JPH05200387A - Treatment of water to be treated and treating device - Google Patents

Treatment of water to be treated and treating device

Info

Publication number
JPH05200387A
JPH05200387A JP2260691A JP2260691A JPH05200387A JP H05200387 A JPH05200387 A JP H05200387A JP 2260691 A JP2260691 A JP 2260691A JP 2260691 A JP2260691 A JP 2260691A JP H05200387 A JPH05200387 A JP H05200387A
Authority
JP
Japan
Prior art keywords
water
treated
electrolytic cell
cathode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2260691A
Other languages
Japanese (ja)
Other versions
JPH0741242B2 (en
Inventor
Hiroyuki Hashimoto
浩幸 橋本
Nobutaka Goshima
伸隆 五嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3022606A priority Critical patent/JPH0741242B2/en
Priority to US07/976,685 priority patent/US5256268A/en
Publication of JPH05200387A publication Critical patent/JPH05200387A/en
Publication of JPH0741242B2 publication Critical patent/JPH0741242B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PURPOSE:To surely and easily remove an available chlorine component from water to be treated such as potable water having odor of bleaching powder by supplying the water to be treated which has the available chlorine component to a bipolar type electrolytic cell provided with a fixed bed type porous cathode, decomposing or reducing the available chlorine component on the cathode. CONSTITUTION:A power feeding meshy anodic terminal 3 and a power feeding meshy cathodic terminal 4 are provided near to the upper end and near to the lower end in the inside of an electrolytic cell main body 2. Spongy fixed beds 5 are laminated between the electrode terminals 3, 4. Further meshy diaphragms or spacers 6 are held between the fixed beds 5 and between the fixed beds 5 and the electrode terminals 3, 4. When electric current is supplied while supplying water to be treated to the electrolytic cell 2 from the lower part, the rear of the fixed beds 5 are polarized to positive and the upper surfaces thereof are polarized to negative. Porous cathodes are formed on the upper surfaces of the fixed beds 5. The water to be treated is brought into contact with the porous cathodes. Available chlorine component such as hypochlorite ion and gaseous chlorine is decomposed or reduced and removed. Thereafter the decomposed or reduced substance is taken out from the upper part of the electrolytic cell 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、飲料水等の被処理水の
改質処理方法及び装置に関し、より詳細には上水道から
家庭用及び業務用等として供給される飲料水を多孔質電
極電解槽を使用して電気化学的に処理することにより該
飲料水の味覚の改質を行うための方法及び装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for reforming treated water such as drinking water, and more particularly to drinking water supplied from the water supply for domestic use, commercial use, etc. It relates to a method and a device for modifying the taste of the drinking water by electrochemically treating it using a bath.

【0002】[0002]

【従来技術】飲料水は、貯水池等の水源に貯水された水
を浄水場で殺菌処理した後、各家庭や飲食店等に上水道
を通して供給される。飲料水の前記殺菌は塩素ガスによ
る処理が一般的であるが、該塩素処理によると飲料水の
殺菌は比較的良好に行われる反面、残留塩素の影響によ
り処理された飲料水に異物質が混和したような違和感が
生じて天然の水の有するまろやかさが損なわれるという
欠点が生ずる。飲料水は人間の健康に直結するもので、
それに含有される細菌の殺菌や黴の繁殖の防止つまり微
生物の死滅除去は不可欠であり、該殺菌や防黴の方法と
しては前述の塩素による方法が主流である。しかし都市
部の水道滅菌はその原水となる河川水、湖水等が各種有
機物等で汚染され微生物の死滅に必要な量以上の塩素を
添加するため、有機ハロゲン化物、次亜塩素酸イオン及
び残留塩素等の有効塩素成分を生起するという弊害を生
じている。該塩素法による前記欠点を解消するために、
塩素法以外の殺菌方法が提案されている。
2. Description of the Related Art Drinking water is supplied to households, restaurants, etc. through water supply after sterilizing the water stored in a water source such as a reservoir. The sterilization of drinking water is generally treated with chlorine gas, but sterilization of drinking water is relatively good according to the chlorine treatment, while foreign substances are mixed in the treated drinking water due to the effect of residual chlorine. Such a discomfort occurs and the mellowness of natural water is impaired. Drinking water is directly linked to human health,
It is indispensable to sterilize the bacteria contained therein and prevent the growth of mold, that is, kill and remove microorganisms, and the above-mentioned chlorine method is the mainstream as the sterilization and mold prevention method. However, in tap water sterilization in urban areas, the raw water, such as river water and lake water, is contaminated with various organic substances and more chlorine is added than is necessary to kill microorganisms.Therefore, organic halides, hypochlorite ions and residual chlorine are added. It has a harmful effect of producing effective chlorine components such as. In order to eliminate the above-mentioned drawbacks caused by the chlorine method,
Sterilization methods other than the chlorine method have been proposed.

【0003】例えば前記飲料水をオゾン添加処理や活性
炭吸着処理することにより改質する方法が提案されてい
るが、処理すべき飲料水が例えば浄水場の水である場合
には処理量が莫大である。又浄水場で処理しても水道管
末端の蛇口に至るまでに再度微生物が繁殖するという問
題があり、現在のところ塩素添加処理に優る方法はな
い。しかし前述の通り人体に有害な有機塩素化合物や飲
料水の味を損ない易い次亜塩素酸イオン等を生じさせ易
い塩素処理に代わり得る人体に害がなくかつ天然水に近
い味を有する飲料水の処理方法が要請されている。更に
飲料水以外にも食品類の処理水等の間接的に体内に摂取
される各種生活用水があり、これらの生活用水について
も塩素処理以外の方法が望まれている。
For example, there has been proposed a method of reforming the drinking water by subjecting it to ozone addition treatment or activated carbon adsorption treatment. However, when the drinking water to be treated is, for example, water from a water purification plant, the treatment amount is enormous. is there. In addition, even if treated in a water purification plant, there is a problem that the microorganisms will regenerate before reaching the faucet at the end of the water pipe, and there is currently no method superior to the chlorine addition treatment. However, as mentioned above, drinking water that has a taste close to natural water that is harmless to the human body and can substitute for chlorine treatment that easily causes hypochlorite ions, etc. A treatment method is requested. Further, in addition to drinking water, there are various kinds of domestic water that are indirectly ingested into the body such as treated water for foods, and a method other than chlorine treatment is desired for these domestic water.

【0004】[0004]

【発明が解決しようとする問題点】このように飲料水等
の従来の改質処理方法は、主として塩素法によるもので
あり、該方法では次亜塩素酸イオンが生成しあるいは塩
素ガスが残留していわゆるカルキ臭が生じ、処理後の飲
料水等の味が悪くなるという欠点があり、このカルキ臭
を除去するには該カルキ臭源である次亜塩素酸イオンを
活性炭等に吸着させる方法が使用されている。しかしこ
の方法では、活性炭の微粉末が処理後の飲料水等に混入
するという致命的な欠点があり、又活性炭の交換といっ
た煩雑な操作が必要であるとともに、完全なカルキ臭の
除去が達成できないことがある。
As described above, the conventional reforming treatment method for drinking water or the like is mainly based on the chlorine method, in which hypochlorite ion is generated or chlorine gas remains. There is a drawback that so-called chlorine odor is generated and the taste of drinking water after treatment becomes bad.To remove this chlorine odor, there is a method of adsorbing hypochlorite ion, which is the source of the chlorine odor, to activated carbon or the like. It is used. However, in this method, there is a fatal drawback that fine powder of activated carbon is mixed into drinking water after treatment, and also complicated operation such as replacement of activated carbon is required, and complete removal of chlorinated odor cannot be achieved. Sometimes.

【0005】[0005]

【発明の目的】本発明は、有効塩素成分を含有する飲料
水等を電気化学的に処理することにより、次亜塩素酸イ
オン等の飲料水等に混入する味覚を悪化させるカルキ臭
成分をほぼ完全に分解除去して味がまろやかな飲料水等
を供給するための方法及び装置を提供することを目的と
する。
It is an object of the present invention to electrochemically treat drinking water or the like containing an effective chlorine component to obtain almost no chyle odor component such as hypochlorite ion which deteriorates taste sensation mixed in the drinking water or the like. It is an object of the present invention to provide a method and an apparatus for supplying drinking water or the like which is completely decomposed and removed and has a mellow taste.

【0006】[0006]

【問題点を解決するための手段】本発明方法は、有効塩
素成分を含有する被処理水を多孔質の固定床型陰極が設
置された複極式電解槽に供給し、該陰極上で前記有効塩
素成分を分解又は還元して前記被処理水の改質を行うこ
とを特徴とする被処理水の処理方法であり、本発明装置
は、処理される被処理水の流路断面積と実質的に同一断
面積である多孔質の固定床型陰極が収容され、有効塩素
成分を含有する前記被処理水が供給されかつ前記陰極上
で前記有効塩素成分の分解又は還元を行う複極式電解槽
を含んで成ることを特徴とする被処理水の処理装置であ
る。なお本発明では電極等の表面上で実質的な電気化学
反応を生起しないことがあるため本発明に使用される槽
は電気化学的処理槽というべきであるが、一般呼称に従
って電解槽と称する。
According to the method of the present invention, water to be treated containing an effective chlorine component is supplied to a bipolar electrode cell equipped with a porous fixed bed type cathode, and the above-mentioned cathode is used. A method for treating water to be treated, which comprises decomposing or reducing an effective chlorine component to reform the water to be treated, wherein the device of the present invention has a flow passage cross-sectional area substantially equal to that of the water to be treated Of a fixed bed type porous cathode having the same cross-sectional area, is supplied with the water to be treated containing an effective chlorine component, and decomposes or reduces the effective chlorine component on the cathode. An apparatus for treating water to be treated, which comprises a tank. Incidentally, in the present invention, since a substantial electrochemical reaction may not occur on the surface of the electrode or the like, the tank used in the present invention should be called an electrochemical treatment tank, but it is called an electrolytic tank according to the general name.

【0007】以下本発明を詳細に説明する。本発明は、
飲料水等に含まれるカルキ臭を除去するために、該カル
キ臭源である有効塩素成分を含有する飲料水や食品処理
水等の被処理水を、活性炭処理等の不確実で煩雑な操作
に代えて、多孔質の複極式固定床型陰極を収容した電解
槽に供給し該多孔質陰極に十分接触させることにより前
記有効塩素成分特に次亜塩素酸イオンを電気化学的に分
解することを特徴とする。本発明方法及び装置により処
理される被処理水は人体に摂取される飲料水や食品処理
水を対象とし、飲料水は、上水道を流れて家庭や飲食店
等の水道の蛇口から注出される水道水等を含み、食品処
理水としては生鮮食品の洗浄水や豆腐等の含水食品に含
有される水等が含まれる。
The present invention will be described in detail below. The present invention is
In order to remove the chlorine odor contained in drinking water, treated water such as drinking water or food treatment water containing the effective chlorine component that is the source of chlorine odor can be subjected to uncertain and complicated operations such as activated carbon treatment. Instead, it is possible to electrochemically decompose the effective chlorine component, especially hypochlorite ion, by supplying it to an electrolytic cell containing a porous bipolar fixed-bed cathode and bringing it into sufficient contact with the porous cathode. Characterize. The treated water treated by the method and apparatus of the present invention is intended for drinking water or food treatment water that is ingested by the human body, and the drinking water is a tap water that flows through tap water and is poured out from a tap of a water supply such as a home or a restaurant. Including water and the like, the food treatment water includes water for washing fresh food and water contained in water-containing food such as tofu.

【0008】前記多孔質陰極との接触により被処理水中
の有効塩素成分の主成分である次亜塩素酸イオンは次の
式に従って塩素イオンと水に分解される。 ClO- + 2 H + + 2 e - → Cl - H2O 更に被処理水中の残留塩素は陰極に接触し次の式に従っ
て塩素イオンに還元される。 Cl2 + 2 e- → 2 Cl- 一般的にはこれらの電気化学的反応では電子が消費され
るため電流を流して実質的な電解反応を生じさせること
が必要である。しかし被処理水中に含有される有効塩素
成分が微量つまり数ppmであり、陰極上に滞留する電
荷が存在すれば十分に被処理水の処理を行うことができ
る。従って本発明における被処理水処理ではガス発生を
伴っても伴わなくてもよいが、ガス発生が生ずると被処
理水に変化が生じ該変化に起因する味覚変化等が生ずる
恐れがあるため、実質的なガス発生が生じない陰極電位
つまり−0.1 〜−1.0 V(vs.SHE) の陰極電位が生ずる
よう電圧を印加することが好ましい。
Upon contact with the porous cathode, the hypochlorite ion which is the main component of the effective chlorine component in the water to be treated is decomposed into chlorine ion and water according to the following formula. ClO - + 2 H + + 2 e - → Cl - H 2 O further residual chlorine in the water to be treated is reduced to chloride ions according to the following formula in contact with the cathode. Cl 2 + 2 e - → 2 Cl - is generally necessary to cause substantial electrolytic reaction by applying a current for electrons are consumed in these electrochemical reactions. However, if the amount of effective chlorine component contained in the water to be treated is a very small amount, that is, several ppm, and there is an electric charge staying on the cathode, the water to be treated can be sufficiently treated. Therefore, in the treated water treatment according to the present invention, it may or may not be accompanied by gas generation, but when gas generation occurs, there is a possibility that a change in the treated water may occur and a taste change or the like due to the change may occur. It is preferable to apply a voltage so that a cathode potential that does not generate a specific gas, that is, a cathode potential of -0.1 to -1.0 V (vs.SHE) is generated.

【0009】実質的なガス発生を生じさせない電圧を印
加しながら処理を行うと流れる電流量がほぼ零に等しく
従って消費される電力量も零に等しいため、電力コスト
をほぼ零に維持したまま従来の塩素添加法や高電力消費
を伴う電解法とほぼ等しい効率で飲料水等の被処理水の
改質処理を行うことができる。水道水にはカルシウムイ
オンやマグネシウムイオンが含有され該イオンは飲料水
等の味を悪くする一因となっているが、該イオンは前記
飲料水等を電気化学的に処理を行うと前記多孔質陰極上
に水酸化カルシウムや水酸化マグネシウムとして析出し
て飲料水等から除去されて該飲料水等の味を向上させ
る。
When the process is performed while applying a voltage that does not substantially generate gas, the amount of current flowing is substantially equal to zero, and the amount of power consumed is also equal to zero, so that the conventional power cost is maintained at approximately zero. It is possible to carry out the reforming treatment of the water to be treated such as drinking water with almost the same efficiency as the chlorine addition method and the electrolysis method with high power consumption. The tap water contains calcium ions and magnesium ions, which are one of the causes of the bad taste of drinking water and the like, but the ions become porous when the drinking water or the like is electrochemically treated. It is deposited as calcium hydroxide or magnesium hydroxide on the cathode and is removed from drinking water or the like to improve the taste of the drinking water or the like.

【0010】又飲料水や食品処理水中には前記カルシウ
ムをはじめとする微量のイオンや溶解物がその周囲に水
和水を有するクラスターとして存在するが、この水和水
は飲料水等のまろやかさを失わせる一因となっている。
本発明により前記水和水を含む飲料水等に実質的な電解
反応が生じない程度の電圧を印加すると、電位勾配に従
って該飲料水中のイオンが液中で高速で泳動や移動をす
るために前記クラスターは移動できずに巨大クラスター
が破壊されて、あるいは前述の通り水和水を有するイオ
ンが多孔質陰極等で破壊され前記水和水の数が大きく低
減されて飲料水等の改質効果が生ずるものと考えられ
る。
[0010] In the drinking water and the food processing water, trace amounts of ions such as calcium and dissolved substances exist as clusters having hydration water around them, and this hydration water is mellow for drinking water and the like. It is one of the causes to lose.
When a voltage is applied to the drinking water containing the water of hydration according to the present invention such that a substantial electrolytic reaction does not occur, the ions in the drinking water migrate or move at high speed in the liquid according to the potential gradient. The clusters cannot move and the huge clusters are destroyed, or as described above, the ions having hydration water are destroyed by the porous cathode etc., and the number of the hydration water is greatly reduced, and the effect of modifying drinking water etc. It is thought to occur.

【0011】本発明による被処理水の処理では、該被処
理水が陰極と接触する機会が多いほど処理効率が上昇す
る。従って本発明に係わる電解槽は多孔質の固定床型陰
極が設置された複極式電解槽とする。この複極式電解槽
では該電解槽の多孔質電極が莫大な表面積を有するため
電極表面と被処理水との接触面積を増大させることがで
き、これにより装置サイズを小さくし、かつ電気化学的
処理の効率を上げることができる点で有利である。
In the treatment of water to be treated according to the present invention, the treatment efficiency increases as the water to be treated contacts the cathode more frequently. Therefore, the electrolytic cell according to the present invention is a bipolar electrode type electrolytic cell in which a porous fixed bed type cathode is installed. In this bipolar electrode electrolytic cell, since the porous electrode of the electrolytic cell has an enormous surface area, it is possible to increase the contact area between the electrode surface and the water to be treated, thereby reducing the device size and electrochemically. It is advantageous in that the processing efficiency can be increased.

【0012】本発明の複極式電解槽は、陽陰極に分極す
る多孔質誘電体を使用する電解槽と、単独で陽極及び陰
極として機能する陽極材料及び多孔質陰極材料を交互に
設置した電解槽を含む。前者の電解槽では多孔質誘電体
の一端が分極して多孔質陰極を構成し、後者では多孔質
陰極自体が陰極として機能する。多孔質誘電体電極を使
用する場合も単独の多孔質陰極を使用する場合でもこれ
らの多孔質陰極は使用する電解槽に応じた形状を有し、
前記被処理水が透過可能な多孔質材料、例えば粒状、球
状、フェルト状、織布状、多孔質ブロック状等の形状を
有する活性炭、グラファイト、炭素繊維等の炭素系材料
から、あるいは同形状を有するニッケル、銅、ステンレ
ス、鉄、チタン等の金属材料、更にそれら金属材料に貴
金属のコーティングを施した材料から形成された好まし
くは粒状、球状、繊維状、フェルト状、織布状、多孔質
ブロック状、スポンジ状の誘電体(又は単独の多孔質陰
極)を使用することが好ましいが、ニッケル等の金属焼
結体を使用してもよい。
The bipolar electrolytic cell of the present invention is an electrolytic cell that uses a porous dielectric material that is polarized in the positive and negative electrodes, and an electrolytic cell in which an anode material and a porous cathode material that independently function as an anode and a cathode are alternately installed. Including a tank. In the former electrolytic cell, one end of the porous dielectric is polarized to form a porous cathode, and in the latter, the porous cathode itself functions as a cathode. These porous cathodes have a shape according to the electrolytic cell to be used both when using a porous dielectric electrode and when using a single porous cathode.
A porous material permeable to the water to be treated, for example, activated carbon having a shape such as a granular shape, a spherical shape, a felt shape, a woven cloth shape or a porous block shape, or a carbon-based material such as graphite or carbon fiber, or having the same shape. Preferably, a granular, spherical, fibrous, felt-like, woven-like, or porous block formed from a metal material such as nickel, copper, stainless steel, iron, or titanium, and a material obtained by coating the metal material with a noble metal. It is preferable to use a dielectric or sponge-like dielectric (or a single porous cathode), but a metal sintered body such as nickel may be used.

【0013】本発明による被処理水処理を行うためには
該被処理水が前記多孔質陰極と可能な限り接触すること
が必要であり、これを達成するためには被処理水の前記
多孔質陰極内の滞留時間をなるべく長く、換言すると被
処理水が可能な限り前記多孔質陰極の内部に浸透しかつ
透過することが必要である。被処理水を多孔質陰極内に
浸透させるためには、該陰極の材料の導体抵抗が小さく
かつ過電圧が大きいことが望ましい。つまり導体抵抗が
小さいと内部へ浸入する際の抵抗が小さいため浸透し易
くなり、過電圧が大きいと表面だけでなく内部でも所定
の反応が生じ易くなるのである。過電圧が小さいと表面
のみで反応が生ずるため多孔質陰極を使用する意味が減
殺される。
In order to carry out the treatment of the water to be treated according to the present invention, it is necessary that the water to be treated is in contact with the porous cathode as much as possible. It is necessary that the residence time in the cathode be as long as possible, in other words, that the water to be treated permeates and permeates into the inside of the porous cathode as much as possible. In order to allow the water to be treated to permeate into the porous cathode, it is desirable that the material of the cathode has a low conductor resistance and a high overvoltage. In other words, if the conductor resistance is small, the resistance at the time of infiltration into the interior is small, so that it easily penetrates. If the overvoltage is small, the reaction takes place only on the surface, and the meaning of using the porous cathode is diminished.

【0014】前記炭素系材料はこの要件つまり導体抵抗
が小さく過電圧が大きいという要件を満足する本発明に
おいて有効に使用される材料である。更に該炭素系材料
は毒性が全くなくかつイオンやその水酸化物を形成しな
いため飲料水等の体内に摂取される被処理水の処理用と
して好ましい。又表面積が莫大であり有効塩素成分が接
触する機会が非常に大きくなり処理効率が大幅に上昇す
る。更に炭素系材料は安価であり、他の金属材料極と異
なり電解を停止しても腐食が生じないため、経済的にも
操作性の面からも有利である。なおこれらの多孔質陰極
の開口率は流通する被処理水の移動を妨害しないように
10%以上95%以下好ましくは20%以上80%以下とし、貫
通孔の開孔径は被処理水が透過できる程度の孔径の微細
孔とすることが好ましい。
The carbon-based material is a material effectively used in the present invention which satisfies this requirement, that is, the requirement that the conductor resistance is small and the overvoltage is large. Further, since the carbonaceous material has no toxicity and does not form ions or hydroxide thereof, it is preferable for treating water to be treated such as drinking water that is ingested into the body. In addition, the surface area is enormous, and the chances of contact with effective chlorine components are very large, and the treatment efficiency is greatly increased. Further, the carbon-based material is inexpensive, and unlike other metal material electrodes, corrosion does not occur even when the electrolysis is stopped, which is advantageous in terms of economy and operability. The aperture ratio of these porous cathodes should not interfere with the movement of the water to be treated.
10% or more and 95% or less, preferably 20% or more and 80% or less, and it is preferable that the opening diameter of the through-hole is a micropore having a diameter that allows water to be treated to permeate.

【0015】本発明に使用される陽極では有効塩素成分
の分解や還元は殆ど生ずることがない。従って前記被処
理水は該陽極に接触する必要はなく単独で機能する陽極
の場合その形状は特に限定されないが、該陽極を通って
被処理水が流れる場合にはその形状は多孔質でなくとも
よいが被処理水の流通を円滑にするためメッシュ状とす
ることが好ましい。陽極として多孔質陽極を使用する場
合にはその多孔質度は陰極の多孔質度より小さく(陽極
電流密度を陰極電流密度より小さく)することが望まし
い。又該陽極の材質としてはグラファイト材、炭素材、
白金族金属酸化物被覆チタン材(寸法安定性電極)、白
金被覆チタン材、ニッケル等を使用することができる。
The anode used in the present invention hardly decomposes or reduces the available chlorine component. Therefore, the shape of the water to be treated does not need to be in contact with the anode and is not particularly limited in the case of an anode which functions independently, but when the water to be treated flows through the anode, the shape does not have to be porous. Although it is good, it is preferable to make it in a mesh shape in order to facilitate the flow of the water to be treated. When a porous anode is used as the anode, its porosity is preferably smaller than that of the cathode (the anode current density is smaller than the cathode current density). The material of the anode is graphite material, carbon material,
Platinum group metal oxide coated titanium material (dimensional stability electrode), platinum coated titanium material, nickel, etc. can be used.

【0016】本発明の電解槽では、前記陰極及び陽極を
隔膜を使用して区画して陰極室及び陽極室を形成しない
ことが望ましいが、本発明は隔膜の使用を排除するもの
ではなく、織布、素焼板、粒子焼結ブラスチック、多孔
板、イオン交換膜等の隔膜を使用してもよい。両極を接
近させて電圧の低減を意図する場合には、両極間の短絡
防止のため電気絶縁性のスペーサとして例えば有機高分
子材料で作製した網状スペーサ等を挿入することが好ま
しい。なお電解槽に供給される被処理液が層流であると
多孔質陰極の表面と充分に接触することなく前記電解槽
を通過することがあるため、前述のように前記多孔質陰
極を電解槽内に間隙なく収容するだけでなく、電解槽内
を通過する被処理液は500 以上のレイノルズ数を有する
乱流として、横方向の移動を十分に行わせてながら前記
電解槽を通過させることが好ましい。
In the electrolytic cell of the present invention, it is desirable not to form the cathode chamber and the anode chamber by partitioning the cathode and the anode with the diaphragm, but the present invention does not exclude the use of the diaphragm, and the weaving is not necessary. A diaphragm such as a cloth, a biscuit plate, a particle-sintered plastic, a perforated plate, or an ion exchange membrane may be used. When it is intended to reduce the voltage by bringing both electrodes close to each other, it is preferable to insert, for example, a mesh spacer made of an organic polymer material as an electrically insulating spacer in order to prevent a short circuit between both electrodes. When the liquid to be treated supplied to the electrolytic cell is a laminar flow, it may pass through the electrolytic cell without sufficiently contacting the surface of the porous cathode. The liquid to be treated not only contains no space inside, but is also allowed to pass through the electrolytic cell while being sufficiently laterally moved as a turbulent flow having a Reynolds number of 500 or more. preferable.

【0017】このような電解槽を使用して被処理水の処
理を行うと、多くの場合該電解槽を1回通過させるのみ
でつまり一過性処理(ワンパス処理)で十分有効塩素成
分の除去を行うことができ、操作効率が向上する。又本
発明の電解槽では該電解槽に漏洩電流が生じ該漏洩電流
が電解槽から処理すべき被処理水を通して他の金属製部
材例えば水道管に流れ込み、該部材に溶出等の電気化学
的な腐食を生じさせることがある。そのため電解槽内の
両極が相対しない該電極背面部及び/又は前記電解槽の
出入口配管内に、被処理水より導電性の高い部材をその
一端を接地可能なように設置して前記漏洩電流を遮断す
ることができる。
When the water to be treated is treated using such an electrolytic cell, in many cases, the effective chlorine component is sufficiently removed by passing it through the electrolytic cell only once, that is, by a transient treatment (one-pass treatment). Can be performed, and the operation efficiency is improved. Further, in the electrolytic cell of the present invention, a leakage current is generated in the electrolytic cell, and the leakage current flows from the electrolytic cell through the water to be treated into another metal member, for example, a water pipe, and electrochemically elutes in the member. May cause corrosion. Therefore, a member having higher conductivity than the water to be treated is installed such that one end thereof can be grounded in the electrode back surface portion where the two electrodes in the electrolytic cell do not face each other and / or in the inlet / outlet pipe of the electrolytic cell to prevent the leakage current from flowing. Can be shut off.

【0018】前記誘電体として活性炭、グラファイト、
炭素繊維等の炭素系材料を使用しかつ陽極から酸素ガス
を発生させながら被処理水を処理する場合には、前記誘
電体が酸素ガスにより酸化され炭酸ガスとして溶解し易
くなる。これを防止するためには前記誘電体の陽分極す
る側にチタン等の基材上に酸化イリジウム、酸化ルテニ
ウム等の白金族金属酸化物を被覆し通常不溶性金属電極
として使用される金属材料を接触状態で設置し、酸素発
生が主として該金属材料上で生ずるようにすればよい。
前記電解槽内を流通する被処理水が効率良く、望ましく
は全ての被処理水を前記多孔質陰極と接触させるため、
該電解槽の被処理水の流通方向の断面積と実質的に同一
の断面積を有する多孔質陰極を前記電解槽内に該電解槽
の内壁との間に間隙が生じないように収容する。これに
より被処理水内の実質的に全ての有効塩素成分が塩素イ
オンに分解あるいは還元されてカルキ臭が除去される。
As the dielectric, activated carbon, graphite,
When a carbon-based material such as carbon fiber is used and the water to be treated is treated while generating oxygen gas from the anode, the dielectric is easily oxidized by oxygen gas and easily dissolved as carbon dioxide gas. In order to prevent this, the positive polarization side of the dielectric is contacted with a metal material normally used as an insoluble metal electrode by coating a platinum group metal oxide such as iridium oxide or ruthenium oxide on a substrate such as titanium. It may be installed in such a state that oxygen generation mainly occurs on the metal material.
Efficiently the water to be circulated in the electrolytic cell, preferably for contacting all the water to be treated with the porous cathode,
A porous cathode having a cross-sectional area substantially the same as the cross-sectional area of the electrolytic cell in the direction of flow of the treated water is housed in the electrolytic cell such that no gap is formed between the electrolytic cathode and the inner wall of the electrolytic cell. As a result, substantially all available chlorine components in the water to be treated are decomposed or reduced to chlorine ions, and the chlorine odor is removed.

【0019】又本発明方法に使用できる他のタイプの固
定床型複極式電解槽として、例えば円筒状の電解槽本体
内に給電用陽極及び給電用陰極を設置し、該給電用電極
間に、多孔質電極として機能する多数の導電性固定床形
成用粒子と該固定床形成粒子より少数の電気絶縁性の合
成樹脂等から成る絶縁粒子とをほぼ均一に混在させた電
解槽がある。該電解槽では両給電用電極間に通電して電
位を印加すると、固定床形成用粒子が前記誘電体と同様
に分極してその一端が正に又他端が負に帯電して各固定
床形成用粒子に電位が生じ、各粒子に被処理水中の有効
塩素成分を分解又は還元する機能が付与される。なお前
記絶縁粒子は、前記両給電用電極が導電性の前記固定床
形成用粒子により電気的に接続されて短絡することを防
止する機能を有する。
As another type of fixed bed type bipolar electrode electrolytic cell which can be used in the method of the present invention, for example, a power feeding anode and a power feeding cathode are installed in a cylindrical electrolytic cell body, and between the power feeding electrodes. There is an electrolytic cell in which a large number of conductive fixed bed forming particles functioning as a porous electrode and a smaller number of insulating particles made of an electrically insulating synthetic resin or the like than the fixed bed forming particles are mixed almost uniformly. When a potential is applied by energizing between both power supply electrodes in the electrolytic cell, the fixed bed forming particles are polarized in the same manner as the dielectric material, and one end thereof is positively charged and the other end is negatively charged, so that each fixed bed is formed. An electric potential is generated in the forming particles, and each particle is given a function of decomposing or reducing the effective chlorine component in the water to be treated. The insulating particles have a function of preventing both the power supply electrodes from being electrically connected by the electrically conductive particles for forming the fixed bed to cause a short circuit.

【0020】このような構成から成る電解槽は、浄水場
の貯留水のライン中あるいは家庭や飲食店の水道の蛇口
に近接させ又は食品処理水等の他の被処理水の用途に応
じた箇所に設置され、これらの被処理水の全部又は一部
を前記電解槽に導入して該電解槽中で該被処理水を処理
し有効塩素成分の分解や還元による除去を行うようにす
る。本発明の電解槽は複極式であるため被処理水が複数
回陰極に接触して有効塩素成分の分解や還元が行われ、
確実に被処理水中の有効塩素成分を除去することができ
る。
The electrolytic cell having such a structure is provided in a line of stored water of a water purification plant, in the vicinity of a faucet of a water supply of a home or a restaurant, or at a place depending on other uses of treated water such as food treated water. The whole or part of the water to be treated is introduced into the electrolyzer to treat the water to be treated in the electrolyzer to decompose and reduce effective chlorine components by reduction. Since the electrolytic cell of the present invention is a bipolar type, the water to be treated is brought into contact with the cathode multiple times to decompose or reduce the effective chlorine component,
The effective chlorine component in the water to be treated can be surely removed.

【0021】次に添付図面に基づいて本発明に係わる電
解槽の好ましい例を説明するが、該電解槽及び本発明方
法に使用できる電解槽は、この電解槽に限定されるもの
ではない。図1は、本発明方法の電解槽として使用可能
な固定床型複極式電解槽の一例を示す概略縦断面図であ
る。
Next, preferred examples of the electrolytic cell according to the present invention will be described with reference to the accompanying drawings, but the electrolytic cell and the electrolytic cell usable in the method of the present invention are not limited to this electrolytic cell. FIG. 1 is a schematic vertical cross-sectional view showing an example of a fixed bed type bipolar electrode electrolytic cell that can be used as the electrolytic cell of the method of the present invention.

【0022】上下にフランジ1を有する円筒形の電解槽
本体2の内部上端近傍及び下端近傍にはそれぞれメッシ
ュ状の給電用陽極ターミナル3と給電用陰極ターミナル
4が設けられている。電解槽本体2は、長期間の使用又
は再度の使用にも耐え得る電気絶縁材料で形成すること
が好ましく、特に合成樹脂であるポリエピクロルヒドリ
ン、ポリビニルメタクリレート、ポリエチレン、ポリプ
ロピレン、ポリ塩化ビニル、ポリ塩化エチレン、フェノ
ール−ホルムアルデヒド樹脂等が好ましく使用できる。
正の直流電圧を与える前記陽極ターミナル3は、例えば
炭素材(例えば活性炭、炭、コークス、石炭等)、グラ
ファイト材(例えば炭素繊維、カーボンクロス、グラフ
ァイト等)、炭素複合材(例えば炭素に金属を粉状で混
ぜ焼結したもの等)、活性炭素繊維不織布、又はこれに
白金、白金、パラジウムやニッケルを担持させた材料、
更に寸法安定性電極 (白金族酸化物被覆チタン材) 、白
金被覆チタン材、ニッケル材、ステンレス材、鉄材等か
ら形成される。又陽極ターミナル3に対向し負の直流電
圧を与える陰極ターミナル4は、例えば白金、ステンレ
ス、チタン、ニッケル、銅、ハステロイ、グラファイ
ト、炭素材、軟鋼あるいは白金族金属をコーティングし
た金属材料等から形成されている。
A mesh-shaped power feeding anode terminal 3 and power feeding cathode terminal 4 are provided near the upper end and the lower end of the cylindrical electrolytic cell body 2 having the upper and lower flanges 1, respectively. The electrolytic cell body 2 is preferably formed of an electrically insulating material that can withstand long-term use or re-use, and in particular, it is a synthetic resin such as polyepichlorohydrin, polyvinyl methacrylate, polyethylene, polypropylene, polyvinyl chloride, or polyvinyl chloride. , Phenol-formaldehyde resin and the like can be preferably used.
The positive electrode terminal 3 which gives a positive DC voltage is, for example, a carbon material (for example, activated carbon, charcoal, coke, coal, etc.), a graphite material (for example, carbon fiber, carbon cloth, graphite, etc.), a carbon composite material (for example, carbon to metal). Powdered and mixed), activated carbon fiber non-woven fabric, or a material in which platinum, platinum, palladium or nickel is supported,
Further, it is formed of a dimensionally stable electrode (platinum group oxide-coated titanium material), platinum-coated titanium material, nickel material, stainless steel material, iron material and the like. The cathode terminal 4 facing the anode terminal 3 and applying a negative DC voltage is formed of, for example, platinum, stainless steel, titanium, nickel, copper, hastelloy, graphite, carbon material, mild steel, or a metal material coated with a platinum group metal. ing.

【0023】前記両電極ターミナル3、4間には複数個
の図示の例では3個のスポンジ状の固定床5が積層さ
れ、かつ該固定床5間及び該固定床5と前記両電極ター
ミナル3、4間に4枚のメッシュ状隔膜又はスペーサー
6が挟持されている。各固定床5は電解槽本体2の内壁
に密着し固定床5の内部を通過せず、固定床5と電解槽
本体2の側壁との間を流れる被処理水の漏洩流がなるべ
く少なくなるように配置されている。隔膜を使用する場
合には該隔膜として織布、素焼板、粒子焼結ブラスチッ
ク、多孔板、イオン交換膜等が用いられ、スペーサーと
して電気絶縁性材料で製作された織布、多孔板、網、棒
状材等が使用される。このような構成から成る電解槽に
下方から矢印で示すように被処理水を供給しながら通電
を行うと、前記各固定床5が図示の如く下面が正に上面
が負に分極して各固定床5の上面に多孔質陰極が形成さ
れ、前記被処理水はこの多孔質陰極に接触して次亜塩素
酸イオンや塩素ガス等の有効塩素成分が分解又は還元さ
れて除去されその後前記電解槽の上方に取り出され、飲
料水等として所定の用途に使用される。
A plurality of sponge-like fixed beds 5 are laminated between the two electrode terminals 3 and 4 in the illustrated example, and between the fixed beds 5 and between the fixed beds 5 and the two electrode terminals 3 are fixed. Four mesh-like diaphragms or spacers 6 are sandwiched between four. Each fixed bed 5 is in close contact with the inner wall of the electrolytic cell body 2 and does not pass through the inside of the fixed bed 5, so that the leakage flow of the water to be treated flowing between the fixed bed 5 and the side wall of the electrolytic cell body 2 is reduced as much as possible. It is located in. When a diaphragm is used, a woven cloth, a biscuit plate, a particle sintered plastic, a perforated plate, an ion exchange membrane or the like is used as the diaphragm, and a woven cloth, a perforated plate, a net made of an electrically insulating material is used as a spacer. , Rod-shaped materials, etc. are used. When current is supplied to the electrolytic cell having such a structure from below as indicated by an arrow, the fixed bed 5 is polarized so that the lower surface is positive and the upper surface is negative as shown in the figure. A porous cathode is formed on the upper surface of the floor 5, and the water to be treated is brought into contact with the porous cathode to decompose or reduce effective chlorine components such as hypochlorite ion and chlorine gas, and then to remove the electrolytic cell. Is taken out above and used for predetermined purposes as drinking water or the like.

【0024】図2は、本発明に使用できる複極型固定床
式電解槽の他の例を示すもので、該電解槽は図1の電解
槽の固定床5の給電用陰極4に向かう側つまり陽分極す
る側にメッシュ状の不溶性金属材料7を密着状態で設置
したものであり、他の部材は図1と同一であるので同一
符号を付して説明を省略する。直流電圧が印加された固
定床5はその両端部において最も大きく分極が生じ、ガ
ス発生が伴う場合には該両端部においてガス発生が生じ
易い。従って最も強く陽分極するつまり最も激しく酸素
ガスが発生する固定床5の給電用陰極4に向かう端部に
は最も速く溶解が生じる。図示の通りこの部分に不溶性
金属材料7を設置しておくと、該不溶性金属材料7の過
電圧が固定床5を形成する炭素系材料の過電圧より低い
ため殆どの酸素ガスが前記不溶性金属材料7から発生し
固定床5は殆ど酸素ガスと接触しなくなるため、前記固
定床5の溶解は効果的に抑制される。又該電解槽2に供
給された被処理水は図1の場合と同様に処理され有効塩
素成分の除去が行われる。
FIG. 2 shows another example of a bipolar electrode fixed bed type electrolytic cell which can be used in the present invention. The electrolytic cell is a side of the fixed bed 5 of the electrolytic cell shown in FIG. That is, the mesh-shaped insoluble metal material 7 is installed in a close contact state on the side of the positive polarization, and the other members are the same as those in FIG. The fixed bed 5 to which the DC voltage is applied is most polarized at both ends thereof, and when gas is generated, the gas is easily generated at the both ends. Therefore, the fastest dissolution occurs at the end of the fixed bed 5 that is most strongly anodic polarized, that is, the most intensely oxygen gas is generated, toward the power supply cathode 4. As shown in the figure, when the insoluble metal material 7 is installed in this portion, most of the oxygen gas is removed from the insoluble metal material 7 because the overvoltage of the insoluble metal material 7 is lower than the overvoltage of the carbonaceous material forming the fixed bed 5. Since the fixed bed 5 is generated and almost does not come into contact with oxygen gas, the dissolution of the fixed bed 5 is effectively suppressed. The water to be treated supplied to the electrolyzer 2 is treated in the same manner as in FIG. 1 to remove the effective chlorine component.

【0025】図3は、本発明に使用できる複極型固定床
式電解槽の他の例を示すものである。上下にフランジ11
を有する円筒形の電解槽本体12の内部上端近傍及び下端
近傍にはそれぞれメッシュ状の給電用陽極13と給電用陰
極14が設けられている。電解槽本体12は、長期間の使用
又は再度の使用にも耐え得る電気絶縁材料特に合成樹脂
で形成することが好ましい。前記両給電用電極13、14間
には、導電性材料例えば炭素系材料で形成された多数の
固定床形成用多孔質粒子15と該固定床形成用粒子15より
少数の例えば合成樹脂製の絶縁粒子18とがほぼ均一に混
在している。該絶縁粒子18は、前記給電用陽極13及び給
電用陰極14が完全に短絡することを防止する機能を有し
ている。このような構成から成る電解槽に下方から矢印
で示すように被処理水を供給しながら通電を行うと、前
記各固定床形成用多孔質粒子15が給電用陽極13側が負に
又給電用陰極14側が正に分極して表面積が莫大な多孔質
電極として機能し、図1及び図2の電解槽と同様にして
前被処理水中の有効塩素成分の分解又は還元等の改質処
理が行われて該電解槽の上方から取り出される。
FIG. 3 shows another example of the bipolar electrode fixed bed type electrolytic cell which can be used in the present invention. Top and bottom flanges 11
A mesh-shaped power feeding anode 13 and power feeding cathode 14 are provided in the vicinity of the upper end and the lower end of the inside of the cylindrical electrolytic cell body 12 having the above. The electrolytic cell body 12 is preferably formed of an electrically insulating material, especially a synthetic resin, which can withstand long-term use or reuse. Between the power feeding electrodes 13 and 14, a large number of porous particles 15 for forming a fixed bed formed of a conductive material such as a carbon-based material and a smaller number of insulating particles made of, for example, a synthetic resin than the particles 15 for forming a fixed bed. The particles 18 are mixed almost uniformly. The insulating particles 18 have a function of preventing the power supply anode 13 and the power supply cathode 14 from being completely short-circuited. When electricity is supplied to the electrolytic cell having such a structure from below while supplying water to be treated, the fixed bed forming porous particles 15 are negative on the side of the power feeding anode 13 and the power feeding cathode. The 14 side functions as a porous electrode with a positive polarization and an enormous surface area, and the reforming treatment such as decomposition or reduction of the effective chlorine component in the pre-treated water is performed in the same manner as in the electrolytic cell of FIGS. 1 and 2. And is taken out from above the electrolytic cell.

【0026】[0026]

【実施例】次に本発明による飲料水改質処理の実施例を
記載するが、該実施例は本発明を限定するものではな
い。
EXAMPLES Next, examples of the drinking water reforming treatment according to the present invention will be described, but the examples do not limit the present invention.

【0027】(実施例1)透明な硬質ポリ塩化ビニル樹
脂製の高さ100 mm、内径50mmの図1に示した電解槽
を使用して試験用被処理水の処理を行った。該電解槽内
には、炭素繊維から成る開口率60%で直径50mm、厚さ
10mmの固定床3個を、開口率85%で直径50mm及び厚
さ1.5 mmのポリエチレン樹脂製隔膜4枚で挟み込み、
上下両端の隔膜にそれぞれ白金をその表面にめっきした
チタン製である直径48mm厚さ1.0mmのメッシュ状陽
極ターミナル及び陰極ターミナルを接触させて設置し
た。前記試験用被処理水は水道水に次亜塩素酸ナトリウ
ム水溶液を添加して有効塩素成分濃度が1〜20ppmと
なるように調製した。被処理水供給量を2.5 リットル/
分に、印加電圧値を16.0Vに、電流値を60mAにそれぞ
れ固定し、該電解条件下で被処理水中の次亜塩素酸イオ
ン濃度を表1に示すように変化させて該被処理水の処理
を行い、電解槽通過後の次亜塩素酸イオン濃度をオルソ
トルイジンに依る比色分析を使用して測定したところ、
表1に示す結果が得られた。
(Example 1) The treated water for test was treated using an electrolytic cell shown in FIG. 1 made of transparent hard polyvinyl chloride resin and having a height of 100 mm and an inner diameter of 50 mm. The electrolytic cell is made of carbon fiber and has an opening ratio of 60% and a diameter of 50 mm and a thickness.
3 fixed beds of 10 mm are sandwiched between 4 diaphragms made of polyethylene resin with an opening ratio of 85% and a diameter of 50 mm and a thickness of 1.5 mm.
A mesh-shaped anode terminal and cathode terminal having a diameter of 48 mm and a thickness of 1.0 mm, which are made of titanium and whose surfaces are plated with platinum, are placed in contact with the diaphragms at the upper and lower ends, respectively. The test water to be treated was prepared by adding an aqueous solution of sodium hypochlorite to tap water so that the effective chlorine component concentration was 1 to 20 ppm. 2.5 liters of treated water supply /
In addition, the applied voltage value was fixed to 16.0 V and the current value was fixed to 60 mA, and the hypochlorite ion concentration in the water to be treated was changed as shown in Table 1 under the electrolytic conditions to change the water to be treated. After the treatment, the concentration of hypochlorite ion after passing through the electrolytic cell was measured using a colorimetric analysis with orthotoluidine,
The results shown in Table 1 were obtained.

【0028】(比較例1)粒径2〜5μmの活性炭40g
を内径4.0 cm、高さ100 mmのガラス製カラムに充填
した。なおこの活性炭は既に有効塩素2ppmの水を15
00リットル通過させたものを使用した。このカラムに表
1に示した濃度の次亜塩素酸ナトリウムを有する実施例
1と同一の試験用被処理水を2.5 リットル/分の速度で
供給し、該カラムから流出する該被処理水中の次亜塩素
酸イオン濃度を実施例1と同一の方法で測定した。その
結果を表1に纏めた。表1から多孔質陰極を使用するこ
とにより、活性炭処理の場合より次亜塩素酸イオン濃度
が大きく減少することが判る。
(Comparative Example 1) 40 g of activated carbon having a particle size of 2 to 5 μm
Was packed in a glass column having an inner diameter of 4.0 cm and a height of 100 mm. Note that this activated carbon already contains 15 ppm of effective chlorine water.
The one passed through 00 liters was used. The same test water to be treated as in Example 1 having the concentration of sodium hypochlorite shown in Table 1 was supplied to this column at a rate of 2.5 liters / minute, and the water in the water to be treated flowing out from the column was treated as follows. The chlorite ion concentration was measured by the same method as in Example 1. The results are summarized in Table 1. It can be seen from Table 1 that the use of the porous cathode significantly reduces the hypochlorite ion concentration as compared with the case of activated carbon treatment.

【0029】(実施例2)固定床を形成する電極物質を
代えたこと以外は実施例1と同一の電解槽を使用して被
処理水の処理処理を行った。試験用被処理水としては次
亜塩素酸ナトリウムを添加して2ppmとした水道 水を使用し、該試験用被処理水を2.5 リットル/分の流
速で表2に示した物質を使用して構成した電解槽に供給
して前記被処理水の改質処理を行い、その被処理水取出
口における次亜塩素酸ナトリウムイオン濃度を実施例1
と同一の方法で測定した。その結果を表2に纏めた。表
2から電極構成物質が炭素系材料であると次亜塩素酸イ
オンがほぼ100 %に近い値で分解するのに対し、他の金
属材料では分解効率が減少することが判る。
Example 2 Treated water was treated using the same electrolytic cell as in Example 1 except that the electrode material forming the fixed bed was changed. Water to be treated as water for test was adjusted to 2 ppm by adding sodium hypochlorite. Using water, the test water to be treated was supplied at a flow rate of 2.5 liters / minute to an electrolytic cell constituted by using the substances shown in Table 2 to reform the water to be treated. Example 1 shows the sodium hypochlorite ion concentration at the treated water outlet.
It was measured by the same method as. The results are summarized in Table 2. It can be seen from Table 2 that the hypochlorite ion decomposes at a value close to 100% when the electrode constituent material is a carbon-based material, whereas the decomposition efficiency decreases with other metal materials.

【0030】(実施例3)多孔質陰極をグラファイトと
した実施例1の電解槽を使用し、グラファイトの開口率
を変化させた場合の被処理水取出口における次亜塩素酸
イオン濃度(初期濃度2ppm)及び電解槽の被処理水
供給口と被処理水取出口の圧力差つまり圧力損失を測定
した。その結果を表3に纏めた。表3から10〜95%の開
口率の範囲で満足できる次亜塩素酸イオンの分解を達成
ができたことが判る。
Example 3 Using the electrolytic cell of Example 1 in which the porous cathode was graphite, the hypochlorite ion concentration at the outlet of the water to be treated (initial concentration) when the aperture ratio of graphite was changed 2 ppm) and the pressure difference between the untreated water supply port and the untreated water outlet of the electrolytic cell, that is, the pressure loss was measured. The results are summarized in Table 3. From Table 3, it can be seen that satisfactory decomposition of hypochlorite ions could be achieved in the range of the aperture ratio of 10 to 95%.

【0031】[0031]

【発明の効果】本発明方法は、有効塩素成分を含有する
被処理水を多孔質の固定床型陰極が設置された複極式電
解槽を使用して処理し、前記有効塩素成分を分解又は還
元する飲料水等の被処理水の処理方法である(請求項
1)。飲料水等の被処理水を本発明方法により処理する
と、該被処理水中に含有される次亜塩素酸イオンや残留
塩素ガス等が多孔質陰極表面に十分接触して分解又は還
元されて有効塩素成分がほぼ完全に除去されて有効塩素
成分を殆ど含まない飲料水等を得ることができる。
According to the method of the present invention, the water to be treated containing the effective chlorine component is treated using a bipolar electrode cell equipped with a porous fixed bed type cathode to decompose or decompose the effective chlorine component. This is a method for treating treated water such as drinking water to be reduced (claim 1). When the treated water such as drinking water is treated by the method of the present invention, the effective chlorine is decomposed or reduced by sufficient contact of the hypochlorite ion and residual chlorine gas contained in the treated water with the porous cathode surface. It is possible to obtain drinking water or the like in which the components are almost completely removed and which contains almost no available chlorine component.

【0032】活性炭処理を主とする従来の飲料水等の処
理と異なり、本発明では電気化学の法則を利用している
ため、確実に次亜塩素酸イオン等の有効塩素成分を分解
あるいは還元して無味無臭の塩素イオンに変換すること
ができ、しかも電解槽内の部材の消耗が殆ど無く、長期
間に亘って被処理水の処理を継続することができる。又
本発明方法では複極式電解槽を使用し処理される被処理
水が複数の陰極と接触して各陰極で有効塩素成分の分解
又は還元が生ずるため、前記有効塩素成分をほぼ完全に
除去できる。被処理水が水道水等の飲料水であると(請
求項2)、該飲料水中にカルキ臭が残存していることが
多いが、本発明方法で処理することによりこのカルキ臭
を除去してまろやかな味の飲料水を提供することができ
る。
Unlike the conventional treatment of drinking water, which is mainly treated with activated carbon, since the law of electrochemistry is used in the present invention, the effective chlorine component such as hypochlorite ion is surely decomposed or reduced. Thus, it is possible to convert the chlorine ions into tasteless and odorless, the consumption of the members in the electrolytic cell is almost zero, and the treatment of the water to be treated can be continued for a long time. Further, in the method of the present invention, the water to be treated using the bipolar electrolytic cell is brought into contact with a plurality of cathodes to decompose or reduce the effective chlorine component at each cathode, so that the effective chlorine component is almost completely removed. it can. When the water to be treated is drinking water such as tap water (Claim 2), an odor of chlorine is often left in the drinking water, but the odor of chlorine is removed by the treatment according to the method of the present invention. It is possible to provide drinking water with a mellow taste.

【0033】本発明方法における反応は陰極上で電子の
授受が起こる電解反応であるが、飲料水等の被処理水に
含有される有効塩素成分は通常数ppmのオーダーであ
り、実質的に陰極上でガス発生を伴う電解反応を生じさ
せることなく被処理水の処理を行うことができる。ガス
発生が生じると被処理水の組成変化等の不都合が生ずる
ことがあり、陰極電位は実質的なガス発生が生じない−
0.1 〜−1.0 V(vs.SHE) とすることが望ましい(請求
項3)。又この電位範囲では消費される電力量が零に等
しいため、電力コストを大きく節減することができる。
操作効率の面から、電解槽で処理した被処理水を再度該
電解槽に循環させないいわゆる一過性処理(ワンパス処
理)を行うことが望ましく(請求項4)、この一過性処
理を可能にするためには多孔質陰極の設置法や開口率を
調整して被処理水の電解槽内の滞留時間を長くすること
が望ましい。
The reaction in the method of the present invention is an electrolytic reaction in which the transfer of electrons occurs on the cathode, but the effective chlorine component contained in the water to be treated such as drinking water is usually on the order of several ppm, and the cathode is substantially The water to be treated can be treated without causing an electrolytic reaction accompanied by gas generation above. When gas generation occurs, inconvenience such as composition change of the water to be treated may occur, and the cathode potential does not substantially generate gas −
It is desirable that the voltage is 0.1 to -1.0 V (vs. SHE) (claim 3). Further, since the amount of power consumed is equal to zero in this potential range, the power cost can be greatly reduced.
From the viewpoint of operation efficiency, it is desirable to perform a so-called transient treatment (one-pass treatment) in which the water to be treated in the electrolytic bath is not circulated to the electrolytic bath again (Claim 4). In order to achieve this, it is desirable to adjust the installation method and aperture ratio of the porous cathode to prolong the residence time of the water to be treated in the electrolytic cell.

【0034】本発明装置は、有効塩素成分を含有する実
質的に全ての被処理水を、多孔質の固定床型陰極が収容
された複極式電解槽の前記多孔質陰極内を透過させなが
ら処理して前記有効塩素成分を分解又は還元して塩素イ
オンに変換する装置である(請求項5)。本発明装置に
よると、前述した本発明方法の場合以上に有効塩素成分
を含有する被処理水が前記多孔質陰極内を透過して滞留
時間が増加し更に処理効率が向上する。
The apparatus of the present invention allows substantially all of the water to be treated containing the effective chlorine component to pass through the porous cathode of the bipolar electrode electrolytic cell containing the porous fixed bed type cathode. It is an apparatus for treating and decomposing or reducing the available chlorine component to convert it into chlorine ions (Claim 5). According to the apparatus of the present invention, the water to be treated containing the effective chlorine component permeates through the porous cathode more than in the case of the above-mentioned method of the present invention to increase the residence time and further improve the treatment efficiency.

【0035】本発明装置の多孔質陰極は炭素質材料から
成ることが望ましく(請求項6)、該炭素質材料から成
る単独の多孔質陰極又は誘電体の一端に形成された多孔
質陰極は、表面積が莫大であり有効塩素成分が接触する
機会が非常に大きくなるだけでなく、導体抵抗が小さく
過電圧が大きいという要件を満足するため、被処理水の
陰極内部への浸透を促進し多孔質陰極の全面で被処理水
の処理を行うことを可能にするため他の材料と比較して
処理効率が大幅に向上する。更に該炭素系材料は毒性が
全くなくかつイオンやその水酸化物を形成しないため飲
料水等の体内に摂取される被処理水の処理用として好ま
しい。又炭素系材料は安価であり、他の金属材料極と異
なり電解を停止しても腐食が生じないため、経済的にも
操作性の面からも有利である。
The porous cathode of the device of the present invention is preferably made of a carbonaceous material (claim 6), and the porous cathode made of the carbonaceous material or the porous cathode formed at one end of the dielectric is Not only does it have a huge surface area and the chances of contact with effective chlorine components become very large, but it also satisfies the requirements of low conductor resistance and high overvoltage, which promotes the permeation of the water to be treated into the inside of the cathode and thus the porous cathode. Since it is possible to treat the water to be treated on the entire surface, the treatment efficiency is greatly improved compared to other materials. Further, since the carbonaceous material has no toxicity and does not form ions or hydroxide thereof, it is preferable for treating water to be treated such as drinking water that is ingested into the body. Further, the carbonaceous material is inexpensive and, unlike the other metal material electrodes, does not cause corrosion even if the electrolysis is stopped, which is advantageous from the economical and operability viewpoints.

【0036】又多孔質陰極の開口率は10%以上95%以下
であることが好ましく(請求項7)、この範囲において
満足できる有効塩素成分の分解又は還元効果を達成する
ことができる。更に本発明の電解槽では該電解槽に漏洩
電流が生じ該漏洩電流が他の金属製部材例えば水道配管
に流れ込み、該部材に溶出等の電気化学的な腐食を生じ
させることがある。これを防止するためには両電極が相
対しない適切な箇所に、被処理水より導電性の高い部材
をその一端を接地可能なように設置して(請求項8)前
記漏洩電流を地面に放散させることができる。
The aperture ratio of the porous cathode is preferably 10% or more and 95% or less (claim 7), and a satisfactory decomposition or reduction effect of the effective chlorine component can be achieved in this range. Further, in the electrolytic cell of the present invention, a leak current may be generated in the electrolytic cell, and the leak current may flow into another metal member such as a water pipe to cause electrochemical corrosion such as elution in the member. In order to prevent this, a member having higher conductivity than the water to be treated is installed at an appropriate position where both electrodes do not face each other so that one end of the member can be grounded (claim 8). Can be made

【0037】又電解槽内を流れる被処理水が層流である
と該被処理水が多孔質陰極と十分に接触することなく複
極式電解槽を通り抜けてしまうことがあるため、前記被
処理水はレイノルズ数が500 以上の乱流として(請求項
9)前記被処理水が横方向にも移動して十分に前記陰極
と接触するようにするが好ましい。本発明に係わる電解
槽では、例えば陰極で塩素イオンと水に分解した次亜塩
素酸イオンが陽極で酸化されて元の次亜塩素酸イオンが
生成するといったことがないため、隔膜を使用して電解
槽を陽極室と陰極室に区画する必要はなく(請求項1
0)、その電解槽構造が簡単なものとなる。
If the water to be treated flowing in the electrolytic cell is a laminar flow, the water to be treated may pass through the bipolar electrolytic cell without sufficiently contacting the porous cathode. It is preferable that the water is a turbulent flow having a Reynolds number of 500 or more (claim 9) so that the water to be treated moves laterally and comes into sufficient contact with the cathode. In the electrolytic cell according to the present invention, for example, since a hypochlorite ion decomposed into chlorine ion and water at the cathode is not oxidized at the anode to generate the original hypochlorite ion, a diaphragm is used. It is not necessary to divide the electrolytic cell into an anode chamber and a cathode chamber (Claim 1
0), the electrolytic cell structure becomes simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に使用できる第1の複極式電解槽を例示
する縦断面図。
FIG. 1 is a vertical cross-sectional view illustrating a first bipolar electrode electrolytic cell that can be used in the present invention.

【図2】本発明に使用できる第2の複極式電解槽を例示
する縦断面図。
FIG. 2 is a vertical cross-sectional view illustrating a second bipolar electrode electrolytic cell that can be used in the present invention.

【図3】本発明に使用できる第3の複極式電解槽を例示
する縦断面図。
FIG. 3 is a vertical cross-sectional view illustrating a third bipolar electrode electrolytic cell that can be used in the present invention.

【符号の説明】[Explanation of symbols]

1・・・フランジ 2・・・電解槽本体 3、4・・・
電極ターミナル 5・・・固定床 6・・・スペーサ
7・・・不溶性金属材料 11・・・フランジ 12・・・電解槽本体 13・・・給電用陽極 14・・・給
電用陰極 15・・・固定床形成用多孔質粒子 18・・・
絶縁粒子
1 ... Flange 2 ... Electrolyzer body 3, 4 ...
Electrode terminal 5: Fixed floor 6: Spacer
7 ... Insoluble metal material 11 ... Flange 12 ... Electrolytic cell body 13 ... Power feeding anode 14 ... Power feeding cathode 15 ... Fixed bed forming porous particles 18 ...
Insulating particles

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成5年4月7日[Submission date] April 7, 1993

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 有効塩素成分を含有する被処理水を多孔
質の固定床型陰極が設置された複極式電解槽に供給し、
該陰極上で前記有効塩素成分を分解又は還元して前記被
処理水の改質を行うことを特徴とする被処理水の処理方
法。
1. Water to be treated containing an effective chlorine component is supplied to a bipolar electrode electrolytic cell in which a porous fixed bed type cathode is installed,
A method for treating water to be treated, characterized in that the effective chlorine component is decomposed or reduced on the cathode to reform the water to be treated.
【請求項2】 被処理水が飲料水である請求項1に記載
の方法。
2. The method according to claim 1, wherein the water to be treated is drinking water.
【請求項3】 陰極電位が−0.1 〜−1.0 V(vs.SHE)
である請求項1又は2に記載の方法。
3. The cathode potential is -0.1 to -1.0 V (vs.SHE).
The method according to claim 1 or 2, wherein
【請求項4】 被処理水を電解槽に供給して一過性処理
を行う請求項1に記載の方法。
4. The method according to claim 1, wherein the water to be treated is supplied to the electrolytic cell to carry out the transient treatment.
【請求項5】 処理される被処理水の流路断面積と実質
的に同一断面積である多孔質の固定床型陰極が収容さ
れ、有効塩素成分を含有する前記被処理水が供給されか
つ前記陰極上で前記有効塩素成分の分解又は還元を行う
複極式電解槽を含んで成ることを特徴とする飲料水の処
理装置。
5. A porous fixed bed type cathode having a cross-sectional area substantially the same as the cross-sectional area of the treated water to be treated is accommodated, and the treated water containing an effective chlorine component is supplied and An apparatus for treating drinking water, comprising a bipolar electrolytic cell for decomposing or reducing the available chlorine component on the cathode.
【請求項6】 多孔質陰極が炭素質材料である請求項5
に記載の装置。
6. The porous cathode is a carbonaceous material.
The device according to.
【請求項7】 多孔質陰極の開口率が10%以上95%以下
である請求項5又は6に記載の装置。
7. The device according to claim 5, wherein the aperture ratio of the porous cathode is 10% or more and 95% or less.
【請求項8】 電解槽内の電極が相対しない該電極背面
及び/又は前記電解槽の出入口配管内に、被処理水より
導電性の高い部材をその一端を接地可能に設置した請求
項5から7までのいずれかに記載の装置。
8. The method according to claim 5, wherein a member having a conductivity higher than that of the water to be treated is installed on the back surface of the electrode where the electrodes in the electrolytic cell do not face each other and / or in the inlet / outlet pipe of the electrolytic cell so that one end thereof can be grounded. 7. The device according to any of items 7 to 7.
【請求項9】 電解槽内を流れる被処理水のレイノルズ
数が 500以上である請求項5から8までのいずれかに記
載の装置。
9. The apparatus according to claim 5, wherein the water to be treated flowing in the electrolytic cell has a Reynolds number of 500 or more.
【請求項10】 電解槽が無隔膜式電解槽である請求項5
から9までのいずれかに記載の装置。
10. The electrolytic cell is a diaphragmless electrolytic cell.
The device according to any one of 1 to 9.
JP3022606A 1990-07-18 1991-01-24 Method and apparatus for treating treated water Expired - Fee Related JPH0741242B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3022606A JPH0741242B2 (en) 1991-01-24 1991-01-24 Method and apparatus for treating treated water
US07/976,685 US5256268A (en) 1990-07-18 1992-11-16 Water treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3022606A JPH0741242B2 (en) 1991-01-24 1991-01-24 Method and apparatus for treating treated water

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP23294690A Division JPH04219192A (en) 1990-07-18 1990-09-03 Treatment of water to be treated

Publications (2)

Publication Number Publication Date
JPH05200387A true JPH05200387A (en) 1993-08-10
JPH0741242B2 JPH0741242B2 (en) 1995-05-10

Family

ID=12087506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3022606A Expired - Fee Related JPH0741242B2 (en) 1990-07-18 1991-01-24 Method and apparatus for treating treated water

Country Status (1)

Country Link
JP (1) JPH0741242B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935130A (en) * 2017-12-16 2018-04-20 傲自然成都生物科技有限公司 A kind of electro-chemical systems and purification method for purifying drinking water

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53385A (en) * 1976-06-22 1978-01-05 Syred Nicholas Improvement of eddy diode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53385A (en) * 1976-06-22 1978-01-05 Syred Nicholas Improvement of eddy diode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107935130A (en) * 2017-12-16 2018-04-20 傲自然成都生物科技有限公司 A kind of electro-chemical systems and purification method for purifying drinking water
CN107935130B (en) * 2017-12-16 2023-12-15 傲自然成都生物科技有限公司 Electrochemical system for purifying drinking water and purifying method

Also Published As

Publication number Publication date
JPH0741242B2 (en) 1995-05-10

Similar Documents

Publication Publication Date Title
US6773575B2 (en) Electrolytic cell and process for the production of hydrogen peroxide solution and hypochlorous acid
JP4785800B2 (en) Water treatment equipment
JP2008307524A (en) Water treatment device
US4619745A (en) Process for the electrochemical decontamination of water polluted by pathogenic germs with peroxide formed in situ
JP3056511B2 (en) Treatment water treatment equipment
JP3014427B2 (en) Treatment of treated water
JP3150370B2 (en) Electrolytic treatment method for treated water containing microorganisms
JPH05200387A (en) Treatment of water to be treated and treating device
JPH06121978A (en) Method for removing impurity in waste water for washing printed circuit board
JPH05309362A (en) Treatment of object water for treatment and multiple-electrodes-type electrolytic bath for treatment of object water for treatment
JP3040549B2 (en) High purity water production method
JPH0788474A (en) Production of high purity water
JPH04219193A (en) Treatment of water to be treated
JPH05329483A (en) Treatment of water to be treated and bipolar electrolytic cell used therefor
JP3020551B2 (en) Electrochemical treatment of treated water containing microorganisms
JPH04219192A (en) Treatment of water to be treated
JPH04114785A (en) Treatment of water to be treated
JPH0686980A (en) Portable water purifier
JPH03224684A (en) Electrochemical treatment of liquid to be treated
JPH04114786A (en) Treatment of water to be treated
JP3664274B2 (en) Electrolytic treatment method of water to be treated
JP2971571B2 (en) 3D electrode type electrolytic cell
JPH0416281A (en) Electrochemical treatment of water from water purifying plant
JP3178728B2 (en) 3D electrode type electrolytic cell
JPH04114787A (en) Treatment of water to be treated

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees