosphorus without damaging the material. The mechanical peeling method involves polishing with a file, sandpaper, etc., but since the hardness of the nickel and phosphorus alloy plating layer is high at Hv600-1100, it requires a long time and may damage the material. There is. Therefore, chemical stripping methods are widely used as a method for stripping alloy plating layers made of nickel and phosphorus, and several types of stripping solutions are commercially available. These removers are strongly alkaline,
When used, the article is immersed at a high temperature of around 90°C to peel off the alloy plating layer made of nickel and phosphorus. This chemical peeling method has the advantage that it can be peeled off regardless of the shape of the article on which the alloy plating layer made of nickel and phosphorus is applied, and it also requires special equipment such as a power supply. Although it has the advantage that it is not necessary, the peeling speed is slow at 10 μm per hour even at the maximum value at the time of bath preparation, and it takes a long time to peel off products with plating of several tens of μm such as casting molds. do. Also,
The problem is that the stripping solution naturally wears out at room temperature, and when it is used at high temperatures, it decomposes and wears out even more rapidly, reaching the end of its service life in a short period of time. Further, the electrochemical peeling method has never been used to peel off an alloy plated layer consisting of nickel and phosphorus, but it has been used to peel off a nickel plated layer. This method involves anodic electrolysis in 50 volume % sulfuric acid, and when this method was applied as is to peeling off an alloy plating layer made of nickel and phosphorus on a copper plate, the surface of the plating layer turned black and a layer of 20 μm thick was applied.
It took about 4 hours to peel off the alloy plating layer made of nickel and phosphorus, and the copper base surface was rough. Therefore, the electrochemical peeling method of the nickel plated layer is not suitable for peeling off the alloy plated layer consisting of nickel and phosphorus. As an example, Japanese Patent Publication No. 60-056800 and Japanese Patent Application Laid-open No. 59-166700 describe electrolytic peeling of a plated layer, but both of them describe a method for peeling an alloy plated layer made of nickel and phosphorus. do not have. [Problems to be Solved by the Invention] The present invention has been developed in view of the various problems in the methods for peeling off various plated layers described above and the problems in the method for peeling off alloy plated layers made of nickel and phosphorus. As a result of intensive research and repeated consideration by the inventor, the problems of conventional chemical peeling methods, electrochemical peeling methods, etc. were resolved, and the peeling speed was high without damaging the base material of copper and copper alloys. In addition, we have developed a long-life stripping solution and a stripping method for alloy plating layers made of nickel and phosphorus that do not cause natural consumption of the stripping solution. [Means for Solving the Problems] The stripping solution and stripping method for the alloy plating layer made of nickel and phosphorus according to the present invention are as follows: (1) 50 to 70 wt% sulfuric acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid. The first invention is a stripping solution for an alloy plating layer consisting of nickel and phosphorus on copper or copper alloy, characterized in that it contains 1 to 15 g of at least one chloroacetic acid selected from (2) sulfuric acid. Potential of an article provided with a plating layer relative to the stripping solution in a stripping solution containing 50 to 70 wt% and 1 to 15 g of at least one type of chloroacetic acid selected from monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid. is measured, and the potential is accurately regulated to be above the potential at which the alloy plating layer consisting of nickel and phosphorus dissolves, and below the potential at which copper or copper alloy dissolves, and then,
A second invention provides a method for peeling off an alloy plating layer consisting of nickel and phosphorus on copper or copper alloy, which is characterized by carrying out anodic electrolysis, (3) 50 to 70 wt% sulfuric acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid. In a stripping solution containing 1 to 15 g of at least one type of chloroacetic acid selected from acetic acids, the potential of the article provided with the plating layer relative to the stripping solution is measured, and the potential is determined by measuring the potential of the article provided with the plating layer relative to the stripping solution. on copper or copper alloy, which is characterized by carrying out anodic electrolysis at a potential higher than the potential at which the alloy plated layer is eluted, and in a range where the copper or copper alloy becomes passivated and is difficult to elute. This invention consists of three inventions, with the third invention being a method for peeling off an alloy plating layer made of nickel and phosphorus. A stripping solution and a stripping method for an alloy plating layer made of nickel and phosphorus according to the present invention will be described in detail below. First, a stripping solution for an alloy plating layer made of nickel and phosphorus according to the present invention will be explained. If the sulfuric acid concentration is less than 50wt%, it is difficult to passivate the copper or copper alloy, and if stripping is performed at this concentration, the alloy plating layer consisting of nickel and phosphorus will be dissolved and removed, and the base material will be removed. Copper or copper alloys may be eluted and corrode the base surface, so it cannot be used in products that require dimensional accuracy, and electric current cannot be used in high-concentration sulfuric acid exceeding 70wt%. It becomes difficult to flow and the peeling speed decreases. Therefore, the sulfuric acid concentration is set at 50 to 70 wt%. The reason why chloroacetic acid is included in the stripping solution is to shift the elution potential (the potential at which the metal begins to dissolve) of the alloy plating layer consisting of nickel and phosphorus to the negative side. This is because the potential difference between the elution potential of copper or copper alloy is increased, and the potential difference between the elution potential of the alloy plating layer consisting of nickel and phosphorus and the elution potential of copper or copper alloy is increased. Anodic electrolysis is now possible, and only the nickel and phosphorus alloy plating layer can be peeled off without damaging the base surface of the copper or copper alloy. This chloroacetic acid has the effect of increasing the dissolution rate of the nickel and phosphorus alloy plating layer itself by preventing the blackening of the nickel and phosphorus alloy plating layer. If the chloroacetic acid is less than 1 g/ml, the above effect cannot be obtained, and even if the chloroacetic acid is contained in a large amount exceeding 15 g/ml, the above effect will be saturated. Therefore, the chloroacetic acid content is 1 to 15 g/
shall be. In addition, as chloroacetic acid, monochloroacetic acid,
There are dichloroacetic acid and trichloroacetic acid. The method of peeling off an alloy plating layer made of nickel and phosphorus according to the present invention will become clear from the following examples. [Example] An example of a stripping solution and a stripping method for an alloy plating layer made of nickel and phosphorus according to the present invention will be described. Example 1 Five copper alloy plates (25 mm x 50 mm x 1 mm) consisting of 3.2 wt% Ni, 0.7 wt% Si, 0.3 wt% Zn, and the balance Cu, and an alloy plating layer consisting of nickel and phosphorus on these plates. Prepare 5 boards with a 50 μm gap, mask all but 1 cm 2 with epoxy paint, and then apply 30 wt.
Potential-current curves of alloy plating layers made of copper alloy, nickel, and phosphorus were measured in five types of solutions containing 50 wt%, 50 wt%, 70 wt%, 80 wt% sulfuric acid, 70 wt% sulfuric acid, and 5 g of trichloroacetic acid. . Figure 1 shows 5g of trichloroacetic acid in 70wt% sulfuric acid/
The potential-current curve in a solution containing . In addition, when carried out using the second invention (shown in FIG. 1A) of the stripping solution and stripping method for an alloy plating layer made of nickel and phosphorus according to the present invention, the Ni-P
However, since the potential range is small, there is a risk that the stripping solution may change during actual use and fall outside this potential range. In addition, in the third invention of the stripping solution and stripping method for an alloy plating layer made of nickel and phosphorus (indicated by B in FIG. 1), Ni-P is eluted and Cu is
becomes passivated and dissolves in a very small amount, but as can be seen from the fact that the vertical axis in Figure 1 is expressed as a logarithm,
Since the elution amounts of Ni--P and Cu differ by more than two orders of magnitude, approximately only Ni--P plating is eluted, and Cu is not eluted. Moreover, since this range is wide, it has the advantage of being easy to carry out in practice. As a comparative example, Figure 3 shows 30wt% sulfuric acid,
The figure shows potential-current curves in 50wt% sulfuric acid, Figure 5 in 70wt% sulfuric acid, and Figure 6 in 80wt% sulfuric acid. In Figures 3 to 6, the lower the sulfuric acid concentration, the less passivation of the copper alloy progresses, and the current value at 0.8V is 30wt%, 50wt%, 70wt%,
2.50A/dm 2 as it increases to 80wt%,
They are smaller at 1.02A/dm 2 , 0.07A/dm 2 , and 0.01A/dm 2 . Therefore, if the sulfuric acid concentration is low, there is a risk of damaging the base copper alloy. 5g of trichloroacetic acid/70wt% sulfuric acid in Figure 1
The potential-current curve in the solution dissolved in
Comparing the potential-current curves in 70wt% sulfuric acid,
By containing 5 g/trichloroacetic acid, the difference in elution potential between the alloy plating layer consisting of nickel and phosphorus and the copper alloy becomes large. That is, in FIG. 5, the elution potential of the copper alloy is -
0.07V, and the elution potential of the alloy plating layer consisting of nickel and phosphorus is -0.15V, whereas the elution potential of the copper alloy in Fig. 1 is -0.05V, and the elution potential of the alloy plating layer consisting of nickel and phosphorus is -0.15V. Elution potential is -
0.30V, and the elution potential difference of the alloy plating layer consisting of copper alloy, nickel, and phosphorus is 0.08V to 0.25V.
It's getting bigger. For this reason, only the alloy plating layer consisting of nickel and phosphorus can be selectively removed by electrolysis at a potential higher than the elution potential of the alloy plating layer consisting of nickel and phosphorus and lower than the elution potential of the copper alloy. can be eluted. Example 2 A 20 μm alloy plating layer consisting of nickel and phosphorus was provided on the same copper alloy plate as in Example 1, and the thickness was 1 cm 2
Masking was performed using epoxy paint except for the area. A plurality of these test pieces were prepared, and constant potential electrolysis was carried out in a solution containing sulfuric acid, trichloroacetic acid, etc. shown in Table 1 by regulating the potential of the article serving as an anode. The time until it was eluted and disappeared was measured. FIG. 2 shows the change in current value during constant potential electrolysis of No. 3, No. 4 and No. 10 in Table 1 with respect to time. Assuming that the influence of sulfuric acid concentration is constant at 5g/trichloroacetic acid, 30wt%, 50wt%, 70wt%, 80wt%
The peeling time and the condition of the copper alloy substrate surface after peeling were observed by changing the sulfuric acid concentration. No. 8 with a sulfuric acid concentration of 30wt% has a short peeling time, but
The copper alloy surface was also partially eluted and the surface condition was poor. In addition, the sulfuric acid concentration of No. 1 and No. 3 was 50 wt%,
In the case of 70 wt%, the peeling time was short and the substrate surface condition was good. For No. 9 with a sulfuric acid concentration of 80 wt%, the peeling time was as long as 21 minutes. This indicates that, as shown in Example 1, when the concentration of sulfuric acid is low, the copper alloy is also eluted, making the surface of the substrate rough, and when the concentration of sulfuric acid is high, it becomes difficult for current to flow. Next, we examined the effect of trichloroacetic acid content by keeping the sulfuric acid concentration constant at 70 wt%, 0 g/, 1 g/
, 5 g/, 15 g/, and 20 g/, and the peeling time and the surface condition of the copper alloy base after peeling were observed. As shown in Table 1, No.10, No.2, No.3, No.
4. As the amount of No. 11 and trichloroacetic acid was increased, the peeling time became shorter, but No. 4 and No. 11 were almost the same. In addition, in No. 10, which did not contain trichloroacetic acid, the alloy plating layer made of nickel and phosphorus remained blackened and was not completely peeled off. This shows that the peeling rate increases by containing trichloroacetic acid, and that the effect remains constant regardless of the amount of trichloroacetic acid at 15 g/or more. Also, looking at Figure 2, which shows the results for No. 10, No. 3, and No. 4, as the amount of trichloroacetic acid increases, the current value after the start of electrolysis increases, and the current decreases. This indicates that the alloy has become easier to flow, indicating that trichloroacetic acid has the effect of preventing the blackening of the alloy plating layer consisting of nickel and phosphorus and promoting elution. The above explanation explains that the peeling of the alloy plating layer made of nickel and phosphorus is caused by the copper alloy becoming passivated at a potential higher than the elution potential of the alloy plating layer made of nickel and phosphorus, which is a potential range of +0 that is difficult to elute. This is the case when done at .30V. Next, No. 5 shows an example in which constant potential electrolysis was carried out by keeping the potential of the article at -0.10V, which is above the elution potential of the alloy plating layer consisting of nickel and phosphorus and below the elution potential of the copper alloy. Indicated. The peeling time was 13 minutes, which is a short time compared to other examples, and since electrolysis was performed at a potential that did not cause copper alloy elution, the substrate surface after peeling was good. As described above, the stripping solution and stripping method for an alloy plated layer made of nickel and phosphorus according to the present invention can be electrolyzed at an elution potential higher than the elution potential of the alloy plated layer made of nickel and phosphorus and less than the elution potential of the copper alloy. 2
However, in actual stripping work, the composition of the stripping solution changes due to the influence of dissolved metal ions, etc. while the stripping solution is being used. In the second invention of the stripping solution and stripping method for an alloy plating layer made of nickel and phosphorus according to the present invention, the potential range that can be stripped is narrow because the anode potential changes. Therefore, in actual stripping work, the anode potential during electrolysis must be higher than the elution potential of the alloy plating layer consisting of nickel and phosphorus, and the copper or copper alloy becomes passivated and difficult to elute. It is preferable to use the third invention of the stripping solution and stripping method for an alloy plating layer made of nickel and phosphorus according to the present invention, which is carried out within a certain range, since it is less susceptible to changes in the composition of the stripping solution. Next, to explain examples of dichloroacetic acid and monochloroacetic acid, No. 6 is the case where 1 g/dichloroacetic acid was dissolved in 70 wt% sulfuric acid and electrolysis was performed while keeping the potential at +0.30V. This is the case where 5 g/monochloroacetic acid was dissolved in the same manner as No. 6. In any of these cases, as in the case of trichloroacetic acid, it is clear that the stripping time is shorter than in the case where dichloroacetic acid and monochloroacetic acid are not included. Further, even if dichloroacetic acid and monochloroacetic acid are used in combination, it is not considered that there is any intermolecular interaction between the two chloroacetic acids, and the effects are synergistic.
【表】【table】
【表】
実施例 3
実施例1に示した銅合金からなる連続鋳造用管
型鋳型(134mm×800mm,肉厚8mm)の内面に、第
1層としてニツケルおよび燐からなる合金めつき
層(30μm)、第2層としてコバルトめつき層
(1μm)、第3層としてクロムめつき層(20μm)
を設けた使用後の鋳型2本を用意した。
これら2本の鋳型の第3層のクロムめつき層を
1:1の塩酸中において30℃の温度で溶解剥離し
た後、1本は70wt%硫酸中で、他の1本は第2
表のNo.3の組成の剥離液中で、それぞれニツケル
および燐からなる合金めつき層を電気めつきした
時に用いた、白金めつきチタン電極をカソードと
して用い、鋳型の電位が+0.30Vにあることを参
照電極を用いて確認してから、定電位電解を行な
つた。
その結果、70wt%硫酸中での電解では、4時
間を経過した後、鋳型内面を観察したところ一部
銅素地が露出していたが、ニツケルおよび燐から
なる合金めつき層が残り、その表面は黒化してい
た。
他方、トリクロロ酢酸5g/を溶解した
70wt%硫酸中における電解では、開始後30分で
電流値が5Aにまで低下し、鋳型内面を観察した
ところ、ニツケルおよび燐からなる合金めつき層
は完全に溶出し、銅素地が現れていた。さらに、
銅合金鋳型内表面はめつき前の研摩の後が明らか
に残つており、溶出した様子は見られなかつた。
[発明の効果]
以上説明したように、本発明に係るニツケルお
よび燐からなる合金めつき層の剥離液および剥離
方法は上記の構成であるから、ニツケルおよび燐
からなる合金めつき層を設けた物品の製造途中に
おけるめつき不良による再めつき或いは使用後の
再めつきを行なう場合、素地の銅または銅合金を
損傷することなく、その上にニツケルおよび燐か
らなる合金めつき層を短時間で剥離するとができ
るという優れた効果を有するものである。[Table] Example 3 An alloy plating layer (30 μm thick) made of nickel and phosphorus was applied as the first layer to the inner surface of the continuous casting pipe mold (134 mm x 800 mm, wall thickness 8 mm) made of the copper alloy shown in Example 1. ), cobalt plating layer (1μm) as the second layer, chrome plating layer (20μm) as the third layer
Two used molds were prepared. After melting and peeling off the third chrome plating layer of these two molds in 1:1 hydrochloric acid at a temperature of 30°C, one mold was in 70wt% sulfuric acid and the other was in the second mold.
Using the platinum-plated titanium electrode that was used when electroplating the alloy plating layer consisting of nickel and phosphorus in the stripping solution No. 3 in the table as the cathode, the potential of the mold was raised to +0.30V. After confirming this using a reference electrode, constant potential electrolysis was performed. As a result, after 4 hours of electrolysis in 70wt% sulfuric acid, when the inner surface of the mold was observed, some of the copper substrate was exposed, but an alloy plating layer consisting of nickel and phosphorus remained, and the surface had turned black. On the other hand, 5 g of trichloroacetic acid was dissolved in
During electrolysis in 70wt% sulfuric acid, the current value dropped to 5A 30 minutes after the start, and when the inner surface of the mold was observed, the alloy plating layer consisting of nickel and phosphorus had completely eluted, and the copper base was exposed. . moreover,
The inner surface of the copper alloy mold clearly remained after polishing before plating, and no signs of elution were observed. [Effects of the Invention] As explained above, since the stripping solution and the stripping method for the alloy plating layer made of nickel and phosphorus according to the present invention have the above configuration, the alloy plating layer made of nickel and phosphorus is provided. When re-plating due to poor plating during the manufacture of an article or after use, an alloy plating layer consisting of nickel and phosphorus can be applied over a short period of time without damaging the base copper or copper alloy. It has the excellent effect of being able to be peeled off.
第1図は陽極電位と電流との関係を示す図、第
2図は時間と電流との関係を示す図、第3図〜第
6図は比較例の陽極電位と電流の関係を示す図で
ある。
Figure 1 is a diagram showing the relationship between anode potential and current, Figure 2 is a diagram showing the relationship between time and current, and Figures 3 to 6 are diagrams showing the relationship between anode potential and current in comparative examples. be.
Claims (1)
酸の内から選んだ少なくとも1種のクロロ酢酸1
〜15g/ を含有することを特徴とする銅または銅合金上の
ニツケルおよび燐からなる合金めつき層の剥離
液。 2 硫酸50〜70wt%、 モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢
酸の内から選んだ少なくとも1種のクロロ酢酸1
〜15g/ を含有する剥離液中で、めつき層が設けられてい
る物品の剥離液に対する電位を測定し、その電位
をニツケルおよび燐からなる合金めつき層が溶出
する電位以上で、かつ、銅または銅合金の溶出す
る電位以下に正確に規制しながら、陽極電解を行
うことを特徴とする銅または銅合金上のニツケル
および燐からなる合金めつき層の剥離方法。 3 硫酸50〜70wt%、 モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢
酸の内から選んだ少なくとも1種のクロロ酢酸1
〜15g/ を含有する剥離液中で、めつき層が設けられてい
る物品の剥離液に対する電位を測定し、その電位
をニツケルおよび燐からなる合金めつき層が溶出
する電位以上で、かつ、銅または銅合金が不動態
化し、溶出し難い範囲の電位で正確に規制しなが
ら、陽極電解を行うことを特徴とする銅または銅
合金上のニツケルおよび燐からなる合金めつき層
の剥離方法。[Claims] 1. 50 to 70 wt% sulfuric acid, at least one type of chloroacetic acid selected from monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid 1
A stripping solution for an alloy plating layer consisting of nickel and phosphorus on copper or copper alloy, characterized in that it contains ~15 g/. 2 50 to 70 wt% sulfuric acid, at least one type of chloroacetic acid selected from monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid 1
Measure the potential of the article provided with the plating layer with respect to the stripping solution in a stripping solution containing ~15 g/ , and set the potential to a potential higher than the potential at which the alloy plating layer consisting of nickel and phosphorus elutes, and A method for peeling off an alloy plating layer consisting of nickel and phosphorus on copper or copper alloy, which comprises carrying out anodic electrolysis while accurately controlling the potential to be below the potential at which copper or copper alloy elutes. 3 50-70wt% sulfuric acid, at least one type of chloroacetic acid selected from monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid 1
Measure the potential of the article provided with the plating layer with respect to the stripping solution in a stripping solution containing ~15 g/ , and set the potential to a potential higher than the potential at which the alloy plating layer consisting of nickel and phosphorus elutes, and A method for peeling off an alloy plating layer consisting of nickel and phosphorus on copper or copper alloy, which comprises carrying out anodic electrolysis while accurately regulating the potential within a range in which copper or copper alloy is passivated and difficult to elute.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20288087A JPS6447900A (en) | 1987-08-14 | 1987-08-14 | Solution and method for removing nickel-phosphorus alloy plating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20288087A JPS6447900A (en) | 1987-08-14 | 1987-08-14 | Solution and method for removing nickel-phosphorus alloy plating layer |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6447900A JPS6447900A (en) | 1989-02-22 |
JPH0520520B2 true JPH0520520B2 (en) | 1993-03-19 |
Family
ID=16464731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20288087A Granted JPS6447900A (en) | 1987-08-14 | 1987-08-14 | Solution and method for removing nickel-phosphorus alloy plating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6447900A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5412184B2 (en) * | 2009-06-10 | 2014-02-12 | 三菱伸銅株式会社 | Recycling method for nickel-plated copper or copper alloy scrap |
JP5518421B2 (en) * | 2009-10-13 | 2014-06-11 | 三菱伸銅株式会社 | Recycling method for nickel-plated copper or copper alloy scrap |
-
1987
- 1987-08-14 JP JP20288087A patent/JPS6447900A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6447900A (en) | 1989-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2596307A (en) | Process of electrostripping electrodeposited metals | |
EP0482565B1 (en) | Electrolytic process for stripping a metal coating from a titanium based metal substrate | |
EP0252479A2 (en) | Method for surface treatment and treating material therefor | |
US3989606A (en) | Metal plating on aluminum | |
US4356069A (en) | Stripping composition and method for preparing and using same | |
JPH0520520B2 (en) | ||
US4264419A (en) | Electrochemical detinning of copper base alloys | |
JPS597359B2 (en) | Metsuki method | |
US2330170A (en) | Electrolytic polishing of metal | |
JPH057474B2 (en) | ||
GB2031951A (en) | Removal of surface material | |
JPS6047913B2 (en) | How to apply gold plating directly to stainless steel | |
Monk et al. | Electrodeposition of tin alloys from alkaline stannate baths | |
US2626895A (en) | Electrolytic production of iron | |
Pring et al. | LXXII.—The electro-deposition of zinc at high current densities | |
JP2003105581A (en) | Method and apparatus for electrolytic deposition of tin alloy | |
US3075894A (en) | Method of electroplating on aluminum surfaces | |
JP3061544B2 (en) | Insoluble electrode | |
JP3260493B2 (en) | Dissolution method of metal thin film | |
JPS5887275A (en) | Stripping method for sn layer on cu and cu alloy | |
JP2000313973A (en) | Method for dissolving metallic film | |
JP2000199100A (en) | Method for removing copper remaining and depositing on heat-resistant alloy | |
Macnaughtan et al. | The Progress of Nickel Deposition in Recent Years | |
JPH0790681A (en) | Conductor roll for electroplating | |
KR960010169B1 (en) | Method for plating an electroless nickel of hydrogen accumulate alloy powder for electrodes |