JPH05203195A - Indirect refrigerant air conditioner, detach type heat exchanger thereof and indirect refrigerant air conditioning method - Google Patents

Indirect refrigerant air conditioner, detach type heat exchanger thereof and indirect refrigerant air conditioning method

Info

Publication number
JPH05203195A
JPH05203195A JP1369292A JP1369292A JPH05203195A JP H05203195 A JPH05203195 A JP H05203195A JP 1369292 A JP1369292 A JP 1369292A JP 1369292 A JP1369292 A JP 1369292A JP H05203195 A JPH05203195 A JP H05203195A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
refrigerant
thermosiphon
refrigeration cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1369292A
Other languages
Japanese (ja)
Other versions
JP3063348B2 (en
Inventor
Hiroshi Yasuda
弘 安田
Kensaku Kokuni
研作 小国
Susumu Nakayama
進 中山
Naoto Katsumata
直登 勝又
Takao Chiaki
隆雄 千秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04013692A priority Critical patent/JP3063348B2/en
Publication of JPH05203195A publication Critical patent/JPH05203195A/en
Application granted granted Critical
Publication of JP3063348B2 publication Critical patent/JP3063348B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To freely install a user side heat exchanger without altering an installing position of a outdoor unit by detachably providing an evaporator of a refrigerating cycle and a heat source side heat exchanger of a thermosiphon so as to be heat exchanged. CONSTITUTION:Thermosiphons B1, B2 have heat source side heat exchangers 6a, 6b to be heat exchanged with evaporators 4a, 4b of a refrigerating cycle, user side heat exchangers 7a, 7b to be used for air conditioning in a room, tubes 8a, 8b for connecting the thermosiphons in a closed loop state, a pump for circulating refrigerant in the thermosiphons, and gas/liquid separating tanks 10a, 10b. Here, the exchangers 4a, 4b as the evaporators of the cycle are so coupled as to be freely detachably from the exchangers 6a, 6b of the thermosiphon side. Thus, the user side heat exchangers can be freely installed at the time of altering a layout in the room.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二次冷媒を用いた間接冷
媒空調装置に関し、特に多様なニ−ズに適応できるフレ
キシブルな間接冷媒空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indirect refrigerant air conditioner using a secondary refrigerant, and more particularly to a flexible indirect refrigerant air conditioner adaptable to various needs.

【0002】[0002]

【従来の技術】二次冷媒を用いた間接冷媒空調装置とし
ては、冷温水を大型のチラ−で製造し、この冷温水を各
部屋のファンコイルユニットへ分配するようにした、い
わゆるセントラル空調方式が古くから用いられている。
2. Description of the Related Art An indirect refrigerant air conditioner using a secondary refrigerant is a so-called central air conditioning system in which cold and hot water is manufactured by a large chiller and the hot and cold water is distributed to a fan coil unit in each room. Has been used since ancient times.

【0003】また、最近では、例えば特開平2−122
141に記載されているように、分離型空調機の室内機
と室外機との接続可能長さ及び高低差を拡大するため
に、一次側の冷凍サイクルで発生する冷熱を二次側の冷
媒ル−プに伝える空調方式が考えられている。
Recently, for example, Japanese Patent Laid-Open No. 2-122 has been proposed.
As described in 141, in order to increase the connectable length and height difference between the indoor unit and the outdoor unit of the separation type air conditioner, the cold heat generated in the refrigeration cycle on the primary side is cooled by the refrigerant on the secondary side. -An air conditioning system that conveys information to the

【0004】[0004]

【発明が解決しようとする課題】上述した従来例のもの
では、空調システムの設置に時間を要し、また一度空調
システムとして設置すると、空調システムの変更は容易
でなく、室内のレイアウト変更時等に容易に対応出来な
いという問題点があった。また、ファンコイルユニット
に冷温水を流す方式では、水漏れ時の処理の問題があっ
た。
In the conventional example described above, it takes time to install the air conditioning system, and once installed as an air conditioning system, it is not easy to change the air conditioning system. There was a problem that it could not be easily dealt with. Further, the method of flowing cold and hot water to the fan coil unit has a problem of processing when water leaks.

【0005】本発明の目的は、室外機の設置位置を変更
することなく、利用側熱交換器を、必要な時に必要な場
所へ自由かつ容易に設置することができるようにするこ
とにある。
An object of the present invention is to make it possible to freely and easily install a heat exchanger on the use side at a required place at a required time without changing an installation position of an outdoor unit.

【0006】本発明の他の目的は、冷凍サイクル側の熱
交換器に対しサ−モサイフォン側の熱交換器を容易に着
脱できるようにすることにある。
Another object of the present invention is to enable the heat exchanger on the thermosiphon side to be easily attached to and detached from the heat exchanger on the refrigeration cycle side.

【0007】本発明の更に他の目的は、安全で信頼性の
高い間接冷媒空調装置を得ることにある。
Still another object of the present invention is to obtain a safe and highly reliable indirect refrigerant air conditioner.

【0008】本発明の他の目的は、サ−モサイフォン側
の冷媒配管としてフレキシブルな配管を使用できるよう
にし、利用側熱交換器の設置位置を容易に変更可能とし
たフレキシブルな空調システムを得ることにある。
Another object of the present invention is to provide a flexible air conditioning system in which flexible piping can be used as the refrigerant piping on the thermosiphon side, and the installation position of the utilization side heat exchanger can be easily changed. Especially.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
本発明は、圧縮機、凝縮器、膨張弁、蒸発器を順次接続
して構成される冷凍サイクルと、熱源側熱交換器と利用
側熱交換器等を閉ル−プ接続して構成されるサ−モサイ
フォンとを備え、前記冷凍サイクルの蒸発器と前記サ−
モサイフォンの熱源側熱交換器とをお互いに熱交換可能
で且つ着脱自在に構成したことにある。
In order to achieve the above object, the present invention provides a refrigeration cycle constituted by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator, a heat source side heat exchanger and a utilization side. A thermosiphon constructed by connecting a heat exchanger and the like in a closed loop, and the evaporator of the refrigeration cycle and the thermosiphon.
The heat source side heat exchanger of the mosiphon is configured to be capable of exchanging heat with each other and detachable.

【0010】本発明の他の特徴は、圧縮機、凝縮器、膨
張弁、蒸発器を順次接続して構成される冷凍サイクル
と、熱源側熱交換器と利用側熱交換器等をを閉ル−プ接
続して構成した第1及び第2のサ−モサイフォンとを備
え、前記冷凍サイクル中の蒸発器と前記第1のサ−モサ
イフォン中の熱源側熱交換器とをお互いに熱交換可能で
且つ着脱自在に接続し、且つ前記第1のサ−モサイフォ
ンの利用側熱交換器と前記第2のサ−モサイフォンの熱
源側熱交換器とをお互いに熱交換可能で且つ着脱自在に
接続したことにある。
Another feature of the present invention is that a refrigeration cycle constituted by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator, a heat source side heat exchanger, a utilization side heat exchanger and the like are closed. -A first and a second thermosiphon configured by connecting in a loop, the evaporator in the refrigeration cycle and the heat source side heat exchanger in the first thermosiphon exchange heat with each other. The heat-side heat exchanger of the first thermosiphon and the heat-source-side heat exchanger of the second thermosiphon can be exchanged with each other. I was connected to.

【0011】本発明の更に他の特徴は、圧縮機、四方
弁、室外側熱交換器、膨張弁、室内側熱交換器を順次接
続した冷凍サイクルと、熱源側熱交換器と利用側熱交換
器を閉ル−プ接続したサ−モサイフォンとを備え、前記
冷凍サイクル側の室内側熱交換器及び前記サ−モサイフ
ォン側の熱源側熱交換器は、冷媒が流れる伝熱管とこの
伝熱管に接合された拡大伝熱面とをそれぞれ有し、それ
ぞれの拡大伝熱面には他の拡大伝熱面と広い伝熱面積で
噛合う噛合部を形成し、これらの噛合部を互いに着脱す
ることにより、冷凍サイクルの室内側熱交換器とサ−モ
サイフォンの熱源側熱交換器とをお互いに熱交換可能で
且つ着脱自在としたことにある。
Still another feature of the present invention is a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve and an indoor heat exchanger are sequentially connected, a heat source side heat exchanger and a use side heat exchange. A thermosiphon having a closed loop connection, and the indoor heat exchanger on the refrigeration cycle side and the heat source side heat exchanger on the thermosiphon side are a heat transfer tube through which a refrigerant flows and this heat transfer tube. And each of the enlarged heat transfer surfaces is formed with a meshing portion that meshes with another enlarged heat transfer surface in a wide heat transfer area, and these meshing portions are attached to and detached from each other. As a result, the indoor heat exchanger of the refrigeration cycle and the heat source side heat exchanger of the thermosiphon can exchange heat with each other and are detachable.

【0012】本発明の更に他の特徴は、圧縮機、凝縮
器、膨張弁、蒸発器を順次接続して構成される冷凍サイ
クルの中の前記蒸発器と、熱源側熱交換器、気液分離用
タンク、冷媒を流動させるためのポンプ、利用側熱交換
器を順次閉ル−プ接続して構成されるサ−モサイフォン
の中の前記熱源側熱交換器とを、それぞれお互いに着脱
可能な拡大伝熱面により結合したことにある。
Still another feature of the present invention is that the evaporator in a refrigeration cycle constituted by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator, a heat source side heat exchanger and a gas-liquid separator. Tank, a pump for flowing the refrigerant, and the heat source side heat exchanger in the thermosiphon configured by sequentially closing and looping the use side heat exchanger are attachable to and detachable from each other. It is connected by the expanded heat transfer surface.

【0013】本発明の更に他の特徴は、容量可変型の圧
縮機、室外側熱交換器、膨張弁、室内側熱交換器を順次
接続し建屋外に設けられた冷凍サイクルと、熱源側熱交
換器と利用側熱交換器を閉ル−プ接続し建屋内に設けら
れたサ−モサイフォンとを備え、前記冷凍サイクルの室
内側熱交換器はコンセント状に構成して建屋の壁体ある
いは床の少なくとも1個所以上に埋設して設け、前記サ
−モサイフォンの熱源側熱交換器は前記コンセント状の
室内側熱交換器と結合されるプラグ状に構成し、かつ前
記室内側熱交換器への冷媒の出入口部における冷媒状態
を検出する検出手段を設け、この検出手段からの検出値
に応じて前記容量可変型の圧縮機を制御する制御装置を
備えていることにある。
Still another feature of the present invention is that a variable capacity compressor, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected, and a refrigerating cycle provided outside the building and a heat source side heat The heat exchanger is provided with a thermosiphon provided in the building with a closed loop connection between the exchanger and the heat exchanger on the use side, and the indoor heat exchanger of the refrigeration cycle is configured as an outlet to form a wall of the building or The heat source side heat exchanger of the thermosiphon is constructed to be embedded in at least one or more places on the floor, and has a plug shape to be coupled to the outlet side indoor side heat exchanger, and the indoor side heat exchanger. A detection means for detecting the state of the refrigerant at the inlet / outlet of the refrigerant to / from the refrigerant is provided, and a control device for controlling the variable capacity compressor according to the detection value from the detection means is provided.

【0014】本発明の更に他の特徴は、第1の冷媒が流
れる第1の伝熱管とこの第1の伝熱管に密着接合された
拡大伝熱面とを有する第1の熱交換器と、第2の冷媒が
流れる伝熱管とこの第2の伝熱管に密着接合された拡大
伝熱面とを有する第2の熱交換器とを備え、前記第1及
び第2のそれぞれの熱交換器の拡大伝熱面には他の拡大
伝熱面と着脱自在に噛合う凹凸状の噛合部が形成されて
いる間接冷媒空調装置用の脱着型熱交換器にある。
Still another feature of the present invention is a first heat exchanger having a first heat transfer tube through which a first refrigerant flows, and an enlarged heat transfer surface closely joined to the first heat transfer tube, A second heat exchanger having a heat transfer tube through which a second refrigerant flows and an enlarged heat transfer surface that is closely joined to the second heat transfer tube is provided, and each of the first and second heat exchangers There is a removable heat exchanger for an indirect refrigerant air conditioner in which an uneven meshing portion that detachably meshes with another expanded heat transfer surface is formed on the expanded heat transfer surface.

【0015】本発明の更に他の特徴は、圧縮機、凝縮
器、膨張弁、蒸発器を順次接続して構成される冷凍サイ
クルを屋外に設置し、この冷凍サイクル中の蒸発器また
は凝縮器となる熱交換器を屋内の少なくとも1ケ所に設
置しておき、一方この熱交換器に着脱自在な熱源側熱交
換器と利用側熱交換器等とを閉ル−プ接続して構成され
るサ−モサイフォンを準備し、サ−モサイフォン側の熱
源側熱交換器を前記冷凍サイクル側の熱交換器に結合す
る間接冷媒空調方法にある。
Still another feature of the present invention is that a refrigeration cycle constituted by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator is installed outdoors, and the evaporator or the condenser in the refrigeration cycle is This heat exchanger is installed in at least one place indoors, and on the other hand, a heat source side heat exchanger and a user side heat exchanger which are detachably attached to this heat exchanger are closed loop-connected. The method is an indirect refrigerant air-conditioning method in which a mosiphon is prepared and a heat source side heat exchanger on the thermosiphon side is connected to the heat exchanger on the refrigeration cycle side.

【0016】[0016]

【作用】室外に設けられた冷凍サイクル側の熱交換器
(蒸発器または凝縮器)と利用側の冷媒ル−プであるサ
−モサイフォン側の熱源側熱交換器とはお互いに着脱可
能な構造を有し、拡大伝熱面あるいはヒ−トパイプを介
して熱結合されるので、小さい熱抵抗とすることがで
き、冷凍サイクル側の冷媒とサ−モサイフォン側の冷媒
との間の一体の熱交換器としての作用を行なわせること
ができる。このため、冷凍サイクル側で作られた冷熱を
効率よくサ−モサイフォン側に伝えることができる。例
えば、サ−モサイフォンの利用側熱交換器で気化した冷
媒をサ−モサイフォンの熱源側熱交換器で液化できるの
で、継続した冷房作用を行なわせることができる。
The heat exchanger (evaporator or condenser) on the refrigeration cycle side provided outdoors and the heat source side heat exchanger on the thermosiphon side, which is the refrigerant loop on the use side, can be attached to and detached from each other. Since it has a structure and is thermally coupled through an enlarged heat transfer surface or a heat pipe, it can have a small heat resistance and can be integrated between the refrigerant on the refrigeration cycle side and the refrigerant on the thermosiphon side. It can act as a heat exchanger. Therefore, the cold heat generated on the refrigeration cycle side can be efficiently transmitted to the thermosiphon side. For example, since the refrigerant vaporized by the heat-side heat exchanger of the thermosiphon can be liquefied by the heat-source-side heat exchanger of the thermosiphon, continuous cooling operation can be performed.

【0017】特に本発明によれば、冷凍サイクル側の熱
交換器とサ−モサイフォン側の熱交換器とを、電源にお
けるコンセントとプラグとの関係と同じように、極めて
容易にそれらを着脱することができ、コンセント状に構
成した冷凍サイクル側の熱交換器を室内の複数個所に予
め設置しておけば、室内のレイアウト変更時などには、
冷凍サイクル側とサ−モサイフォン側とを冷媒を放出す
ることなしに容易に切り離し、設置位置を簡単に変更す
ることができる。
In particular, according to the present invention, the heat exchanger on the refrigeration cycle side and the heat exchanger on the thermosiphon side can be attached and detached very easily in the same manner as the relation between the outlet and the plug in the power source. If the heat exchangers on the refrigeration cycle side configured as outlets are installed at multiple locations in the room in advance, when changing the layout of the room, etc.
The refrigeration cycle side and the thermosiphon side can be easily separated without releasing the refrigerant, and the installation position can be easily changed.

【0018】また、サ−モサイフォン側に用いる冷媒と
して、冷凍サイクル側に用いる冷媒よりも低圧の冷媒を
用いることによって、サ−モサイフォン側の配管材料の
選択幅が広がり、フレキシブルな配管材料の使用が可能
となるから、空調装置の取扱性が向上する。
Further, by using a refrigerant having a lower pressure than the refrigerant used on the refrigeration cycle side as the refrigerant used on the thermosiphon side, the selection range of the piping material on the thermosiphon side is expanded, and a flexible piping material Since it can be used, the handling of the air conditioner is improved.

【0019】さらに、サ−モサイフォンは室内に設置
し、熱源側となる冷凍サイクルは室外に設置することに
より、冷凍サイクルに用いる冷媒は、多少の可燃性や毒
性があっても冷凍サイクル効率の高くなる冷媒を使用す
ることができるので、室外機の小型化および省電力化を
図ることができる。
Further, the thermosiphon is installed indoors, and the refrigeration cycle on the heat source side is installed outdoors, so that the refrigerant used in the refrigeration cycle has a high degree of refrigeration cycle efficiency even if it has some flammability and toxicity. Since a higher refrigerant can be used, the outdoor unit can be downsized and power consumption can be reduced.

【0020】また、冷凍サイクルおよびサ−モサイフォ
ン側に冷媒の流れを逆転する四方切り替え弁を用いれ
ば、サ−モサイフォンの利用側熱交換器を加熱器として
使用することも可能となる。
If a four-way switching valve for reversing the flow of the refrigerant is used on the refrigeration cycle and thermosiphon side, the thermosyphon utilization side heat exchanger can be used as a heater.

【0021】[0021]

【実施例】本発明は、熱源をつくるための冷凍サイクル
の熱交換器と利用側の冷媒ル−プであるサ−モサイフォ
ンの熱交換器とを、着脱自在なくし歯状の拡大伝熱面、
あるいはヒ−トパイプを用いた着脱自在な高効率熱交換
器にょって結合するようにしたものである。また、フレ
キシブルな配管を可能とするためサ−モサイフォン側に
用いる冷媒として、冷凍サイクル側に用いる冷媒より、
低圧の冷媒を用いたものである。さらに、安全な空調シ
ステムを構成するため、冷凍サイクル側は室外に、そし
てサ−モサイフォン側のみを室内に設置し、サ−モサイ
フォン側の冷媒は、熱源側の冷凍サイクルに用いる冷媒
に比べて燃えにくく、かつ漏洩が生じても人体への影響
のない冷媒を使用したものである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is a tooth-shaped enlarged heat transfer surface in which a heat exchanger of a refrigeration cycle for producing a heat source and a heat exchanger of a thermosiphon, which is a refrigerant loop on the use side, are detachably attached. ,
Alternatively, it is connected by a detachable high-efficiency heat exchanger using a heat pipe. Further, as the refrigerant used on the thermosiphon side to enable flexible piping, as compared with the refrigerant used on the refrigeration cycle side,
It uses a low-pressure refrigerant. Furthermore, in order to construct a safe air conditioning system, the refrigeration cycle side is installed outdoors and only the thermosiphon side is installed indoors, and the refrigerant on the thermosiphon side is compared to the refrigerant used for the heat source side refrigeration cycle. It uses a refrigerant that is hard to burn and has no effect on the human body even if leakage occurs.

【0022】以下、本発明を具体的な実施例に基づき説
明する。 図1は本発明はの一実施例を示すものであ
る。図は、間接冷媒空調装置が建屋12に設置された状
態の空調システムを示しており、Aはその大部分(主要
部)が屋外に設置された冷凍サイクル、B1、B2は室
内に設置されたサ−モサイフォンを示している。Aのう
ち、1は容量可変形の圧縮機、2は凝縮器(熱交換
器)、3a,3bは減圧機構、4a,4bは蒸発器(熱
交換器)、5はこれらの機器を順次接続する接続配管
(冷媒配管)を表している。また、サ−モサイフォンB
1,B2のうち、6a、6bは冷凍サイクルの蒸発器4
a,4bと熱交換される熱源側熱交換器、7a,7bは
室内の空調等に使用される利用側熱交換器、8a,8b
は各サ−モサイフォンを閉ル−プ状に接続する配管、9
a,9bは各サ−モサイフォン内の冷媒を循環させるた
めのポンプ、10a,10bは気液分離用タンクを表し
ている。23は冷凍サイクルの蒸発器4a,4bの熱負
荷を検知し圧縮機1に容量可変の指令を与える制御装置
である。冷凍サイクルの蒸発器となる複数の熱交換器4
a,4bは建屋の壁体あるいは床に埋設して設けられて
おり、これらはサ−モサイフォン側の熱源側熱交換器6
a,6bが自由に着脱可能な形で結合できるように構成
されている。すなわち、熱交換器4a,4bには複数の
凹部を設けてあたかも熱源を取り出すコンセントのよう
な形で設置され、また熱源側熱交換器6a,6bはその
コンセント状の凹部に嵌合される凸部を有するプラグ状
の構成としている。壁体等に埋設設置された室内側熱交
換器は凹部が形成されているだけなので、壁体等から突
出部がなく安全である。冷凍サイクルの蒸発器4a,4
bの入口および出口には、それぞれ温度センサ24a,
24bおよび25a,25bが取り付けられており、蒸
発器4a,4bの冷媒過熱度の大小により冷凍サイクル
の熱負荷の大小を検知する。例えば、サ−モサイフォン
B1が有効に動作しており、利用側熱交換器7aで吸熱
が行なわれていると、温度センサ24aと25aとの間
に温度差が生じ、サ−モサイフォンB2が動作していな
い場合には、24bと25bとの間に温度差は生じな
い。サ−モサイフォンB2が接続されていない場合(着
脱可能な熱交換器6bと4bとが結合されていない場
合)も温度センサ24bと25bとの間に温度差は生じ
ない。制御装置23はこれらの状態を検知して、冷凍サ
イクルの圧縮機1の容量を制御する。本発明によれば、
冷凍サイクル側の熱交換器を建屋内の適当な個所に予め
設置しておくことにより、必要な時必要な場所にサ−モ
サイフォンを接続し利用側熱交換器7a,7bを利用で
きるので、フレキシブルな空調システムを構成すること
ができる。
The present invention will be described below based on concrete examples. FIG. 1 shows an embodiment of the present invention. The figure shows an air conditioning system in which an indirect refrigerant air conditioner is installed in the building 12, where A is a refrigeration cycle in which most (main part) is installed outdoors, and B1 and B2 are installed indoors. A thermosiphon is shown. In A, 1 is a variable capacity compressor, 2 is a condenser (heat exchanger), 3a and 3b are decompression mechanisms, 4a and 4b are evaporators (heat exchangers), and 5 are these devices connected in sequence. The connection pipes (refrigerant pipes) are shown. Also, thermosiphon B
Of 1 and B2, 6a and 6b are evaporators 4 of the refrigeration cycle.
a and 4b are heat source side heat exchangers, 7a and 7b are utilization side heat exchangers used for indoor air conditioning, and 8a and 8b
Is a pipe for connecting each thermosiphon in a closed loop, 9
A and 9b are pumps for circulating the refrigerant in each thermosiphon, and 10a and 10b are gas-liquid separation tanks. Reference numeral 23 is a control device that detects the heat load of the evaporators 4a and 4b of the refrigeration cycle and gives a command to the compressor 1 to change the capacity. A plurality of heat exchangers 4 serving as evaporators of the refrigeration cycle
a and 4b are embedded in the wall or floor of the building, and these are the heat source side heat exchanger 6 on the thermosiphon side.
The a and 6b are configured so that they can be freely attached and detached. That is, the heat exchangers 4a and 4b are provided with a plurality of recesses and are installed as if they were outlets for taking out the heat source. The heat source side heat exchangers 6a and 6b are fitted into the outlet-like recesses. It has a plug-like structure having a portion. Since the indoor heat exchanger embedded in the wall or the like has only the concave portion, it is safe because it has no protruding portion from the wall or the like. Refrigeration cycle evaporators 4a, 4
At the inlet and outlet of b, temperature sensors 24a,
24b and 25a, 25b are attached to detect the heat load of the refrigeration cycle based on the degree of refrigerant superheat of the evaporators 4a, 4b. For example, when the thermosiphon B1 is operating effectively and heat is being absorbed by the use side heat exchanger 7a, a temperature difference occurs between the temperature sensors 24a and 25a, and the thermosiphon B2 is When not operating, there is no temperature difference between 24b and 25b. Even when the thermosiphon B2 is not connected (when the detachable heat exchangers 6b and 4b are not connected), there is no temperature difference between the temperature sensors 24b and 25b. The control device 23 detects these states and controls the capacity of the compressor 1 in the refrigeration cycle. According to the invention,
By installing the heat exchanger on the refrigeration cycle side at an appropriate location in the building in advance, the thermosiphon can be connected to the use side heat exchangers 7a and 7b at the required place when necessary. A flexible air conditioning system can be constructed.

【0023】図2、図3は図1における冷凍サイクルA
とサ−モサイフォンB(B1またはB2)との部分をサ
イクル構成図として示したものである。これら冷凍サイ
クル側およびサ−モサイフォン側にはそれぞれ、相変化
をする冷媒が封入されている。図において、5’は冷凍
サイクルA内の冷媒の流れ、8’はサ−モサイフォンB
内の冷媒の流れを示す。冷凍サイクル側の蒸発器4とサ
−モサイフォン側の熱源側熱交換器6とはそれぞれ図に
示すように、冷媒が流れる伝熱管に密着接合されたくし
歯状の拡大伝熱面41,61を有し、それぞれの拡大伝
熱面はそれらのくし歯状の部分(噛合部)で他の拡大伝
熱面と広い伝熱面積で噛合うように構成されている。前
記噛合部はあたかも電源のコンセントとプラグとの関係
のように互いに着脱自在に構成されている。
2 and 3 show the refrigeration cycle A in FIG.
And a thermosiphon B (B1 or B2) are shown as a cycle configuration diagram. Refrigerant that undergoes a phase change is enclosed in each of the refrigeration cycle side and the thermosiphon side. In the figure, 5'is the flow of the refrigerant in the refrigeration cycle A, and 8'is the thermosiphon B.
The flow of the refrigerant inside is shown. As shown in the figure, the evaporator 4 on the refrigeration cycle side and the heat source side heat exchanger 6 on the thermosiphon side are provided with comb-shaped enlarged heat transfer surfaces 41, 61 which are closely joined to the heat transfer tubes through which the refrigerant flows. Each of the enlarged heat transfer surfaces has a comb tooth-shaped portion (meshing portion) and is configured to mesh with another enlarged heat transfer surface in a wide heat transfer area. The engaging portions are configured to be attachable to and detachable from each other as if they were a power outlet and a plug.

【0024】冷凍サイクルの蒸発器4で相変化により発
生する冷熱は、着脱可能に結合されたサ−モサイフォン
側の熱源側熱交換器6に伝えられ、サ−モサイフォンの
利用側熱交換器7で、例えば冷房対象とする室内から熱
を得て気化した冷媒を凝縮させる。すなわち、冷凍サイ
クルAとサ−モサイフォンBとは利用側熱交換器7で吸
熱し、凝縮器2で放熱する単一の冷凍サイクルのように
動作する間接冷媒空調装置を構成する。
The cold heat generated by the phase change in the evaporator 4 of the refrigeration cycle is transferred to the heat source side heat exchanger 6 on the thermosiphon side which is detachably connected, and is used on the thermosiphon side. At 7, for example, heat is obtained from the room to be cooled, and the vaporized refrigerant is condensed. That is, the refrigeration cycle A and the thermosiphon B constitute an indirect refrigerant air conditioner that operates like a single refrigeration cycle in which the heat exchanger 7 on the use side absorbs heat and the condenser 2 radiates heat.

【0025】図3は、図2におけるポンプ9および気液
分離用タンク10を省略した簡単な構成のサ−モサイフ
ォンBとした例である。サ−モサイフォンB内の液冷媒
は重力によって利用側熱交換器7へ運ばれる。熱源側熱
交換器6と利用側熱交換器7との間の配管長さや高低差
が小さい場合には、この様な簡単な構成としてもよい。
図4,図5は、それぞれ図1の実施例の他の例を示す
ものである。図4において、冷凍サイクルAは建屋12
の室外側に設置されている。冷凍サイクルのうち蒸発器
4のみが建屋の壁を貫通して室内側にコンセント状に露
出させて構成している。室内側にはサ−モサイフォンB
が設置されており、サ−モサイフォンの熱源側熱交換器
6を前記蒸発器4と着脱自在なプラグ状に構成され、コ
ンセント状の蒸発器にプラグ状の熱源側熱交換器を結合
することによって、室外側の冷凍サイクルAと接続され
る。室内側の機器のレイアウト変更等によって、空調シ
ステムのレイアウト変更も必要となった場合には、冷凍
サイクルの蒸発器4とサ−モサイフォンの熱源側熱交換
器6との接続を解除すれば、利用側熱交換器7を他の位
置へ変更することが容易にでき、封入されている冷媒の
放出も不要である。すなわち、図4でサ−モサイフォン
を実線の位置から破線で示す位置に変更することが容易
に行える。
FIG. 3 shows an example of a thermosiphon B having a simple structure in which the pump 9 and the gas-liquid separation tank 10 in FIG. 2 are omitted. The liquid refrigerant in the thermosiphon B is conveyed to the use side heat exchanger 7 by gravity. When the pipe length and height difference between the heat source side heat exchanger 6 and the use side heat exchanger 7 are small, such a simple configuration may be adopted.
4 and 5 each show another example of the embodiment shown in FIG. In FIG. 4, the refrigeration cycle A is the building 12
It is installed outdoors. In the refrigeration cycle, only the evaporator 4 penetrates the wall of the building and is exposed to the inside of the room like an outlet. Thermosiphon B on the indoor side
The heat source side heat exchanger 6 of the thermosiphon is configured in a plug shape which is attachable to and detachable from the evaporator 4, and the plug type heat source side heat exchanger is connected to the outlet type evaporator. Is connected to the outdoor refrigeration cycle A. When it is necessary to change the layout of the air conditioning system due to the layout change of the equipment on the indoor side, the connection between the evaporator 4 of the refrigeration cycle and the heat source side heat exchanger 6 of the thermosiphon can be released. It is possible to easily change the use side heat exchanger 7 to another position, and it is not necessary to discharge the enclosed refrigerant. That is, in FIG. 4, the thermosiphon can be easily changed from the solid line position to the broken line position.

【0026】また、図5はサ−モサイフォンを分散配置
する場合の一例で、冷却容量が1の蒸発器4に容量が
0.5の熱源側熱交換器6a,6bを2台接続してあ
る。この実施例では利用側熱交換器7a,7bが分散配
置されることになり、室内の温度分布を改善できる効果
が期待できる。蒸発器4の容量を大きくし、かつ蒸発器
4に多数の熱源側熱交換器を接続可能な構成とすれば、
もっと多くの熱源側熱交換器6を接続することが可能と
ある。
FIG. 5 shows an example in which thermosiphons are dispersedly arranged. Two evaporators 4 having a cooling capacity of 1 are connected to two heat exchangers 6a and 6b on the heat source side having a capacity of 0.5. is there. In this embodiment, the use side heat exchangers 7a and 7b are arranged in a distributed manner, and an effect of improving the temperature distribution in the room can be expected. If the capacity of the evaporator 4 is increased and a large number of heat source side heat exchangers can be connected to the evaporator 4,
It is possible to connect more heat source side heat exchangers 6.

【0027】図6は、サ−モサイフォンB1とサ−モサ
イフォンB2とをカスケ−ド的に順次接続した例を示す
図であり、冷凍サイクルの蒸発器4aとサ−モサイフォ
ンの利用側熱交換器との距離を延長出来るように構成し
た例である。冷凍サイクルの蒸発器4aとサ−モサイフ
ォンB1の熱源側熱交換器6aとを熱的に結合し、さら
にサ−モサイフォンB1の利用側熱交換器7aとサ−モ
サイフォンB2の熱源側熱交換器6bとを熱的に結合し
ている。熱交換器6aと6bとの結合部は熱交換器4a
と6aとの結合部と同様な構成となっている。この例の
サ−モサイフォンB1のようなものを標準的なサ−モサ
イフォンとして複数個用意しておけば、空調システムを
さらにフレキシブルに構成できる。
FIG. 6 is a diagram showing an example in which the thermosiphon B1 and the thermosiphon B2 are sequentially connected in a cascading manner. The heat-use side heat of the evaporator 4a and the thermosiphon of the refrigeration cycle is shown. In this example, the distance from the exchanger can be extended. The evaporator 4a of the refrigeration cycle and the heat source side heat exchanger 6a of the thermosiphon B1 are thermally coupled, and further, the use side heat exchanger 7a of the thermosiphon B1 and the heat source side heat of the thermosiphon B2. It is thermally coupled to the exchanger 6b. The joint between the heat exchangers 6a and 6b is the heat exchanger 4a.
And 6a have the same structure. If a plurality of thermosiphons such as the thermosiphon B1 in this example are prepared as standard thermosiphons, the air conditioning system can be configured more flexibly.

【0028】図7は、サ−モサイフォンを接続するため
の熱交換器4cを冷凍サイクル側に増設できるようにし
た例を示す。冷凍サイクルの配管5の一部に分岐管2
6,27およびこれらの一端に閉止バルブ28,29が
設けられている。通常は閉止バルブ28,29は閉じら
れているが、熱交換器4cが新設された後は閉止バルブ
28,29を開放することにより、冷凍サイクルの一つ
の蒸発器として機能させることができ、サ−モサイフォ
ンを接続したり、その蒸発器をそのまま冷却器として使
用できる。
FIG. 7 shows an example in which a heat exchanger 4c for connecting a thermosiphon can be added to the refrigeration cycle side. Branch pipe 2 in a part of pipe 5 of the refrigeration cycle
6, 27 and closing valves 28, 29 are provided at their one ends. Normally, the closing valves 28 and 29 are closed, but after the heat exchanger 4c is newly installed, the closing valves 28 and 29 can be opened to function as one evaporator in the refrigeration cycle. -A mosiphone can be connected or its evaporator can be used as a cooler.

【0029】図8は、冷凍サイクルおよびサ−モサイフ
ォンに使用する冷媒の一例としてふっか炭素系冷媒R2
2及びR12の温度圧力線図を示している。R22の温
度圧力線はR12の温度圧力線より左上にあり、同一の
温度に対して圧力が高く、R22はR12に比べて高圧
冷媒であることが示されている。今、冷凍サイクルの冷
媒としてR22を用い、凝縮温度を40℃、蒸発温度を
0℃とすると凝縮器2および蒸発器4の圧力は、それぞ
れ図8の点D、Eで示されるように15.6kg/cm2
5.07kg/cm2となる。サ−モサイフォンの冷媒とし
てR12を用い、ポンプ9の圧力損失を考慮して、利用
側熱交換器7での蒸発温度を15℃、熱源側熱交換器6
での凝縮温度を10℃とすると、利用側熱交換器7およ
び熱源側熱交換器6の圧力は、それぞれ図中の点F,G
で示されるように5.01kg/cm2、4.31kg/cm2
なり、冷凍サイクル側に比べて、かなり低い圧力で冷房
運転ができることになる。このように室内側の機器に高
圧部がなくなり安全性が向上する。また、サ−モサイフ
ォン側の配管8は耐圧および剛性を低くできるから、や
わらかい材料の配管を使用でき、取扱性も著しく向上で
きる。
FIG. 8 shows a fluffy carbon-based refrigerant R2 as an example of a refrigerant used in a refrigeration cycle and a thermosiphon.
2 shows a temperature-pressure diagram of R2 and R12. The temperature-pressure line of R22 is located at the upper left of the temperature-pressure line of R12, and the pressure is high for the same temperature, indicating that R22 is a high-pressure refrigerant compared to R12. Now, when R22 is used as the refrigerant of the refrigeration cycle, the condensation temperature is 40 ° C., and the evaporation temperature is 0 ° C., the pressures of the condenser 2 and the evaporator 4 are 15. 6 kg / cm 2 ,
It will be 5.07 kg / cm 2 . R12 is used as the refrigerant of the thermosiphon, the vaporization temperature in the use side heat exchanger 7 is 15 ° C., the heat source side heat exchanger 6 is used in consideration of the pressure loss of the pump 9.
Assuming that the condensation temperature at 10 ° C. is 10 ° C., the pressures of the use side heat exchanger 7 and the heat source side heat exchanger 6 are points F and G in the figure, respectively.
5.01kg / cm 2 as shown in, 4.31kg / cm 2, and the in comparison to the refrigeration cycle side, so that it is cooling operation at much lower pressures. In this way, the equipment on the indoor side has no high-voltage portion, and safety is improved. Further, since the pressure siphon and the rigidity of the pipe 8 on the thermosiphon side can be lowered, a pipe made of a soft material can be used, and the handleability can be remarkably improved.

【0030】このように冷凍サイクルに使用する冷媒を
サ−モサイフォンに使用する冷媒よりも低圧力で使用で
きる冷媒としたり、さらにサ−モサイフォン側の冷媒を
冷凍サイクル側に用いる冷媒より人体に対して危険度の
小さい冷媒とすることができ、それによって空調装置を
よりフレキシブルにでき、また安全性を向上することも
できる。
As described above, the refrigerant used in the refrigeration cycle can be used at a lower pressure than the refrigerant used in the thermosiphon, and the refrigerant on the thermosiphon side can be made more human body than the refrigerant used on the refrigeration cycle side. On the other hand, it is possible to use a refrigerant having a low risk, thereby making the air conditioner more flexible and improving safety.

【0031】また、冷凍サイクルおよびサ−モサイフォ
ンに使用する冷媒の組み合わせとして、室外に設置する
冷凍サイクル側には、冷凍サイクルとしての効率向上効
果が大きい冷媒を使用する事が出来る。例えば、アンモ
ニアは蒸発潜熱が大きいため、冷凍サイクルの冷媒とし
て優れており、我が国でも過去に使用されたことが有る
が、その毒性のために、R22等のフロン系の冷媒に置
き換えられてきていた。しかし、現在、広く用いらてい
るフロン系の冷媒も環境破壊防止の観点から将来は規制
されることが考えられ、選択の幅が小さくなる可能性が
大きい。実際,R12は、オゾン層保護のため、すでに
規制が決まっており、R22に関しても将来規制の可能
性がある。R12については物性が似ているR134a
が代替冷媒の候補として有力である。また、R22につ
いては若干の可燃性はあるものの、現状では、R32単
独またはR32とR134aとの混合冷媒等が代替冷媒
の候補と考えられている。本発明によれば、冷凍サイク
ル側を室外に設置し、冷媒として、アンモニアも含めて
これらの代替冷媒を使用し、室内のサ−モサイフォン側
には、R134aのような毒性または危険性の点で問題
のない冷媒を使用すれば、安全で使い勝手の良い空調シ
ステムを構成することができる。
As a combination of the refrigerants used in the refrigeration cycle and the thermosiphon, a refrigerant having a great effect of improving the efficiency of the refrigeration cycle can be used on the refrigeration cycle side installed outdoors. For example, since ammonia has a large latent heat of vaporization, it is excellent as a refrigerant for a refrigeration cycle, and has been used in Japan in the past, but due to its toxicity, it has been replaced with a fluorocarbon refrigerant such as R22. .. However, the CFC-based refrigerants that are widely used at present are considered to be regulated in the future from the viewpoint of preventing environmental damage, and the range of choice is likely to be small. In fact, R12 has already been regulated to protect the ozone layer, and R22 may be regulated in the future. R134a, which has similar physical properties to R12
Is a potential alternative refrigerant candidate. Although R22 has some flammability, at present, R32 alone or a mixed refrigerant of R32 and R134a is considered as a candidate for an alternative refrigerant. According to the present invention, the refrigeration cycle side is installed outdoors, and these alternative refrigerants including ammonia are used as the refrigerant, and the indoor thermosiphon side has a toxicity or danger point such as R134a. By using a refrigerant that does not cause a problem, it is possible to construct a safe and convenient air conditioning system.

【0032】図9は、本発明を複数の室内機を持つマル
チ冷凍サイクルに応用した例を示している。冷凍サイク
ルA側にはレシ−バ11が追加され、蒸発器として4
a,4b,4cの3台の蒸発器が接続されており、減圧
機構もこれらの蒸発器に応じて3a,3b,3cが接続
されている。蒸発器4a,4bは一次側の冷凍サイクル
の冷媒が流れる通常の蒸発器である。サ−モサイフォン
Bは3台目の蒸発器4cに着脱可能に接続されている。
FIG. 9 shows an example in which the present invention is applied to a multi refrigeration cycle having a plurality of indoor units. A receiver 11 is added to the side of the refrigeration cycle A,
Three evaporators a, 4b and 4c are connected, and the decompression mechanism is also connected to 3a, 3b and 3c according to these evaporators. The evaporators 4a and 4b are normal evaporators through which the refrigerant of the refrigeration cycle on the primary side flows. The thermosiphon B is detachably connected to the third evaporator 4c.

【0033】図10は、図9のマルチ冷凍サイクルが実
際のビル等の建物12に設置した状況の一例を示してい
る。蒸発器4a,4bは冷房作用を行うための固定の室
内機13,14として設置されている。蒸発器4cは建
物12の壁体の一部に設置されており、必要に応じてサ
−モサイフォンを接続して利用側熱交換器7によって個
人用の局所的な空調等を行うことができるように構成さ
れている。
FIG. 10 shows an example of a situation in which the multi-refrigeration cycle of FIG. 9 is installed in an actual building 12 such as a building. The evaporators 4a and 4b are installed as fixed indoor units 13 and 14 for performing a cooling operation. The evaporator 4c is installed in a part of the wall of the building 12, and a thermosiphon can be connected to the user side heat exchanger 7 to perform local air conditioning for the individual if necessary. Is configured.

【0034】図11は、同様なマルチ冷凍サイクルを家
庭用の空調機15と冷蔵庫16に適用した例である。す
なわち、蒸発器4aは固定設置の空調機15として使用
され、蒸発器4b,4cはコンセント状に床面に設置し
ておき、蒸発器4cにはサ−モサイフォンが接続し、こ
の利用側熱交換器7は冷蔵庫16の冷却器として使用し
ている。冷蔵庫16の設置場所の変更は、例えば冷凍サ
イクルの蒸発器への接続を4cから4bに変更すること
によって容易に行える。このように、本発明によれば、
単一の冷凍サイクルから得られる冷熱を空調と冷蔵庫用
の両方に利用できる効果がある。
FIG. 11 shows an example in which a similar multi-refrigerating cycle is applied to a home air conditioner 15 and a refrigerator 16. That is, the evaporator 4a is used as a fixedly installed air conditioner 15, the evaporators 4b and 4c are installed on the floor surface like outlets, and a thermosiphon is connected to the evaporator 4c. The exchanger 7 is used as a cooler for the refrigerator 16. The installation location of the refrigerator 16 can be easily changed, for example, by changing the connection of the refrigeration cycle to the evaporator from 4c to 4b. Thus, according to the present invention,
The effect is that the cold heat obtained from a single refrigeration cycle can be used for both air conditioning and refrigerators.

【0035】図12は、冷凍サイクルの蒸発器4とサ−
モサイフォンの熱源側熱交換器6とからなる脱着型交換
器の構成の一例を示す。図12において、4’は冷凍サ
イクルの冷媒が流れ蒸発器となる伝熱管、15はこの伝
熱管に密着して接合された、くし歯状の拡大伝熱面、
6’はサ−モサイフォンの冷媒が流れ熱源側熱交換器と
なる伝熱管、16はこの伝熱管に密着して接合され、前
記拡大伝熱面15と密着して組み合わすことができるく
し歯状の拡大伝熱面、17はこれらのくし歯状の拡大伝
熱面(凹凸状の噛合部)の間を満たす熱伝導性のグリ−
スを示す。このような構成からなる脱着型熱交換器にお
いては、冷凍サイクルの蒸発器となる伝熱管4’からの
冷熱はくし歯状の拡大伝熱面15,16を介してサ−モ
サイフォンの熱源側熱交換器となる伝熱管6’に熱伝導
によって伝えられる。この際、くし歯状の拡大伝熱面1
5,16の間には熱導性のグリ−スが満たされているの
で熱伝導効果をさらに向上できる。
FIG. 12 shows the evaporator 4 and the server of the refrigeration cycle.
An example of a configuration of a removable exchanger including a heat source side heat exchanger 6 of a mosiphone is shown. In FIG. 12, 4'is a heat transfer tube through which the refrigerant of the refrigeration cycle flows and serves as an evaporator, 15 is a comb-shaped enlarged heat transfer surface closely attached to the heat transfer tube,
6'is a heat transfer tube through which the refrigerant of the thermosiphon flows and serves as a heat source side heat exchanger, and 16 is a comb tooth which is closely adhered to the heat transfer tube and can be closely combined with the enlarged heat transfer surface 15. A heat-conducting grease that fills the space between the comb-shaped expanded heat transfer surfaces (concave and convex portions).
Shows the space. In the desorption type heat exchanger having such a configuration, the heat source side heat of the thermosiphon is transferred from the heat transfer tube 4'which is the evaporator of the refrigeration cycle through the cold heat comb-shaped expanded heat transfer surfaces 15 and 16. It is transferred by heat conduction to the heat transfer tube 6'which serves as an exchanger. At this time, the comb-shaped expanded heat transfer surface 1
Since the heat conductive grease is filled between 5 and 16, the heat conduction effect can be further improved.

【0036】図13,図14は脱着型熱交換器の他の例
を示す。
13 and 14 show another example of the desorption type heat exchanger.

【0037】図13は山形状のくし歯状拡大伝熱面1
5,16で噛合部が形成され、拡大伝熱面の溝と伝熱管
の長手方向とは直交するように構成されている。30は
蒸発器4と熱源側熱交換器6とを固定するためのボルト
等の固定手段である。
FIG. 13 shows a comb-shaped enlarged heat transfer surface 1 having a mountain shape.
A meshing portion is formed by 5 and 16, and the groove of the enlarged heat transfer surface and the longitudinal direction of the heat transfer tube are configured to be orthogonal to each other. 30 is a fixing means such as a bolt for fixing the evaporator 4 and the heat source side heat exchanger 6.

【0038】図14は、くし歯状拡大伝熱面15,16
の溝と伝熱管の長手方向とが平行にになるように構成し
た例である。
FIG. 14 shows comb-shaped enlarged heat transfer surfaces 15 and 16.
In this example, the groove is parallel to the longitudinal direction of the heat transfer tube.

【0039】図15及び図16は、脱着型熱交換器のさ
らに他の例を示すもので、図15はその概略断面図、図
16はその全体構成を示す斜視図である。図において、
16はサ−モサイフォン側の拡大伝熱面、18はこの拡
大伝熱面16に接着して一体に取り付けられたヒ−トパ
イプ、15は冷凍サイクル側の拡大伝熱面で前記ヒ−ト
パイプ18を密着嵌合するための孔15’が形成されて
いる。30は拡大伝熱面15と16を固定するためのボ
ルト等による固定手段である。このように構成すること
によって、ヒ−トパイプ18の作用で冷凍サイクルの蒸
発器となる伝熱管4’からの冷熱をサ−モサイフォンの
熱源側熱交換器となる伝熱管6’に効率良く伝えること
ができる。特に本発明によれば、図16に示すように、
電源のコンセントとプラグとの関係と同じように着脱自
在で且つ熱交換可能な熱交換器が得られる。
FIGS. 15 and 16 show still another example of the desorption type heat exchanger. FIG. 15 is a schematic sectional view thereof, and FIG. 16 is a perspective view showing the whole structure thereof. In the figure,
Reference numeral 16 is an enlarged heat transfer surface on the thermosiphon side, 18 is a heat pipe integrally attached to the enlarged heat transfer surface 16, and 15 is an enlarged heat transfer surface on the refrigeration cycle side. A hole 15 'for tightly fitting is formed. 30 is a fixing means such as a bolt for fixing the enlarged heat transfer surfaces 15 and 16. With this structure, the heat from the heat transfer tube 4'which is the evaporator of the refrigeration cycle is efficiently transferred to the heat transfer tube 6'which is the heat source side heat exchanger of the thermosiphon by the action of the heat pipe 18. be able to. Particularly according to the present invention, as shown in FIG.
It is possible to obtain a heat exchanger that is detachable and can exchange heat in the same manner as the relation between the outlet of the power source and the plug.

【0040】図17は本発明の間接冷媒空調装置の冷凍
サイクル側とサ−モサイフォン側をそれぞれヒ−トポン
プサイクルで構成した場合の例を示す。図において、1
9は冷凍サイクルにおける冷媒の流れを切り替えるため
の四方弁、20はサ−モサイフォン側の冷媒の流れを切
り替えるための四方弁である。また、サ−モサイフォン
側には有効冷媒量を調整するための容器21と冷媒の流
出を制御するための弁22が設けられている。サ−モサ
イフォンの利用側熱交換器7で冷却を行う場合について
は図1、図2の場合と同様であるので、ここでは四方弁
19が図示の状態、すなわち利用側熱交換器7で加熱ま
たは暖房を行う場合について説明する。冷凍サイクル側
は圧縮機1,四方弁19,(室内側)熱交換器4,減圧
機構3,(室外側)熱交換器2の順に冷媒が流れる。冷
媒としてR22を使用する場合を考えると、冷凍サイク
ルの作動点は熱交換器4での凝縮温度52℃,凝縮圧力
20.7kg/cm2,室外側熱交換器2での蒸発温度0
℃,蒸発圧力5.07kg/cm2となる。サ−モサイフォ
ン側はポンプ9,四方弁20,利用側熱交換器7,熱源
側熱交換器6,気液分離用タンク10の順に、またこの
タンク10と並列に容器21,弁22の順に冷媒が流れ
る。冷媒としてR12を使用する場合を考えると、作動
点は熱源側熱交換器6での蒸発温度45℃,蒸発圧力1
1.1kg/cm2,利用側熱交換器7での凝縮温度40
℃,凝縮圧力9.8kg/cm2となる。図1,図2で説明
した利用側熱交換器7で冷却を行う場合に比べて、加熱
または暖房を行うために、サ−モサイフォン側の圧力は
高い値が必要となる。このために冷媒量を調整するため
の容器21が設けられており、暖房運転時には弁22を
開放してサ−モサイフォン内を流れる冷媒の有効量を増
加させるようにし、図1,図2で説明したような冷却運
転時には弁22を閉止し冷媒の有効量を減少させるよう
にする。
FIG. 17 shows an example in which the refrigerating cycle side and the thermosiphon side of the indirect refrigerant air-conditioning apparatus of the present invention are each constituted by a heat pump cycle. In the figure, 1
Reference numeral 9 is a four-way valve for switching the flow of refrigerant in the refrigeration cycle, and 20 is a four-way valve for switching the flow of refrigerant on the thermosiphon side. A container 21 for adjusting the amount of effective refrigerant and a valve 22 for controlling the outflow of the refrigerant are provided on the thermosiphon side. The case of performing cooling in the use side heat exchanger 7 of the thermosiphon is the same as in the case of FIG. 1 and FIG. 2, so here the four-way valve 19 is in the illustrated state, that is, in the use side heat exchanger 7. Alternatively, a case of performing heating will be described. On the refrigeration cycle side, the refrigerant flows in the order of the compressor 1, the four-way valve 19, the (indoor side) heat exchanger 4, the pressure reducing mechanism 3, and the (outdoor side) heat exchanger 2. Considering the case where R22 is used as the refrigerant, the operating point of the refrigeration cycle is as follows: condensing temperature 52 ° C. in the heat exchanger 4, condensing pressure 20.7 kg / cm 2 , evaporation temperature 0 in the outdoor heat exchanger 2.
℃, evaporation pressure becomes 5.07kg / cm 2 . The thermosiphon side has a pump 9, a four-way valve 20, a use side heat exchanger 7, a heat source side heat exchanger 6, a gas-liquid separation tank 10 in this order, and a container 21 and a valve 22 in parallel with the tank 10. Refrigerant flows. Considering the case of using R12 as the refrigerant, the operating point is an evaporation temperature of the heat source side heat exchanger 6 of 45 ° C. and an evaporation pressure of 1
1.1 kg / cm 2 , condensation temperature 40 in user side heat exchanger 7
℃, condensing pressure becomes 9.8kg / cm 2 . Compared with the case where the use side heat exchanger 7 described in FIGS. 1 and 2 is used for cooling, a higher pressure is required on the thermosiphon side for heating or heating. To this end, a container 21 for adjusting the amount of refrigerant is provided, and during heating operation, the valve 22 is opened to increase the effective amount of the refrigerant flowing in the thermosiphon. During the cooling operation as described above, the valve 22 is closed to reduce the effective amount of the refrigerant.

【0041】[0041]

【発明の効果】本発明によれば、熱源側となる冷凍サイ
クルの熱交換器と利用側となるサ−モサイフォンの熱交
換器とをお互いに熱交換可能で且つ着脱自在に構成して
いるので、サ−モサイフォンの熱交換器と熱交換される
冷凍サイクル側の熱交換器を屋内の複数個所に設置して
おけば、室内のレイアウト変更時などに利用側熱交換器
を自由且つ容易に設置できる効果がある。したがって、
自由度の高い空調システムを得ることができる。
According to the present invention, the heat exchanger of the refrigeration cycle on the heat source side and the heat exchanger of the thermosiphon on the user side are configured so that they can exchange heat with each other and are detachable. Therefore, if multiple heat exchangers on the refrigeration cycle side that exchange heat with the heat exchanger of the thermosiphon are installed at multiple indoor locations, the heat exchanger on the user side can be freely and easily used when changing the layout of the room. There is an effect that can be installed in. Therefore,
An air conditioning system with a high degree of freedom can be obtained.

【0042】また、本発明によれば、冷凍サイクル側の
熱交換器とサ−モサイフォン側の熱交換器とはそれぞれ
拡大伝熱面を有し、この拡大伝熱面に噛合部を形成して
互いに結合するようにしたので、冷凍サイクル側の熱交
換器にサ−モサイフォン側の熱交換器を容易に着脱でき
るという効果がある。特に、前記拡大伝熱面の噛合部を
多数の平行な板状フィンからなるくし歯形状とすれば広
い伝熱面で高効率な熱交換を行わせることができ、しか
も両熱交換器はコンセントとプラグのような関係で着脱
を行わせることができるから、着脱が大変容易になる。
さらに、前記拡大伝熱面における熱伝達をヒ−トパイプ
により行えば、着脱が容易でさらに高効率な熱交換を行
わせることができる。
Further, according to the present invention, the heat exchanger on the refrigeration cycle side and the heat exchanger on the thermosiphon side each have an expanded heat transfer surface, and a meshing portion is formed on this expanded heat transfer surface. The heat exchangers on the thermosiphon side can be easily attached to and detached from the heat exchangers on the refrigeration cycle side. In particular, if the meshing portion of the enlarged heat transfer surface has a comb tooth shape composed of a large number of parallel plate fins, it is possible to perform highly efficient heat exchange over a wide heat transfer surface, and both heat exchangers are outlets. Since it can be attached and detached in a relationship like a plug, attachment and detachment becomes very easy.
Furthermore, if heat transfer is performed by the heat pipe on the enlarged heat transfer surface, it is possible to easily attach and detach and perform more efficient heat exchange.

【0043】なお、本発明によれば、サ−モサイフォン
側に用いる冷媒を冷凍サイクル側に用いる冷媒に比べて
低圧で可燃性等が小さく、また漏洩が生じても人体に与
える害が小さい冷媒を選択して使用できるので、安全で
信頼性の高い空調システムを実現できる。
According to the present invention, the refrigerant used on the thermosiphon side has a lower flammability and the like at a lower pressure than the refrigerant used on the refrigeration cycle side, and even if a leak occurs, the refrigerant is harmless to the human body. Can be selected and used, so a safe and highly reliable air conditioning system can be realized.

【0044】さらに、サ−モサイフォン側の冷媒を冷凍
サイクルに用いる冷媒より低圧力で使用できる冷媒とす
ることにより、サ−モサイフォン側の冷媒配管としてフ
レキシブルな配管を使用できるから、利用側熱交換器の
設置位置を容易に変更可能なフレキシブルな空調システ
ムが得られる。
Further, since the refrigerant on the thermosiphon side can be used at a pressure lower than that of the refrigerant used in the refrigeration cycle, since flexible piping can be used as the refrigerant piping on the thermosiphon side, the heat on the utilization side can be reduced. It is possible to obtain a flexible air conditioning system in which the installation position of the exchanger can be easily changed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の間接冷媒空調装置の実施例を示す全体
構成図である。
FIG. 1 is an overall configuration diagram showing an embodiment of an indirect refrigerant air conditioner of the present invention.

【図2】本発明の実施例のサイクル構成の一例を示す図
である。
FIG. 2 is a diagram showing an example of a cycle configuration according to an embodiment of the present invention.

【図3】本発明の実施例のサイクル構成の一例を示す図
である。
FIG. 3 is a diagram showing an example of a cycle configuration according to an embodiment of the present invention.

【図4】本発明の間接冷媒空調装置の変形例を示す全体
構成図である。
FIG. 4 is an overall configuration diagram showing a modified example of the indirect refrigerant air conditioner of the present invention.

【図5】本発明の間接冷媒空調装置の変形例を示す全体
構成図である。
FIG. 5 is an overall configuration diagram showing a modified example of the indirect refrigerant air conditioner of the present invention.

【図6】本発明の間接冷媒空調装置の変形例を示す全体
構成図である。
FIG. 6 is an overall configuration diagram showing a modified example of the indirect refrigerant air conditioner of the present invention.

【図7】本発明の間接冷媒空調装置の変形例を示す全体
構成図である。
FIG. 7 is an overall configuration diagram showing a modified example of the indirect refrigerant air conditioner of the present invention.

【図8】本発明に使用する冷媒の一例(R22,R1
2)の温度圧力線図である。
FIG. 8 shows an example of a refrigerant (R22, R1) used in the present invention.
It is a temperature-pressure diagram of 2).

【図9】本発明を複数の室内機を持つマルチ冷凍サイク
ルに応用した例を示すサイクル構成図である。
FIG. 9 is a cycle configuration diagram showing an example in which the present invention is applied to a multi-refrigeration cycle having a plurality of indoor units.

【図10】図9のマルチ冷凍サイクルを建物に設置した
状況を示す概略図である。
10 is a schematic diagram showing a situation in which the multi-refrigeration cycle of FIG. 9 is installed in a building.

【図11】図9のマルチ冷凍サイクルを空調機および冷
蔵庫に適用した例を示す全体構成図である。
11 is an overall configuration diagram showing an example in which the multi refrigeration cycle of FIG. 9 is applied to an air conditioner and a refrigerator.

【図12】本発明に適用される脱着型熱交換器の一例を
示す断面図である。
FIG. 12 is a cross-sectional view showing an example of a desorption-type heat exchanger applied to the present invention.

【図13】本発明に適用される脱着型熱交換器の一例を
示す斜視図である。
FIG. 13 is a perspective view showing an example of a removable heat exchanger applied to the present invention.

【図14】本発明に適用される脱着型熱交換器の一例を
示す斜視図である。
FIG. 14 is a perspective view showing an example of a removable heat exchanger applied to the present invention.

【図15】本発明に適用される脱着型熱交換器の一例を
示す断面図である。
FIG. 15 is a cross-sectional view showing an example of a desorption-type heat exchanger applied to the present invention.

【図16】図15の脱着型熱交換器の斜視図である。16 is a perspective view of the removable heat exchanger of FIG.

【図17】本発明におけるサイクル構成の他の例を示す
図である。
FIG. 17 is a diagram showing another example of the cycle configuration in the present invention.

【符号の説明】[Explanation of symbols]

A…冷凍サイクル、B…サ−モサイフォン、C…建屋、
D,E,F,G…冷媒の温度圧力線図上の点、1…圧縮
機、2…凝縮器、3,3a,3b,3c…減圧機構、
4,4a,4b,4c…蒸発器、4’…(冷凍サイクル
の蒸発器となる)伝熱管、5…接続配管、5’…冷凍サ
イクルの冷媒の流れ、6…熱源側熱交換器、6’…(サ
−モサイフォンの熱源側熱交換器となる)伝熱管、7…
利用側熱交換器、8…接続配管、8’…サ−モサイフォ
ンにおける冷媒の流れ、9…ポンプ、10…気液分離用
タンク、11…レシ−バ、12…建物、13,14…室
内機、15…(伝熱管4’に密着して接合されたくし歯
状の)拡大伝熱面、16…(サ−モサイフォン側の)拡
大伝熱面、17…(拡大伝熱面の間を満たす)熱導性の
グリ−ス、18…(サ−モサイフォン側に接着された)
ヒ−トパイプ、 19,20…四方弁、21…冷媒量調
節容器、22…開閉弁、23…制御装置、24a,24
b…温度センサ、25a,25b…温度センサ、26,
27…分岐管、28,29…閉止バルブ、30…固定手
段。
A ... Refrigeration cycle, B ... Thermosiphon, C ... Building,
D, E, F, G ... Points on temperature-pressure diagram of refrigerant, 1 ... Compressor, 2 ... Condenser, 3, 3a, 3b, 3c ... Decompression mechanism,
4, 4a, 4b, 4c ... Evaporator, 4 '... (Evaporator of refrigeration cycle) Heat transfer tube, 5 ... Connection piping, 5' ... Refrigerant cycle refrigerant flow, 6 ... Heat source side heat exchanger, 6 '... (heat source side heat exchanger of thermosiphon) Heat transfer tube, 7 ...
Utilization-side heat exchanger, 8 ... Connection piping, 8 '... Refrigerant flow in thermosiphon, 9 ... Pump, 10 ... Gas-liquid separation tank, 11 ... Receiver, 12 ... Building, 13, 14 ... Indoor Machine, 15 ... Expanded heat transfer surface (comb-tooth shape closely adhered to heat transfer tube 4 '), 16 ... (Expanded heat transfer surface on thermosiphon side), 17 ... (between expanded heat transfer surfaces) (Fill) heat-conducting grease, 18 ... (bonded to thermosiphon side)
Heat pipe, 19, 20 ... Four-way valve, 21 ... Refrigerant amount control container, 22 ... Open / close valve, 23 ... Control device, 24a, 24
b ... temperature sensor, 25a, 25b ... temperature sensor, 26,
27 ... Branch pipe, 28, 29 ... Closing valve, 30 ... Fixing means.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 勝又 直登 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 (72)発明者 千秋 隆雄 静岡県清水市村松390番地 株式会社日立 製作所清水工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Naoto Katsumata 390 Muramatsu, Shimizu City Shizuoka Prefecture, Hitachi Shimizu Plant (72) Inventor Takao Chiaki 390 Muramatsu Shimizu City, Shizuoka Hitachi Ltd. Shimizu Plant, Ltd.

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】圧縮機、凝縮器、膨張弁、蒸発器を順次接
続して構成される冷凍サイクルと、熱源側熱交換器と利
用側熱交換器等を閉ル−プ接続して構成されるサ−モサ
イフォンとを備え、前記冷凍サイクルの蒸発器と前記サ
−モサイフォンの熱源側熱交換器とをお互いに熱交換可
能で且つ着脱自在に構成したことを特徴とする間接冷媒
空調装置。
1. A refrigeration cycle constructed by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator, and a closed loop connection of a heat source side heat exchanger, a utilization side heat exchanger and the like. An indirect refrigerant air-conditioning device, characterized in that the evaporator of the refrigeration cycle and the heat source side heat exchanger of the thermosyphon are heat-exchangeable and detachable from each other. ..
【請求項2】請求項1において、サ−モサイフォンは熱
源側熱交換器、利用側熱交換器、ポンプ及び気液分離用
タンクを閉ル−プ接続して構成したことを特徴とする間
接冷媒空調装置。
2. A thermosiphon according to claim 1, characterized in that the heat source side heat exchanger, the utilization side heat exchanger, the pump and the gas-liquid separation tank are closed and loop-connected. Refrigerant air conditioner.
【請求項3】請求項1または2において、冷凍サイクル
の中の一つの蒸発器に対して複数のサ−モサイフォンの
中のそれぞれの熱源側熱交換器を着脱可能に構成したこ
とを特徴とする間接冷媒空調装置。
3. The heat source side heat exchanger in a plurality of thermosiphons is detachably attached to one evaporator in the refrigeration cycle according to claim 1 or 2. Indirect refrigerant air-conditioning system.
【請求項4】圧縮機、凝縮器、膨張弁、蒸発器を順次接
続して構成される冷凍サイクルと、熱源側熱交換器と利
用側熱交換器等をを閉ル−プ接続して構成した第1及び
第2のサ−モサイフォンとを備え、前記冷凍サイクル中
の蒸発器と前記第1のサ−モサイフォン中の熱源側熱交
換器とをお互いに熱交換可能で且つ着脱自在に接続し、
且つ前記第1のサ−モサイフォンの利用側熱交換器と前
記第2のサ−モサイフォンの熱源側熱交換器とをお互い
に熱交換可能で且つ着脱自在に接続したことを特徴とす
る間接冷媒空調装置。
4. A refrigeration cycle configured by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator, and a heat source side heat exchanger, a utilization side heat exchanger, etc. are closed-loop connected. The first and second thermosiphons are provided, and the evaporator in the refrigeration cycle and the heat source side heat exchanger in the first thermosiphon can exchange heat with each other and are detachable. connection,
In addition, the user side heat exchanger of the first thermosiphon and the heat source side heat exchanger of the second thermosiphon are heat-exchangeable and detachably connected to each other. Refrigerant air conditioner.
【請求項5】請求項4において、前記第2のサ−モサイ
フォンに順次別のサ−モサイフォンを接続して構成した
ことを特徴とする間接冷媒空調装置。
5. The indirect refrigerant air conditioner according to claim 4, wherein another thermosiphon is sequentially connected to the second thermosiphon.
【請求項6】請求項1において、前記冷凍サイクルは並
列に設けられた複数の蒸発器を備え、且つ各蒸発器への
冷媒の流入を制御する開閉弁を設けたことを特徴とする
間接冷媒空調装置。
6. The indirect refrigerant according to claim 1, wherein the refrigeration cycle includes a plurality of evaporators provided in parallel, and an on-off valve for controlling the inflow of refrigerant into each evaporator is provided. Air conditioner.
【請求項7】請求項1において、前記冷凍サイクルを室
外に、前記サ−モサイフォンを室内に設置する構成と
し、サ−モサイフォン側の冷媒を冷凍サイクル側に用い
る冷媒より低圧力で使用できる冷媒としたことを特徴と
する間接冷媒空調装置。
7. The refrigeration cycle according to claim 1, wherein the refrigeration cycle is installed outdoors and the thermosiphon is installed indoors, and the refrigerant on the thermosiphon side can be used at a lower pressure than the refrigerant used on the refrigeration cycle side. An indirect refrigerant air conditioner characterized by being used as a refrigerant.
【請求項8】請求項1において、前記冷凍サイクルを室
外に、前記サ−モサイフォンを室内に設置する構成と
し、サ−モサイフォン側の冷媒を冷凍サイクル側に用い
る冷媒より人体に対して危険度の小さい冷媒とすること
を特徴とする間接冷媒空調装置。
8. The structure according to claim 1, wherein the refrigeration cycle is installed outdoors and the thermosiphon is installed indoors, and the refrigerant on the thermosiphon side is more dangerous to the human body than the refrigerant used on the refrigeration cycle side. An indirect refrigerant air-conditioning device characterized by using a low-refrigerant refrigerant.
【請求項9】請求項6において、冷凍サイクル側の複数
の蒸発器をサ−モサイフォン側の熱交換器と熱交換可能
で且つ着脱自在に構成したことを特徴とする間接冷媒空
調装置。
9. The indirect refrigerant air conditioner according to claim 6, wherein a plurality of evaporators on the refrigeration cycle side are configured to be heat-exchangeable with and removable from the heat exchanger on the thermosiphon side.
【請求項10】請求項1において、サ−モサイフォンの
利用側熱交換器を冷蔵庫の冷却器として使用することを
特徴とする間接冷媒空調装置。
10. The indirect refrigerant air conditioner according to claim 1, wherein the heat side heat exchanger of the thermosiphon is used as a refrigerator.
【請求項11】請求項1において、前記冷凍サイクル側
の蒸発器及び前記サ−モサイフォン側の熱源側熱交換器
は、冷媒が流れる伝熱管とこの伝熱管に密着接合された
拡大伝熱面とをそれぞれ有し、それぞれの拡大伝熱面に
は他の拡大伝熱面と広い伝熱面積で噛合う噛合部を形成
し、これらの噛合部を互いに結合することにより、冷凍
サイクルの蒸発器とサ−モサイフォンの熱源側熱交換器
とをお互いに熱交換可能で且つ着脱自在としたことを特
徴とする間接冷媒空調装置。
11. The evaporator on the refrigeration cycle side and the heat source side heat exchanger on the thermosiphon side according to claim 1, and a heat transfer tube through which a refrigerant flows, and an enlarged heat transfer surface closely joined to the heat transfer tube. Each of the expanded heat transfer surfaces has a meshing part that meshes with another expanded heat transfer surface over a wide heat transfer area, and these meshed parts are connected to each other to form an evaporator of a refrigeration cycle. An indirect refrigerant air conditioner characterized in that the heat source side heat exchanger of the thermosiphon and the heat source side heat exchanger can exchange heat with each other and are detachable.
【請求項12】請求項11において、前記噛合部は、多
数の平行な板状フィンからなるくし歯形状とし、かつ前
記噛合部には熱伝導性グリ−スを介在させ、蒸発器と熱
源側熱交換器とをお互いに熱交換可能で且つ着脱自在に
接続したことを特徴とする間接冷媒空調装置。
12. The eleventh aspect of the present invention is characterized in that the meshing portion has a comb tooth shape composed of a large number of parallel plate-shaped fins, and a heat-conductive grease is interposed in the meshing portion, and the evaporator and the heat source side are connected. An indirect refrigerant air conditioner characterized in that it can exchange heat with a heat exchanger and is detachably connected.
【請求項13】請求項1において、冷凍サイクルの蒸発
器またはサ−モサイフォンの熱源側熱交換器の一方にヒ
−トパイプを取付け、前記蒸発器と熱源側熱交換器とを
ヒ−トパイプを介して接続したことを特徴とする間接冷
媒空調装置。
13. The heat pipe according to claim 1, wherein a heat pipe is attached to one of the evaporator of the refrigeration cycle and the heat source side heat exchanger of the thermosiphon, and the evaporator and the heat source side heat exchanger are connected to the heat pipe. An indirect refrigerant air conditioner characterized by being connected via an air conditioner.
【請求項14】圧縮機、四方弁、室外側熱交換器、膨張
弁、室内側熱交換器を順次接続した冷凍サイクルと、熱
源側熱交換器と利用側熱交換器を閉ル−プ接続したサ−
モサイフォンとを備え、前記冷凍サイクル側の室内側熱
交換器及び前記サ−モサイフォン側の熱源側熱交換器
は、冷媒が流れる伝熱管とこの伝熱管に接合された拡大
伝熱面とをそれぞれ有し、それぞれの拡大伝熱面には他
の拡大伝熱面と広い伝熱面積で噛合う噛合部を形成し、
これらの噛合部を互いに着脱することにより、冷凍サイ
クルの室内側熱交換器とサ−モサイフォンの熱源側熱交
換器とをお互いに熱交換可能で且つ着脱自在としたこと
を特徴とする間接冷媒空調装置。
14. A refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, an expansion valve, and an indoor heat exchanger are sequentially connected, and a heat source side heat exchanger and a use side heat exchanger are closed loop-connected. Done
A heat siphon side indoor heat exchanger and the thermosiphon side heat source side heat exchanger, comprising a heat transfer tube through which a refrigerant flows and an enlarged heat transfer surface joined to the heat transfer tube. Each has an expansion heat transfer surface, and each expansion heat transfer surface is formed with a meshing portion that meshes with another expansion heat transfer surface in a wide heat transfer area.
By attaching and detaching these meshing portions to each other, the indoor heat exchanger of the refrigeration cycle and the heat source side heat exchanger of the thermosyphon can exchange heat with each other and are attachable and detachable. Air conditioner.
【請求項15】請求項14において、サ−モサイフォン
を、熱源側熱交換器、冷媒の流れを切り替えるための四
方弁、冷媒を流動させるためのポンプ、利用側熱交換器
を順次閉ル−プ接続して構成し、かつ室内暖房時にポン
プへの冷媒流入ラインに気液分離用タンクを設けると共
に、このタンクに並列に設けたラインに冷媒量を調整す
るための容器と弁とを設けたことを特徴とする間接冷媒
空調装置。
15. The thermosiphon according to claim 14, wherein a heat source side heat exchanger, a four-way valve for switching the flow of the refrigerant, a pump for flowing the refrigerant, and a use side heat exchanger are sequentially closed. And a gas-liquid separation tank is provided in the refrigerant inflow line to the pump during room heating, and a container and a valve for adjusting the amount of refrigerant are provided in a line provided in parallel with this tank. An indirect refrigerant air conditioner characterized by the above.
【請求項16】圧縮機、凝縮器、膨張弁、蒸発器を順次
接続して構成される冷凍サイクルの中の前記蒸発器と、
熱源側熱交換器、気液分離用タンク、冷媒を流動させる
ためのポンプ、利用側熱交換器を順次閉ル−プ接続して
構成されるサ−モサイフォンの中の前記熱源側熱交換器
とを、それぞれお互いに着脱可能な拡大伝熱面により結
合したことを特徴とする間接冷媒空調装置。
16. An evaporator in a refrigeration cycle configured by sequentially connecting a compressor, a condenser, an expansion valve, and an evaporator,
The heat source side heat exchanger in the thermosiphon configured by sequentially connecting the heat source side heat exchanger, the gas-liquid separation tank, the pump for flowing the refrigerant, and the use side heat exchanger in a closed loop. An indirect refrigerant air-conditioning system characterized in that and are connected to each other by an enlarged heat transfer surface which is detachable from each other.
【請求項17】容量可変型の圧縮機、室外側熱交換器、
膨張弁、室内側熱交換器を順次接続し建屋外に設けられ
た冷凍サイクルと、熱源側熱交換器と利用側熱交換器を
閉ル−プ接続し建屋内に設けられたサ−モサイフォンと
を備え、前記冷凍サイクルの室内側熱交換器はコンセン
ト状に構成して建屋の壁体あるいは床の少なくとも1個
所以上に埋設して設け、前記サ−モサイフォンの熱源側
熱交換器は前記コンセント状の室内側熱交換器と結合さ
れるプラグ状に構成し、かつ前記室内側熱交換器への冷
媒の出入口部における冷媒状態を検出する検出手段を設
け、この検出手段からの検出値に応じて前記容量可変型
の圧縮機を制御する制御装置を備えていることを特徴と
する間接冷媒空調装置。
17. A variable capacity compressor, an outdoor heat exchanger,
A refrigeration cycle installed outside the building by sequentially connecting an expansion valve and an indoor heat exchanger, and a thermosiphon installed inside the building with a closed loop connection between the heat source side heat exchanger and the use side heat exchanger. The heat exchanger on the heat source side of the thermosiphon is the heat exchanger on the heat source side, and It is configured in a plug shape to be connected to an outlet-side indoor heat exchanger, and provided with detection means for detecting the refrigerant state at the inlet / outlet of the refrigerant to the indoor heat exchanger, and the detection value from this detection means An indirect refrigerant air conditioner comprising a control device for controlling the variable capacity compressor in accordance with the control device.
【請求項18】請求項17において、前記室内側熱交換
器には複数の凹部を設けてコンセント状とし、壁体や床
から突出しないように埋設し、一方前記熱源側熱交換器
には前記凹部に嵌合する凸部を形成してプラグ状とした
ことを特徴とする間接冷媒空調装置。
18. The indoor heat exchanger according to claim 17, wherein the indoor heat exchanger is provided with a plurality of recessed portions and is embedded so as not to project from a wall or floor, while the heat source side heat exchanger is provided with the recessed portion. An indirect refrigerant air conditioner characterized in that a convex portion that fits into the concave portion is formed into a plug shape.
【請求項19】第1の冷媒が流れる第1の伝熱管とこの
第1の伝熱管に密着接合された拡大伝熱面とを有する第
1の熱交換器と、第2の冷媒が流れる伝熱管とこの第2
の伝熱管に密着接合された拡大伝熱面とを有する第2の
熱交換器とを備え、前記第1及び第2のそれぞれの熱交
換器の拡大伝熱面には他の拡大伝熱面と着脱自在に噛合
う凹凸状の噛合部が形成されていることを特徴とする間
接冷媒空調装置用の脱着型熱交換器。
19. A first heat exchanger having a first heat transfer tube through which a first refrigerant flows, and an enlarged heat transfer surface closely joined to the first heat transfer tube, and a heat transfer through which a second refrigerant flows. Heat tube and this second
Second heat exchanger having an enlarged heat transfer surface closely joined to the heat transfer tube of the above, and the enlarged heat transfer surfaces of the first and second heat exchangers are other expanded heat transfer surfaces. A detachable heat exchanger for an indirect refrigerant air-conditioning device, characterized in that a concavo-convex meshing portion that is detachably meshed with is formed.
【請求項20】圧縮機、凝縮器、膨張弁、蒸発器を順次
接続して構成される冷凍サイクルを屋外に設置し、この
冷凍サイクル中の蒸発器または凝縮器となる熱交換器を
屋内の少なくとも1ケ所に設置しておき、一方この熱交
換器に着脱自在な熱源側熱交換器と利用側熱交換器等と
を閉ル−プ接続して構成されるサ−モサイフォンを準備
し、サ−モサイフォン側の熱源側熱交換器を前記冷凍サ
イクル側の熱交換器に結合することを特徴とする間接冷
媒空調方法。
20. A refrigeration cycle constructed by sequentially connecting a compressor, a condenser, an expansion valve and an evaporator is installed outdoors, and a heat exchanger to be an evaporator or a condenser in the refrigeration cycle is installed indoors. Prepare a thermosiphon that is installed in at least one place, and on the other hand, a heat source side heat exchanger and a user side heat exchanger that are detachably attached to this heat exchanger are connected in a closed loop. An indirect refrigerant air conditioning method, characterized in that a heat source side heat exchanger on the thermosiphon side is connected to the heat exchanger on the refrigeration cycle side.
JP04013692A 1992-01-29 1992-01-29 Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method Expired - Fee Related JP3063348B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04013692A JP3063348B2 (en) 1992-01-29 1992-01-29 Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04013692A JP3063348B2 (en) 1992-01-29 1992-01-29 Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method

Publications (2)

Publication Number Publication Date
JPH05203195A true JPH05203195A (en) 1993-08-10
JP3063348B2 JP3063348B2 (en) 2000-07-12

Family

ID=11840246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04013692A Expired - Fee Related JP3063348B2 (en) 1992-01-29 1992-01-29 Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method

Country Status (1)

Country Link
JP (1) JP3063348B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator
JP2006280151A (en) * 2005-03-30 2006-10-12 Yamaha Corp Thermoelectric conversion unit
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2014192001A (en) * 2013-03-27 2014-10-06 Toshiba Corp X-ray tube device
WO2019107058A1 (en) * 2017-11-28 2019-06-06 株式会社デンソー Thermosiphon type heating system
JP2019099130A (en) * 2017-11-28 2019-06-24 株式会社デンソー Thermo-siphon type heating apparatus
WO2019139285A1 (en) * 2018-01-11 2019-07-18 엘지전자 주식회사 Movable indoor unit and air-conditioning system comprising same
WO2021005701A1 (en) 2019-07-09 2021-01-14 日本電気株式会社 Cooling system

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08170859A (en) * 1994-12-15 1996-07-02 Toshiba Corp Freezer refrigerator
JP2006280151A (en) * 2005-03-30 2006-10-12 Yamaha Corp Thermoelectric conversion unit
JP2009174801A (en) * 2008-01-25 2009-08-06 Okamura Corp Central control system for freezing and refrigerating equipment
JP2014192001A (en) * 2013-03-27 2014-10-06 Toshiba Corp X-ray tube device
WO2019107058A1 (en) * 2017-11-28 2019-06-06 株式会社デンソー Thermosiphon type heating system
JP2019099130A (en) * 2017-11-28 2019-06-24 株式会社デンソー Thermo-siphon type heating apparatus
WO2019139285A1 (en) * 2018-01-11 2019-07-18 엘지전자 주식회사 Movable indoor unit and air-conditioning system comprising same
KR20190085776A (en) * 2018-01-11 2019-07-19 엘지전자 주식회사 Mobile indoor unit and air conditioning system including the same
US11333373B2 (en) 2018-01-11 2022-05-17 Lg Electronics Inc. Air conditioning robot and air conditioning system including the same
WO2021005701A1 (en) 2019-07-09 2021-01-14 日本電気株式会社 Cooling system
US11825630B2 (en) 2019-07-09 2023-11-21 Nec Corporation Cooling system

Also Published As

Publication number Publication date
JP3063348B2 (en) 2000-07-12

Similar Documents

Publication Publication Date Title
US6708511B2 (en) Cooling device with subcooling system
JP3596347B2 (en) Refrigeration air conditioner and control method thereof
US20140230477A1 (en) Hot water supply air conditioning system
US8020405B2 (en) Air conditioning apparatus
JP5455521B2 (en) Air conditioning and hot water supply system
JP5373964B2 (en) Air conditioning and hot water supply system
JP5474483B2 (en) Intermediate heat exchanger and air-conditioning hot water supply system using the same
US20140338389A1 (en) Vapor compression system with thermal energy storage
JP2005274134A (en) Heat pump type floor heating air conditioner
JP2004003801A (en) Refrigeration equipment using carbon dioxide as refrigerant
JP3063348B2 (en) Indirect refrigerant air conditioner, detachable heat exchanger for indirect refrigerant air conditioner, and indirect refrigerant air conditioning method
JP2013083439A5 (en)
ES2255573T3 (en) THERMAL TRANSFER COUPLING BY PHASE CHANGE FOR WATER-AMMONIUM ABSORPTION SYSTEMS.
JP2007093203A (en) Exhaust heat recovery system
WO2011104834A1 (en) Air conditioner
US20040099008A1 (en) Accumulator and air conditioning system using the same
JP2001355924A (en) Air conditioner
JP4419475B2 (en) Heating system and housing
KR102095882B1 (en) heating and cooling system of building using an electric apparatus
CN212538059U (en) Air conditioner
JP2000234771A (en) Secondary refrigerant heat-storing air-conditioning system
JP7150198B2 (en) refrigeration equipment
JP4157027B2 (en) Heat pump refrigeration system
JPH0849924A (en) Heat storage type air-conditioner
JP2000121193A (en) Refrigerating cycle and method for controlling refrigerating cycle

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080512

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080512

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080512

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080512

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080512

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20080512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090512

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20100512

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees