JPH0519997B2 - - Google Patents

Info

Publication number
JPH0519997B2
JPH0519997B2 JP60254583A JP25458385A JPH0519997B2 JP H0519997 B2 JPH0519997 B2 JP H0519997B2 JP 60254583 A JP60254583 A JP 60254583A JP 25458385 A JP25458385 A JP 25458385A JP H0519997 B2 JPH0519997 B2 JP H0519997B2
Authority
JP
Japan
Prior art keywords
layer
cladding layer
base layer
base
cladding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60254583A
Other languages
Japanese (ja)
Other versions
JPS62114284A (en
Inventor
Mitsunori Sugimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP25458385A priority Critical patent/JPS62114284A/en
Publication of JPS62114284A publication Critical patent/JPS62114284A/en
Publication of JPH0519997B2 publication Critical patent/JPH0519997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、光通信、情報処理装置等に利用され
る半導体レーザや発光ダイオード等の発光半導体
素子を含む集積装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an integrated device including light-emitting semiconductor elements such as semiconductor lasers and light-emitting diodes used in optical communications, information processing devices, and the like.

(従来技術と発明が解決しようとする問題点) 従来、半導体レーザや発光ダイオード等の発光
半導体素子とこれを駆動するためのトランジスタ
を同じ基板の上に集積化した素子は、浮遊容量の
低減及び小型化のメリツトがあり、活発に研究開
発が進められている。この様な集積化素子として
は、雑誌「アプライドフイジツクスレターズ
(APL)」vol.41126〜128頁に示される様に、基板
上に半導体レーザ領域とトランジスタ領域とを二
次元的に配置していた。
(Prior Art and Problems to be Solved by the Invention) Conventionally, devices in which a light-emitting semiconductor device such as a semiconductor laser or a light-emitting diode and a transistor for driving the device are integrated on the same substrate have been designed to reduce stray capacitance and It has the advantage of being smaller, and research and development is actively underway. As shown in the magazine "Applied Physics Letters (APL)" vol. 41126-128, such an integrated device has a semiconductor laser region and a transistor region arranged two-dimensionally on a substrate. Ta.

このような構造であるから、従来の発光半導体
素子を含む集積装置は、比較的大きな面積の基板
の上に半導体レーザとトランジスタとを集積化す
る必要がありさらに多くの半導体レーザとトラン
ジスタとを集積化する場合に非常に大きな面積の
基板を要し、集積度が上がらないという欠点を有
していた。
Because of this structure, conventional integrated devices including light-emitting semiconductor elements require the integration of semiconductor lasers and transistors on a substrate with a relatively large area, and the integration of even more semiconductor lasers and transistors. However, it has the disadvantage that a very large area of the substrate is required and the degree of integration cannot be increased.

本発明の目的は、これらの欠点を除去し、集積
度の高い発光半導体素子を含む集積装置を提供す
ることにある。
An object of the present invention is to eliminate these drawbacks and provide an integrated device including light emitting semiconductor elements with a high degree of integration.

(問題点を解決するための手段) 本発明の発光半導体素子を含む集積装置は、主
に発光領域となる活性層と、この活性層に比べ大
きな禁制帯幅を有する第1伝導型の第1クラツド
層と、前記活性層に比べて大きな禁制帯幅を有す
る第2伝導型の第2クラツド層と、この第2クラ
ツド層に接する第1伝導型のベース層と、このベ
ース層に接する第2伝導型の第3クラツド層とを
備え、前記活性層が前記第1クラツド層と前記第
2クラツド層とにはさまれており、前記ベース層
が前記第2クラツド層と前記第3クラツド層とに
はさまれており、前記ベース層の厚みが電子の平
均自由行程の2倍程度かそれ以下であり、前記第
2クラツド層及び前記第3クラツド層のドーピン
グ濃度を前記ベース層のドーピング濃度より低く
することによつて熱平衡状態において前記第2ク
ラツド層及び前記第3クラツド層のほぼ全体が空
乏化されていることを特徴とする。
(Means for Solving the Problems) An integrated device including a light emitting semiconductor element of the present invention mainly includes an active layer serving as a light emitting region, and a first conduction type first conduction type having a larger forbidden band width than the active layer. a cladding layer, a second cladding layer of a second conductivity type having a larger forbidden band width than the active layer, a base layer of a first conductivity type in contact with the second cladding layer, and a second cladding layer in contact with the base layer. a conductive type third cladding layer, the active layer is sandwiched between the first cladding layer and the second cladding layer, and the base layer is sandwiched between the second cladding layer and the third cladding layer. The thickness of the base layer is about twice the mean free path of electrons or less, and the doping concentration of the second clad layer and the third clad layer is lower than the doping concentration of the base layer. The second cladding layer and the third cladding layer are substantially entirely depleted in a thermal equilibrium state by lowering the temperature.

(実施例) 次に図面を参照して、本発明の実施例を説明す
る。
(Example) Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例の断面図であり、第
2図はこの実施例の主要部のエネルギーバンド図
である。図中、1はp−GaAs基板、2はp型ク
ラツド層(p−AxpGa1-xpAs,xp=0.2〜0.8)、
3は活性層(AxaGa1-xaAs,0≦Xa<Xp
Xo,厚さ≦0.5μm典型的には厚さ〜0.1μm)、4
はn型クラツド層(n−AxoGa1-xoAs,Xo
0.2〜0.8,n≦1×1017cm-3、厚さ=0.2〜3μm、
好ましくは厚さ=0.5〜1μm)、5はベース層(p
−AxbGa1-xbAs,0≦xb≦1,p≧1×1018cm
−3、厚さ50〜200Å)、6はエミツター層(n−A
xeGa1-xeAs,0≦xe≦0.8、好ましくはxe xo
n≦1×1017cm-3、厚さ=0.2〜3μm、好ましくは
厚さ=0.5〜1μm)、7はキヤツプ層(n−
GaAs)、8はn型電極、9はp型電極、10は
p型電極、11はストライプ領域、12はフエル
ミ準位である。
FIG. 1 is a sectional view of one embodiment of the present invention, and FIG. 2 is an energy band diagram of the main parts of this embodiment. In the figure, 1 is a p-GaAs substrate, 2 is a p-type cladding layer (p-A xp Ga 1-xp As, x p =0.2 to 0.8),
3 is an active layer (A xa Ga 1-xa As, 0≦X a <X p ,
X o , thickness ≦0.5 μm (typically thickness ~0.1 μm), 4
is an n-type cladding layer (n-A xo Ga 1-xo As, X o =
0.2 to 0.8, n≦1×10 17 cm -3 , thickness = 0.2 to 3 μm,
Preferably thickness = 0.5 to 1 μm), 5 is a base layer (p
−A xb Ga 1-xb As, 0≦x b ≦1, p≧1×10 18 cm
-3 , thickness 50-200 Å), 6 is emitter layer (n-A
xe Ga 1-xe As, 0≦x e ≦0.8, preferably x e x o ,
n≦1×10 17 cm -3 , thickness = 0.2 to 3 μm, preferably thickness = 0.5 to 1 μm), 7 is the cap layer (n-
8 is an n-type electrode, 9 is a p-type electrode, 10 is a p-type electrode, 11 is a stripe region, and 12 is a Fermi level.

本実施例においては、エミツター層6及びn型
クラツド層4では電子濃度が比較的低く(n≦1
×1017cm-3)かつベース層5では正孔濃度が高い
(p≦1×1018cm-3)から、n型クラツド層4及
びエミツター層6は全て空乏化している。したが
つて、熱平衡状態においては、第2図aに示す様
なエネルギーバンド構造となつている。次にエミ
ツター層6が負、p型クラツド層2が正になる様
にバイアス電圧を加えると、第2図bに示すエネ
ルギーバンド構造となる。ここでベース層5にエ
ミツター層6に対して正の電圧を加えると、第2
図cに示すエネルギーバンド構造となり、ベース
層5を頂点とする三角形ポテンシヤル障壁の高さ
が小さくなる。このためエミツター層6からベー
ス層5を通過する電子電流が増大する。逆にベー
ス層5にエミツターに対して負の電圧を加えると
ベース層5を頂点とする三角形ポテンシヤル障壁
の高さが大きくなるため電子電流は減少する。こ
の様にベース層5に加える電圧によつて、ベース
層を頂点とする三角形ポテンシヤル障壁の高さを
変化させることが出来るから、活性層3に注入さ
れる電子電流を制御出来る。又、ベース層5の厚
さは電子の平均自由行程の2倍程度以下と非常に
薄いから、格子散乱等でエネルギーを失いベース
層のポテンシヤル井戸の中に落ちる電子はほとん
ど無く、大部分の電子はベース層5を通過すると
考えられる。このためn型クラツド層4、ベース
層5、エミツター層6で形成されるトランジスタ
の相互コンダクタンスは非常に大きく、活性層3
への注入電流を大きく変化させることが出来る。
In this example, the electron concentration in the emitter layer 6 and the n-type cladding layer 4 is relatively low (n≦1
×10 17 cm -3 ) and the hole concentration in the base layer 5 is high (p≦1×10 18 cm -3 ), so the n-type cladding layer 4 and emitter layer 6 are all depleted. Therefore, in a state of thermal equilibrium, the energy band structure is as shown in FIG. 2a. Next, when a bias voltage is applied so that the emitter layer 6 becomes negative and the p-type cladding layer 2 becomes positive, the energy band structure shown in FIG. 2b is obtained. Here, if a positive voltage is applied to the base layer 5 with respect to the emitter layer 6, the second
The energy band structure shown in FIG. c is obtained, and the height of the triangular potential barrier with the base layer 5 as the apex becomes small. Therefore, the electron current passing through the base layer 5 from the emitter layer 6 increases. Conversely, when a negative voltage is applied to the base layer 5 with respect to the emitter, the height of the triangular potential barrier with the base layer 5 at its apex increases, so that the electron current decreases. In this way, the height of the triangular potential barrier with the base layer at its apex can be changed by applying the voltage to the base layer 5, so that the electron current injected into the active layer 3 can be controlled. In addition, since the thickness of the base layer 5 is very thin, about twice the mean free path of electrons, very few electrons lose energy due to lattice scattering and fall into the potential wells of the base layer, and most of the electrons is considered to pass through the base layer 5. Therefore, the mutual conductance of the transistor formed by the n-type cladding layer 4, base layer 5, and emitter layer 6 is very large, and the active layer 3
It is possible to greatly change the current injected into the

本実施例においては、p型クラツド層2、活性
層3及びn型クラツド層4から構成される半導体
レーザと、n型クラツド層4、ベース層5及びエ
ミツター層6からなるトランジスタとが層方向に
集積化されているから、通常の半導体レーザと同
様の面積で半導体レーザとトランジスタの集積化
を行なうことが出来る。本実施例の構造を採用す
れば半導体レーザ及びトランジスタを複数個集積
する場合にも、集積度を高く実装することが出来
る。
In this embodiment, a semiconductor laser consisting of a p-type cladding layer 2, an active layer 3 and an n-type cladding layer 4, and a transistor consisting of an n-type cladding layer 4, a base layer 5 and an emitter layer 6 are arranged in the layer direction. Since it is integrated, the semiconductor laser and the transistor can be integrated in the same area as a normal semiconductor laser. If the structure of this embodiment is adopted, even when a plurality of semiconductor lasers and transistors are integrated, it is possible to implement the device with a high degree of integration.

本実施例の製造方法を簡単に説明する。まず最
初にp−GaAs基板1上にp型クラツド層2、活
性層3、n型クラツド層4、ベース層5、エミツ
ター層6、キヤツプ層7を順次結晶成長する。次
にホトエツチング法を用いてストライプ領域11
を形成する。次にn型電極8及びp型電極10を
形成する。次にベース層5へp型電極9をリフト
オフ法等を用いて形成する。このp型電極9の材
料としてはAは、p型のみにオーミツク電極が
取れるから、好ましい材料の一つである。
The manufacturing method of this example will be briefly explained. First, on a p-GaAs substrate 1, a p-type cladding layer 2, an active layer 3, an n-type cladding layer 4, a base layer 5, an emitter layer 6, and a cap layer 7 are successively grown. Next, the stripe area 11 is etched using a photoetching method.
form. Next, an n-type electrode 8 and a p-type electrode 10 are formed. Next, a p-type electrode 9 is formed on the base layer 5 using a lift-off method or the like. As the material for the p-type electrode 9, A is one of the preferable materials since an ohmic electrode can be formed only for the p-type.

なお、本実施例においては、活性層3を単層構
造としていたが、本発明における活性層はこれに
限らず多重量子井戸構造や光ガイド層を伴つた多
重構造であつても良い。又、本実施例ではベース
層に電極を形成していたが、電極を形成せずにベ
ース層へ光を入射させることによつてベース電圧
を変化させる様な光検出器的動作をさせて、発光
半導体素子への注入電流を変化させても本発明は
実現できる。又、本実施例では、発光半導体素子
としてストライプ型半導体レーザを用いたが、こ
れに限らず円形電極を有する発光ダイオード等の
全ての発光半導体素子を含む集積装置に本発明は
適用できる。さらに、本実施例では材料としてA
GaAs/GaAs系を用いたが、これに限らず
InGaAsP/InP系、InGaAAs/InP系等の他の
材料を用いても本発明は実現できる。
In this embodiment, the active layer 3 has a single layer structure, but the active layer in the present invention is not limited to this, and may have a multiple quantum well structure or a multiple structure with a light guide layer. Further, in this example, an electrode was formed on the base layer, but by making light incident on the base layer without forming an electrode, a photodetector-like operation was performed in which the base voltage was changed. The present invention can also be realized by changing the current injected into the light emitting semiconductor element. Further, in this embodiment, a striped semiconductor laser is used as a light emitting semiconductor element, but the present invention is not limited to this and can be applied to an integrated device including any light emitting semiconductor element such as a light emitting diode having a circular electrode. Furthermore, in this example, the material is A.
Although GaAs/GaAs system was used, it is not limited to this.
The present invention can also be realized using other materials such as InGaAsP/InP and InGaAAs/InP.

(発明の効果) 以上説明したように、本発明の構造によれば、
発光半導体素子とトランジスタとが層厚方向に重
なつて配置されているから、通常の発光半導体素
子と同様か面積で発光半導体素子とトランジスタ
との集積化を行なうことが出来る。そこで、本発
明を採用すれば、高集積度に発光半導体素子とト
ランジスタとを実装した集積装置を実現出来る。
(Effects of the Invention) As explained above, according to the structure of the present invention,
Since the light emitting semiconductor element and the transistor are arranged to overlap in the layer thickness direction, the light emitting semiconductor element and the transistor can be integrated in the same area as a normal light emitting semiconductor element. Therefore, by adopting the present invention, it is possible to realize an integrated device in which light emitting semiconductor elements and transistors are mounted with a high degree of integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の断面図、第2図a
〜cはその実施例の主要部のエネルギーバンド構
造図である。 図において、1はp−GaAs基板、2はp型ク
ラツド層、3は活性層、4はn型クラツド層、5
はベース層、6はエミツター層、7はキヤプ層、
8はn型電極、9はp型電極、10はp型電極、
11はストライプ領域、12はフエルミ準位であ
る。
Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2a
-c are energy band structure diagrams of main parts of the example. In the figure, 1 is a p-GaAs substrate, 2 is a p-type cladding layer, 3 is an active layer, 4 is an n-type cladding layer, and 5 is a p-type cladding layer.
is the base layer, 6 is the emitter layer, 7 is the cap layer,
8 is an n-type electrode, 9 is a p-type electrode, 10 is a p-type electrode,
11 is a stripe region, and 12 is a Fermi level.

Claims (1)

【特許請求の範囲】[Claims] 1 主に発光領域となる活性層と、この活性層に
比べ大きな禁制帯幅を有する第1伝導型の第1ク
ラツド層と、前記活性層に比べて大きな禁制帯幅
を有する第2伝導型の第2クラツド層と、この第
2クラツド層に接する第1伝導型のベース層と、
このベース層に接する第2伝導型の第3クラツド
層とを備え、前記活性層が前記第1クラツド層と
前記第2クラツド層とにはさまれており、前記ベ
ース層が前記第2クラツド層と前記第3クラツド
層とにはさまれており、前記ベース層の厚みが電
子の平均自由行程の2倍程度かそれ以下であり、
前記第2クラツド層及び前記第3クラツド層のド
ーピング濃度を前記ベース層のドーピング濃度よ
り低くすることによつて熱平衡状態において前記
第2クラツド層及び前記第3クラツド層のほぼ全
体が空乏化されていることを特徴とする発光半導
体素子を含む集積装置。
1. An active layer that mainly serves as a light-emitting region, a first cladding layer of a first conduction type that has a larger forbidden band width than the active layer, and a first cladding layer of a second conduction type that has a larger forbidden band width than the active layer. a second cladding layer; a first conductivity type base layer in contact with the second cladding layer;
a third cladding layer of a second conductivity type in contact with the base layer, the active layer is sandwiched between the first cladding layer and the second cladding layer, and the base layer is sandwiched between the second cladding layer and the second cladding layer. and the third cladding layer, and the thickness of the base layer is approximately twice the mean free path of electrons or less,
By making the doping concentration of the second cladding layer and the third cladding layer lower than the doping concentration of the base layer, substantially the entire second cladding layer and the third cladding layer are depleted in a thermal equilibrium state. An integrated device including a light emitting semiconductor element.
JP25458385A 1985-11-13 1985-11-13 Integrated device including light emitting semiconductor element Granted JPS62114284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25458385A JPS62114284A (en) 1985-11-13 1985-11-13 Integrated device including light emitting semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25458385A JPS62114284A (en) 1985-11-13 1985-11-13 Integrated device including light emitting semiconductor element

Publications (2)

Publication Number Publication Date
JPS62114284A JPS62114284A (en) 1987-05-26
JPH0519997B2 true JPH0519997B2 (en) 1993-03-18

Family

ID=17267051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25458385A Granted JPS62114284A (en) 1985-11-13 1985-11-13 Integrated device including light emitting semiconductor element

Country Status (1)

Country Link
JP (1) JPS62114284A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4987576A (en) * 1988-11-30 1991-01-22 Siemens Aktiengesellschaft Electrically tunable semiconductor laser with ridge waveguide
JPH0766473A (en) * 1993-08-26 1995-03-10 Matsushita Electric Ind Co Ltd Gas laser oscillator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222987A (en) * 1983-06-01 1984-12-14 Matsushita Electric Ind Co Ltd Compound semiconductor element and manufacture thereof
JPS6091691A (en) * 1983-10-25 1985-05-23 Sharp Corp Semiconductor laser device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59222987A (en) * 1983-06-01 1984-12-14 Matsushita Electric Ind Co Ltd Compound semiconductor element and manufacture thereof
JPS6091691A (en) * 1983-10-25 1985-05-23 Sharp Corp Semiconductor laser device

Also Published As

Publication number Publication date
JPS62114284A (en) 1987-05-26

Similar Documents

Publication Publication Date Title
JP3901792B2 (en) Substrate structure, light emitting device, method for manufacturing substrate structure, and method for manufacturing light emitting device
JP3840276B2 (en) Light emitting device
US5936258A (en) Optical semiconductor memory device and read/write method therefor
US4910571A (en) Optical semiconductor device
JP3323324B2 (en) Light emitting diode and light emitting diode array
JP2531655B2 (en) Semiconductor device
JP2785167B2 (en) Multiple quantum well structure and semiconductor device using multiple quantum well structure
JPH07107949B2 (en) Phased array semiconductor laser
JPH0156548B2 (en)
JPH0738457B2 (en) Opto-electronic bistable element
JP2018152430A (en) Semiconductor laser
JP2710171B2 (en) Surface input / output photoelectric fusion device
JPS61231788A (en) Semiconductor light emitting element
US5994723A (en) Semiconductor element and its method of manufacturing
JPH0519997B2 (en)
US6881978B2 (en) Semiconductor epitaxial structure and semiconductor light-emitting device
US4581743A (en) Semiconductor laser having an inverted layer in a stepped offset portion
JPH0760892B2 (en) pnpn optical thyristor
JP2815165B2 (en) Two-way injection type semiconductor laser device
JPS6356955A (en) Optoelectronic integrated circuit device
JP2876642B2 (en) Quantum well laser
JPS63136591A (en) Seniconductor laser
JPS6257259A (en) Light emitting semiconductor element
JPH02155263A (en) Semiconductor optical memory
JPS62279688A (en) Manufacture of semiconductor laser element