JPH05200881A - Three-dimensional model molding device - Google Patents

Three-dimensional model molding device

Info

Publication number
JPH05200881A
JPH05200881A JP4054484A JP5448492A JPH05200881A JP H05200881 A JPH05200881 A JP H05200881A JP 4054484 A JP4054484 A JP 4054484A JP 5448492 A JP5448492 A JP 5448492A JP H05200881 A JPH05200881 A JP H05200881A
Authority
JP
Japan
Prior art keywords
shape
curing
resin
head
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4054484A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
INR Kenkyusho KK
Original Assignee
INR Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INR Kenkyusho KK filed Critical INR Kenkyusho KK
Priority to JP4054484A priority Critical patent/JPH05200881A/en
Publication of JPH05200881A publication Critical patent/JPH05200881A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To minimize the volume shrinkage at the time of curing photopolymerized resin in molding a three-dimensional model formed by using photopolymerized resin and improve further the finished shape accuracy without distortion. CONSTITUTION:Photopolymerized resin 1 is fed onto a transparent plate 2, and laser beam is emitted from an emission head 9 through the transparent plate 2 and photopolymerization is carried out. Solidified layers are fixed on a base plate 5, and said solidified layers are laminated successively on the base plate 5 by raising the Z-axis of the head 6. Shape control is carried out by shape scanning the emission head 9 by means of an NC control device 13, and processing to the photo-emission shape is performed. A supersonic vibration plate 7 is operated and the supersonic vibration is emitted during said photopolymerization curing to minimize the volume shrinkage at the time of curing cnd carry out molding high fished shape accuracy with little distortion.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光重合性樹脂を用いて
三次元モデルを成形する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for molding a three-dimensional model using a photopolymerizable resin.

【0002】[0002]

【従来の技術】光重合性樹脂に光を照射すれば、照射部
分は縮重合反応を生じて固化する。この原理を利用し
て、細く絞った光ビームを所望の経路で走査しつつ露光
することによって簿板状の固化層が得られ、この固化層
を順次積層することによって任意形状の三次元モデルを
創成できる。従来、光硬化反応に主としてラジカル反応
形の樹脂が使用されている。この光重合性樹脂は光重合
性オリゴマ、光重合性モノマ、光重合開始剤などの混合
物である。光照射によってまず光重合開始剤が解離し、
ラジカルが生成される。このラジカルがオリゴマやモノ
マの連鎖的な縮重合のトリガーとなって、照射された部
分の樹脂が固化する。この光重合性樹脂の具備すべき特
性として、硬化前は液状態に於て粘性が低いこと、硬化
反応時に体積収縮が小さいことが必要であるが、光重合
性の稀釈剤としてモノマを混入して流動性を高めれば硬
化収縮が大きくなり、前記両者を満足させることは困難
である。
2. Description of the Related Art When a photopolymerizable resin is irradiated with light, the irradiated portion undergoes a polycondensation reaction to solidify. Using this principle, a thin plate-shaped solidified layer is obtained by exposing a thin beam of light while scanning it in a desired path, and by sequentially stacking the solidified layers, a three-dimensional model of arbitrary shape can be obtained. Can be created. Conventionally, a radical reaction type resin is mainly used for the photo-curing reaction. This photopolymerizable resin is a mixture of a photopolymerizable oligomer, a photopolymerizable monomer, a photopolymerization initiator and the like. The photopolymerization initiator is first dissociated by light irradiation,
Radicals are generated. The radicals trigger the chain polycondensation of the oligomer or monomer, and the resin in the irradiated portion is solidified. The characteristics that this photopolymerizable resin should possess are that it has a low viscosity in the liquid state before curing and a small volume shrinkage during the curing reaction.However, a monomer is mixed as a photopolymerizable diluent. If the fluidity is increased to increase the curing shrinkage, it is difficult to satisfy both of the above.

【0003】[0003]

【発明が解決しようとする課題】本発明は前記の点に鑑
み、光重合性樹脂の硬化時の体積収縮を小さく抑え、歪
みのない、仕上り形状精度をより一層向上させることを
目的とするものである。
SUMMARY OF THE INVENTION In view of the above points, the present invention has an object to suppress the volume shrinkage of the photopolymerizable resin during curing to be small, and to further improve the finished shape accuracy without distortion. Is.

【0004】[0004]

【課題を解決するための手段】光重合性樹脂に、三次元
形状に光ビームを照射して重合硬化処理する三次元成形
加工装置に於て、前記光ビーム照射中に、光重合性樹脂
に超音波振動を照射する振動装置を設けたことを特徴と
する。
[Means for Solving the Problems] In a three-dimensional molding apparatus for irradiating a light beam onto a photopolymerizable resin in a three-dimensional shape to carry out a polymerization and curing treatment, the photopolymerizable resin is exposed to the photopolymerizable resin during the irradiation with the light beam. It is characterized in that a vibration device for irradiating ultrasonic vibration is provided.

【0005】[0005]

【作用】本発明は前記のように、光重合性樹脂に光ビー
ムを照射して重合硬化処理するとき、その処理中に光重
合性樹脂に超音波振動を照射することにより、樹脂の流
動性を高めると共にオリゴマやモノマの縮重合作用を促
進し、光照射部分の固化を歪みを少なくし、形状精度を
高めて固化処理することができるようになる。
As described above, according to the present invention, when the photopolymerizable resin is irradiated with a light beam for polymerization and curing treatment, the photopolymerizable resin is irradiated with ultrasonic vibration during the treatment so that the fluidity of the resin is improved. It is possible to accelerate the polycondensation action of an oligomer or a monomer, to reduce the distortion of the solidification of the light-irradiated portion, to improve the shape accuracy, and to perform the solidification treatment.

【0006】[0006]

【実施例】以下、図面の一実施例により本発明を説明す
る。図1はベースプレートが樹脂中を引上げられる方式
のもので、1が光重合性樹脂、2は透明板である。ポン
プ3によって、この透明板2上に光重合性樹脂1が供給
され、流下液は受槽4に集められ、再びポンプ3によっ
て供給されるよう連続して循環供給される。5は固化層
の固着をするベースプレートで、駆動ヘッド6によって
上下Z軸に移動制御される。7はベースプレート5から
樹脂に超音波を作用する振動板、8がZ軸制御モータ
ー、9はレーザービームを照射するヘッドで、透明板2
の底面から光照射する。10及び11がヘッド9をX
軸、Y軸に駆動するモーターで、この駆動制御により照
射ヘッド9の形状走査を行う。12はレーザー発振器
で、例えばHe−Cdレーザーが用いられ、パルスレー
ザーを前記走査ヘッド9より照射する。13はNC制御
装置で、X軸、Y軸及びZ軸モーターの駆動制御、レー
ザー発振器12の制御を行う。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to an embodiment of the drawings. FIG. 1 shows a system in which a base plate is pulled up in a resin, and 1 is a photopolymerizable resin and 2 is a transparent plate. The photopolymerizable resin 1 is supplied onto the transparent plate 2 by the pump 3, and the falling liquid is collected in the receiving tank 4 and continuously circulated so as to be supplied again by the pump 3. Reference numeral 5 denotes a base plate for fixing the solidified layer, which is moved and controlled by the drive head 6 in the vertical Z axis. Reference numeral 7 is a vibrating plate that applies ultrasonic waves to the resin from the base plate 5, 8 is a Z-axis control motor, and 9 is a head that irradiates a laser beam.
Illuminate from the bottom of the. 10 and 11 X head 9
The shape of the irradiation head 9 is scanned by this drive control by a motor that drives the axis and the Y axis. Reference numeral 12 denotes a laser oscillator, which is, for example, a He—Cd laser, and irradiates a pulse laser from the scanning head 9. Reference numeral 13 denotes an NC control device, which controls driving of the X-axis, Y-axis, and Z-axis motors, and controls the laser oscillator 12.

【0007】以上に於て、ベースプレート5を光重合性
樹脂1中に漬けた状態で、ヘッド9から透明板2を介し
て樹脂中にレーザービームを照射すると、光重合固化層
がプレート5に固着して形成される。NC制御装置13
による形状制御は、CADで設計された形状にしたがっ
て数値モデルを高さ方向に等間隔の水平面で切断し、ス
ライス図形データ群をメモリしておき、そのスライス図
形を下端から取出してX軸モーター10及びY軸モータ
ー11を駆動制御し、照射ヘッド9を形状走査すること
によって光ビームの照射形状の固化層を形成する。1層
分の固化後に、Z軸モーター8の駆動により所定の単位
長さヘッド6を上昇し、ベースプレート5を引上げ、再
び照射ヘッド9を形状走査して前の固化層上に次の硬化
層を積層し、このように次々と、光ビームによって二次
元形状を走査し、固化積層していって三次元形状のモデ
ルを成形する。この光照射による樹脂1の重合硬化処理
中に、超音波振動板7を作動させることにより光重合樹
脂に振動を作用すると、樹脂の流動性が良くなって積層
部分への樹脂の供給を良好にし、且つ又、縮重合作用が
促進して、遅緩反応により、後からの硬化収縮を伴なわ
ずに精密成形することができる。
In the above, when the base plate 5 is immersed in the photopolymerizable resin 1 and a laser beam is irradiated from the head 9 through the transparent plate 2 into the resin, the solidified photopolymerized layer is fixed to the plate 5. Formed. NC controller 13
In the shape control by, the numerical model is cut in the horizontal direction at equal intervals in the height direction according to the shape designed by CAD, the slice graphic data group is stored in memory, and the slice graphic is taken out from the lower end to obtain the X-axis motor 10. The Y-axis motor 11 is driven and controlled, and the irradiation head 9 is shape-scanned to form a solidified layer having an irradiation shape of the light beam. After solidifying one layer, the head 6 having a predetermined unit length is driven by driving the Z-axis motor 8, the base plate 5 is pulled up, and the irradiation head 9 is shape-scanned again to form the next cured layer on the previous solidified layer. The three-dimensional model is formed by stacking and sequentially scanning the two-dimensional shape with the light beam and solidifying and stacking. When the photopolymerized resin is vibrated by operating the ultrasonic vibration plate 7 during the polymerization and curing treatment of the resin 1 by the light irradiation, the fluidity of the resin is improved and the resin is well supplied to the laminated portion. In addition, the condensation polymerization action is promoted, and the slow-relaxation reaction allows precise molding without subsequent shrinkage of curing.

【0008】例えばHe−Cdレーザー100mwを用
い、光重合性樹脂にオリゴマ66%、モノマ33%、重
合開始剤(BME)1%を用い、レーザー照射時間を
0.1mmのスライス間隙で幅0.01mm、10秒照
射し硬化収縮を求めた結果が図2のようであった。超音
波照射は50KHz,25Wで、”水平”は光に対して
平行に作用し、”垂直”は光に対して直角方向に超音波
を照射した場合である。収縮寸法は%で現し、超音波を
加えない場合(”無”)と比較した。超音波を加えない
(”無”)場合は約10%の収縮があり、これに比較し
て、超音波照射により縮み量が1/2以下、特に水平照
射によれば3%以下になった。
For example, using a He-Cd laser of 100 mw, using 66% of an oligomer, 33% of a monomer, and 1% of a polymerization initiator (BME) as a photopolymerizable resin, the laser irradiation time is 0.1 mm in width and a width of 0. The result of irradiating with 01 mm for 10 seconds and obtaining the cure shrinkage is as shown in FIG. Ultrasonic irradiation is at 50 KHz and 25 W, "horizontal" acts in parallel to light, and "vertical" is when ultrasonic waves are radiated in a direction perpendicular to the light. The shrinkage dimension is expressed in%, and is compared with the case where ultrasonic waves are not added (“none”). When ultrasonic waves were not applied ("nothing"), there was a contraction of about 10%, compared to this, the amount of contraction by ultrasonic irradiation was 1/2 or less, and especially by horizontal irradiation it was 3% or less. ..

【0009】次に、光重合性樹脂にSiOにWを0.
08μm蒸着した平均粒径3μφの粒子を15%混合
し、その分モノマの比率を少なくした樹脂を用いたとき
は、収縮は約1.2%になり、極めて高精度の成形をす
ることができた。
Next, the photopolymerizable resin was supplemented with SiO 2 and W.
When 15% of particles having an average particle size of 3 μφ vapor-deposited with 08 μm are mixed and a resin in which the proportion of monomers is reduced by that amount is used, the shrinkage is about 1.2%, and extremely high precision molding can be performed. It was

【0010】尚、混入する微粒子にはプラスチックピー
ズ等も利用することができ、この表面処理は光の反射と
透過を制御するために他の材質の被覆処理ができる。
It should be noted that plastic particles or the like can be used for the fine particles to be mixed in, and this surface treatment can be performed by coating with another material in order to control reflection and transmission of light.

【0011】尚、以上の実施例は積層に透明プレートを
用いた規制液面法を用いたものについて説明したが、光
照射を上方から行う自由液面法によって行うことも同様
に可能である。又、超音波の照射はベースプレート以外
に光照射部分の光重合性樹脂に照射作用させることがで
きる。
In the above embodiments, the regulated liquid level method using a transparent plate for lamination was described, but it is also possible to perform the free liquid level method in which light irradiation is performed from above. Also, the irradiation of ultrasonic waves can be applied to the photopolymerizable resin in the light irradiation portion in addition to the base plate.

【0011】[0011]

【発明の効果】以上のように本発明は、光重合性樹脂に
光照射して重合硬化処理するとき、その処理中に、光重
合性樹脂に超音波振動を照射するようにしたから、樹脂
の流動性を高めると共にオリゴマやモノマの縮重合作用
を促進し、硬化収縮を少なく、形状精度を高めて固化成
形することができ、モデルの製作を精密に行うことがで
きる。
As described above, according to the present invention, when the photopolymerizable resin is irradiated with light for polymerization and curing, the photopolymerizable resin is irradiated with ultrasonic vibration during the process. In addition to enhancing the fluidity of the resin, it also promotes the condensation polymerization of oligomers and monomers, reduces the curing shrinkage, and enhances the shape accuracy for solidification molding, which enables precise model production.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例構成図である。FIG. 1 is a configuration diagram of an embodiment of the present invention.

【図2】本発明の実験結果のグラフ図である。FIG. 2 is a graph showing the experimental results of the present invention.

【符号の説明】[Explanation of symbols]

1 光重合性樹脂 2 透明板 5 ベースプレート 6 駆動ヘッド 7 振動板 8 Z軸モーター 9 光ヘッド 10,11 X,Y軸モーター 12 レーザー発振器 13 NC制御装置 1 Photopolymerizable Resin 2 Transparent Plate 5 Base Plate 6 Drive Head 7 Vibration Plate 8 Z-Axis Motor 9 Optical Head 10, 11 X, Y-Axis Motor 12 Laser Oscillator 13 NC Controller

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光重合性樹脂に、三次元形状に光ビーム
を照射して重合硬化処理する三次元成形加工装置に於
て、前記光ビーム照射中に、光重合性樹脂に超音波振動
を照射する振動装置を設けたことを特徴とする三次元モ
デル成形装置。
1. In a three-dimensional molding apparatus for irradiating a photopolymerizable resin with a light beam in a three-dimensional shape for polymerization and curing, ultrasonic vibration is applied to the photopolymerizable resin during the irradiation of the light beam. A three-dimensional model forming device, which is provided with a vibration device for irradiating.
JP4054484A 1992-01-29 1992-01-29 Three-dimensional model molding device Pending JPH05200881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4054484A JPH05200881A (en) 1992-01-29 1992-01-29 Three-dimensional model molding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4054484A JPH05200881A (en) 1992-01-29 1992-01-29 Three-dimensional model molding device

Publications (1)

Publication Number Publication Date
JPH05200881A true JPH05200881A (en) 1993-08-10

Family

ID=12971930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4054484A Pending JPH05200881A (en) 1992-01-29 1992-01-29 Three-dimensional model molding device

Country Status (1)

Country Link
JP (1) JPH05200881A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537858A (en) * 2007-09-04 2010-12-09 フンダッシオ プリバーダ アスカム Apparatus and method for selectively depositing molten plastic material
JPWO2016051801A1 (en) * 2014-10-01 2017-08-10 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
KR102078575B1 (en) * 2018-08-20 2020-02-17 주식회사 덴티스 3 Dimension Printer
JPWO2021005858A1 (en) * 2019-07-09 2021-01-14

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537858A (en) * 2007-09-04 2010-12-09 フンダッシオ プリバーダ アスカム Apparatus and method for selectively depositing molten plastic material
JPWO2016051801A1 (en) * 2014-10-01 2017-08-10 パナソニックIpマネジメント株式会社 Manufacturing method of three-dimensional shaped object
KR102078575B1 (en) * 2018-08-20 2020-02-17 주식회사 덴티스 3 Dimension Printer
JPWO2021005858A1 (en) * 2019-07-09 2021-01-14
WO2021005858A1 (en) * 2019-07-09 2021-01-14 本田技研工業株式会社 Optical shaping device

Similar Documents

Publication Publication Date Title
JP3803735B2 (en) Light solidification modeling device that performs optical scanning simultaneously with recoating
KR20010051780A (en) Method and apparatus for forming three-dimensional laminated product from photo-curable liquid
JPH07501998A (en) Method and device for manufacturing three-dimensional objects
CN111745959B (en) 3D printing method and 3D printing equipment
JP2016511713A (en) 3D object production
JPS61114817A (en) Apparatus for forming solid configuration
JPH05200881A (en) Three-dimensional model molding device
JP2002144437A (en) Apparatus and method for executing stereo lithography
JPH0994883A (en) Method and apparatus for optically shaping three-dimensional shaped article
JPH0910967A (en) Optical molding device
JPH0834063A (en) Optical shaping method and apparatus and resin molded object
JPH05212805A (en) Formation of three-dimensional model
JPH10249943A (en) Apparatus for stereo lithography
KR20040102531A (en) Micro-stereolithography method and apparatus
JPH07195529A (en) Optical shaping method and apparatus
JPH08238678A (en) Optically molding machine
JP2001315213A (en) Method and apparatus for optical solid molding
JPH02108519A (en) Formation of three-dimensional shape and device therefor
JP2746235B2 (en) Photocuring molding method and molding apparatus
JPS6299753A (en) Formation of three-dimensional shape
JP2000202915A (en) Sqeegee device for stereo lithographing apparatus, and method therefor
JP3412278B2 (en) Stereolithography device and method
JP2000033652A (en) Stereo lithography method, photo-setting resin and stereo lithography apparatus
JPH05278122A (en) Solid modeler
JPH05269864A (en) Three dimensional optical shaping device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term