JPH05198461A - Electrode for electrolytic capacitor - Google Patents

Electrode for electrolytic capacitor

Info

Publication number
JPH05198461A
JPH05198461A JP4030046A JP3004692A JPH05198461A JP H05198461 A JPH05198461 A JP H05198461A JP 4030046 A JP4030046 A JP 4030046A JP 3004692 A JP3004692 A JP 3004692A JP H05198461 A JPH05198461 A JP H05198461A
Authority
JP
Japan
Prior art keywords
layer
porous
electrolytic capacitor
electrode
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4030046A
Other languages
Japanese (ja)
Inventor
Setsuko Koura
節子 小浦
Yoshio Kato
喜雄 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP4030046A priority Critical patent/JPH05198461A/en
Publication of JPH05198461A publication Critical patent/JPH05198461A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To obtain an electrode for use with an electrolytic capacitor having a large capacitance and a superior mechanical strength. CONSTITUTION:A porous Al layer is formed on the surface of a conductive substrate by electroplating. The thickness and void volume of the porous Al layer are controlled by plating conditions such as the composition and concentration of a plating bath and a current density. When this layer is to be used as a positive electrode, the layer is further subjected to a conversion treatment or anodizing so that an oxide film serving as a dielectric can be formed. Various types of metal material or conductive ceramics are used as the conductive substrate. Hence, the conductive substrate possesses a mechanical strength, and the use of the porous Al layer is intended to increase a surface area, and hence an electrolytic capacitor with superior characteristics and durability is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電容量が極めて大き
な電解コンデンサを得ることができる電極に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode capable of obtaining an electrolytic capacitor having an extremely large capacitance.

【0002】[0002]

【従来の技術】電気機器,電子機器が種々の分野で使用
されるに伴って、電解コンデンサの需要も高まってきて
いる。そして、電気機器,電子機器の小型化及び高密度
化の傾向に応じて、電解コンデンサについても、単位面
積当りの静電容量が大きく、しかも小型のものであるこ
とが要求されている。
2. Description of the Related Art As electric and electronic devices are used in various fields, the demand for electrolytic capacitors is increasing. In accordance with the trend toward miniaturization and high density of electric devices and electronic devices, electrolytic capacitors are also required to have large electrostatic capacity per unit area and be small in size.

【0003】電解コンデンサの静電容量C(μF)は、
Al箔を電極とした場合、次式で定まることが知られて
いる。 C=εS/d×8.855×10-8 ただし、S:Al箔の表面積 d:Al箔表面に形成されるAl23 質誘電体皮膜の
厚さであって、コンデンサの定格電圧によって定まる。 ε:誘電率であり、Al23 固有のほぼ一定の値(8
〜10)
The capacitance C (μF) of the electrolytic capacitor is
It is known that when an Al foil is used as an electrode, it is determined by the following formula. C = εS / d × 8.855 × 10 −8 , where S: surface area of Al foil d: thickness of Al 2 O 3 -based dielectric film formed on the surface of Al foil, depending on the rated voltage of the capacitor Determined. epsilon: a dielectric constant, Al 2 O 3 unique substantially constant value (8
-10)

【0004】したがって、電解コンデンサの静電容量を
大きくするためには、電極として使用されるAl箔の表
面積を大きくすることが必要である。Al箔の表面積を
大きくする手段としては、電解エッチング,化学エッチ
ング等が従来から採用されている。
Therefore, in order to increase the capacitance of the electrolytic capacitor, it is necessary to increase the surface area of the Al foil used as the electrode. As means for increasing the surface area of the Al foil, electrolytic etching, chemical etching, etc. have been conventionally adopted.

【0005】エッチングされたAl箔の表面には、多数
のエッチピットが形成される。Al箔の表面積が大きく
する上で、エッチピットの密度を高めることが有効であ
る。しかし、密度上昇に伴って個々のエッチピットが浅
くなり、Al箔中心部にエッチングされない部分が残
る。そのため、エッチピットの高密度化によってAl箔
の表面積を大きくすることには限界がある。また、エッ
チング条件を多段階に変化させ、個々のエッチピットを
深くした場合、密度が高いことと相俟つてAl箔の機械
的強度が著しく低下する。
A large number of etch pits are formed on the surface of the etched Al foil. Increasing the density of etch pits is effective in increasing the surface area of the Al foil. However, as the density increases, the individual etch pits become shallower, leaving an unetched portion at the center of the Al foil. Therefore, there is a limit in increasing the surface area of the Al foil by increasing the density of the etch pits. In addition, when the etching conditions are changed in multiple steps to deepen the individual etch pits, the mechanical strength of the Al foil is significantly reduced in combination with the high density.

【0006】そこで、特開平2−61041号公報で
は、塩酸に添加する硫酸,蓚酸,リン酸等の添加量を変
えてエッチングを少なくとも3段階で行うことが提案さ
れている。これによって、エッチピットの密度が上昇し
てAl箔の表面積が大きくなると共に、未エッチング部
分がAl箔の中心部に残り必要な機械的強度が確保され
る。
Therefore, Japanese Patent Application Laid-Open No. 2-61041 proposes that etching is performed in at least three stages by changing the addition amounts of sulfuric acid, oxalic acid, phosphoric acid and the like added to hydrochloric acid. As a result, the density of the etch pits increases and the surface area of the Al foil increases, and the unetched portion remains in the center of the Al foil to secure the required mechanical strength.

【0007】[0007]

【発明が解決しようとする課題】エッチングによってA
l箔の表面積を上げるとき、不純物元素が晶出したAl
箔では晶出物とマトリックスとの間でエッチング条件が
異なり、抜け落ち,不規則なエッチピットの発生等の欠
陥が発生し易い。これらの欠陥を回避するためには、高
純度のAl箔を使用することが必要となる。
By etching, A
l When increasing the surface area of the foil, Al from which impurity elements were crystallized
In the foil, etching conditions are different between the crystallized substance and the matrix, and defects such as falling out and generation of irregular etch pits are likely to occur. In order to avoid these defects, it is necessary to use high-purity Al foil.

【0008】また、エッチングによってAl箔から溶出
したAlは、エッチング液と共に廃液として処分され
る。そこで、多量の電力を消費して生産されたAlを回
収し、且つ環境に対し悪影響を与えないように、廃液か
ら有価成分を抽出する処理が必要とされる。この点、前
掲した特開平2−61041号公報で紹介されているよ
うな多段階エッチングでは、生産工程が極めて複雑とな
り、またエッチング液の管理や廃液処理等に面倒な操作
が必要とされる等の生産性を阻害する要因が大きくな
る。
Further, Al eluted from the Al foil by etching is disposed as a waste liquid together with the etching liquid. Therefore, a process of recovering Al produced by consuming a large amount of electric power and extracting a valuable component from the waste liquid is required so as not to adversely affect the environment. In this respect, in the multi-stage etching as introduced in the above-mentioned Japanese Patent Laid-Open No. 2-61041, the production process becomes extremely complicated, and a troublesome operation is required for the management of the etching liquid and the waste liquid treatment. Factors that hinder the productivity of

【0009】他方、エッチングによらない電解コンデン
サとしては、Al−Ti合金の多孔質焼結体を電解コン
デンサ用陽極の基体とすることが特開昭58−1452
1号公報で紹介されている。しかし、焼結法であるた
め、陽極を薄くすることには限界があり、また機械的な
強度も十分でない。
On the other hand, as an electrolytic capacitor which does not rely on etching, a porous sintered body of an Al--Ti alloy is used as a base of an anode for an electrolytic capacitor.
It is introduced in the first publication. However, since it is a sintering method, there is a limit to thinning the anode, and the mechanical strength is not sufficient.

【0010】本発明は、このような問題を解消すべく案
出されたものであり、機械的強度をもたせた基体に多孔
質のAl層を電気めっき法で形成することによって、表
面積が極めて大きく、しかも所定の強度を備えた電解コ
ンデンサ用電極を提供することを目的とする。
The present invention has been devised in order to solve such a problem, and a porous Al layer is formed on a substrate having mechanical strength by electroplating, so that the surface area is extremely large. Moreover, it is an object of the present invention to provide an electrode for an electrolytic capacitor having a predetermined strength.

【0011】[0011]

【課題を解決するための手段】本発明の電解コンデンサ
用電極は、その目的を達成するため、導電性基体の表面
に電気めっきにより多孔質のAl層が形成されているこ
とを特徴とする。この電極を陽極とする場合には、更に
Al層を化成処理又は陽極処理し、誘電体皮膜として働
く酸化皮膜を形成する。
In order to achieve the object, the electrolytic capacitor electrode of the present invention is characterized in that a porous Al layer is formed on the surface of a conductive substrate by electroplating. When this electrode is used as an anode, the Al layer is further subjected to chemical conversion treatment or anodization to form an oxide film that functions as a dielectric film.

【0012】導電性基体としては、Cu,Fe,Al,
Ni,鋼等を始めとして各種の金属材料や導電性のセラ
ミックス材料が使用される。また、金属発泡体等の多孔
質導電材料を導電性基体として使用することもできる。
As the conductive substrate, Cu, Fe, Al,
Various metal materials such as Ni and steel, and conductive ceramic materials are used. Further, a porous conductive material such as a metal foam can also be used as the conductive substrate.

【0013】Al層は、たとえば非水系のめっき浴を使
用した電気めっきによって、導電性基体の表面に形成さ
れる。電気Alめっきとしては、本出願人が紹介した特
開昭62−70592号公報,特開平1−272790
号公報を始めとして各種の方法が採用される。
The Al layer is formed on the surface of the conductive substrate by electroplating using a nonaqueous plating bath, for example. As for electric Al plating, JP-A-62-70592 and JP-A-1-272790 introduced by the applicant of the present invention
Various methods are adopted, starting with the publication of the publication.

【0014】[0014]

【作 用】電気めっきによるとき、導電性基体の表面に
優れた密着性でAl層が一様に形成される。たとえば、
オープンセル型の多孔質基体に電気めっきを施した場合
にあっても、ポアの内面に対してもAl層が析出する。
析出したAlは、極めて高純度なものであり、電極とし
て好適な性質を備えている。
[Operation] When electroplating, the Al layer is uniformly formed on the surface of the conductive substrate with excellent adhesion. For example,
Even when the open cell type porous substrate is electroplated, the Al layer is deposited also on the inner surface of the pore.
The deposited Al is of extremely high purity and has suitable properties as an electrode.

【0015】Al層は、導電性基体の表面から垂直方向
にデンドライト状の結晶として成長する。この結晶成長
は、めっき条件を調節することによって制御することが
できる。たとえば、電流密度を小さくしてめっき浴から
Alの析出を抑えるとき、導電性基体の表面において核
発生よりも結晶成長が早くなる。その結果、粒状或いは
海綿状のAlが析出し、多孔質のAl層が形成される。
The Al layer grows as dendrite-like crystals in the vertical direction from the surface of the conductive substrate. This crystal growth can be controlled by adjusting the plating conditions. For example, when the current density is reduced to suppress the precipitation of Al from the plating bath, crystal growth is faster than nucleation on the surface of the conductive substrate. As a result, granular or spongy Al is deposited and a porous Al layer is formed.

【0016】得られたAl層は、結晶レベルで表面形状
が制御されたものであるため、Al箔をエッチングした
場合に比較して格段に大きな表面積をもったものとな
る。したがって、電解コンデンサとして使用したとき、
大きな静電容量が期待される。他方、Al層が形成され
る導電性基体には、電気めっきによる物性変化がなく、
当初の機械的性質が維持される。その結果、静電容量が
大きく且つ機械強度に優れた電解コンデンサが得られ
る。
Since the obtained Al layer has a surface shape controlled at the crystal level, it has a remarkably large surface area as compared with the case where the Al foil is etched. Therefore, when used as an electrolytic capacitor,
Large capacitance is expected. On the other hand, the conductive substrate on which the Al layer is formed has no change in physical properties due to electroplating,
The original mechanical properties are maintained. As a result, an electrolytic capacitor having a large capacitance and excellent mechanical strength can be obtained.

【0017】[0017]

【実施例】圧延によって製造した厚み20μmの低純度
Al箔から、20mm×50mmの試験片を切り出し
た。試験片をブラスト処理し、その表面を活性化させた
後、電流密度を変えながら次の条件下で電気めっきを施
した。
Example A 20 mm × 50 mm test piece was cut out from a low-purity Al foil having a thickness of 20 μm manufactured by rolling. After blasting the test piece and activating its surface, it was electroplated under the following conditions while changing the current density.

【0018】 電気アルミニウムめっきの条件 めっき浴の組成:AlCl3 906g/l 1−エチル−3−メチルイミダゾリウムクロリド 48
4g/l フェナントロリン 1.8g/l めっき浴の温度:60℃
Conditions for electroaluminum plating Composition of plating bath: AlCl 3 906 g / l 1-ethyl-3-methylimidazolium chloride 48
4g / l phenanthroline 1.8g / l Plating bath temperature: 60 ° C

【0019】めっき浴から試験片を引き上げ、試験片表
面に形成されたAl層の膜厚,密着性等を調査した。何
れの試験片においても、Al層は、実質的に均一な厚み
をもち、R=0.5mm,曲げ角度150度の曲げ試験
を行った後でも、下地のAl箔からAl層の剥離が検出
されず、良好な密着性をもっていることが判った。
The test piece was pulled up from the plating bath, and the film thickness, adhesion, etc. of the Al layer formed on the surface of the test piece were investigated. In any of the test pieces, the Al layer has a substantially uniform thickness, and even after a bending test with R = 0.5 mm and a bending angle of 150 degrees, peeling of the Al layer from the underlying Al foil is detected. However, it was found that the film had good adhesion.

【0020】次いで、Al層の表面積を、LCRメータ
によって測定した。測定結果をめっき時の電流密度との
関係で表したところ、表1に示す関係が両者の間に成立
していることが判った。なお、表1におけるAl層の表
面積は、見掛けの表面積に対する真の表面積の比率で表
した。
Next, the surface area of the Al layer was measured by an LCR meter. When the measurement result was expressed in relation to the current density during plating, it was found that the relation shown in Table 1 was established between the two. The surface area of the Al layer in Table 1 is represented by the ratio of the true surface area to the apparent surface area.

【0021】[0021]

【表1】 [Table 1]

【0022】表1から明らかなように、電流密度を小さ
くするほど、形成されたAl層の表面積が大きくなって
いることが判る。しかし、電流密度が小さくなるに伴っ
て、所定厚さをもつAl層を形成するためのめっき時間
が長くなる。そこで、表面積及びめっき時間の双方を勘
案して、表面積が30〜40倍となるように電流密度を
定めることが好ましい。
As is clear from Table 1, the surface area of the formed Al layer increases as the current density decreases. However, as the current density decreases, the plating time for forming the Al layer having a predetermined thickness becomes longer. Therefore, it is preferable to determine the current density so that the surface area is 30 to 40 times, taking both the surface area and the plating time into consideration.

【0023】Al層が形成された試験番号3の試験片に
対して、濃度5%のリン酸水溶液中で電圧100Vを印
加する陽極処理を施した。処理後の試験片について、静
電容量,誘電損失及び直流電圧200V印加時の漏れ電
流を測定した。測定結果を、表2に示す。なお、表2に
は、厚み100μmのAl箔をエッチングして表面積を
見掛け面積の30倍に調整したものを比較例として掲げ
た。
The test piece of Test No. 3 on which the Al layer was formed was anodized by applying a voltage of 100 V in a phosphoric acid aqueous solution having a concentration of 5%. With respect to the test piece after the treatment, the capacitance, the dielectric loss, and the leakage current when a DC voltage of 200 V was applied were measured. The measurement results are shown in Table 2. In Table 2, a comparative example was prepared by etching an Al foil having a thickness of 100 μm and adjusting the surface area to 30 times the apparent area.

【0024】[0024]

【表2】 [Table 2]

【0025】この対比から明らかなように、本発明に従
って電気めっきで形成した多孔質Al層を電極とするも
のにあっては、静電容量,誘電損失及び漏れ電流の何れ
においてもAl箔表面をエッチングで多孔質にしたもの
に比較して優れていることが判る。
As is clear from this comparison, in the case where the porous Al layer formed by electroplating according to the present invention is used as an electrode, the surface of the Al foil is not affected by any of capacitance, dielectric loss and leakage current. It can be seen that it is superior to the one made porous by etching.

【0026】更に、表2に掲げたものと同じ試験片に1
00gの荷重をかけ、R=1.0mmで曲げ角度90度
に折り曲げ、耐折強度を調べた。調査結果を、表3に示
す。なお、耐折強度は、試験片が破断するまでの折曲げ
回数で表した。
In addition, the same test pieces as those listed in Table 2
A load of 00 g was applied, and bending was performed at a bending angle of 90 degrees with R = 1.0 mm, and the folding strength was examined. The survey results are shown in Table 3. The folding resistance was represented by the number of times of bending until the test piece broke.

【0027】[0027]

【表3】 [Table 3]

【0028】表3から明らかなように、電気めっきで形
成した多孔質Al層を電極とするものは、格段に優れた
機械的強度をもつことが判る。これは、電気Alめっき
時に何ら物性的な影響を受けることなく、基体のAl箔
が当初の特性を維持していることに由来するものであ
る。
As is clear from Table 3, the electrode using the porous Al layer formed by electroplating has remarkably excellent mechanical strength. This is because the Al foil of the base body maintains the initial characteristics without being affected by any physical property during the electric Al plating.

【0029】なお、以上の実施例においては、電流密度
の調整によって多孔質Al層の空隙率を制御する場合を
説明した。しかし、本発明は、これに拘束されるもので
はなく、めっき浴の組成,濃度,温度,撹拌等の条件に
よって多孔質Al層の空隙率を制御することもできる。
何れの場合においても、Al層を多孔質にする限り、電
解コンデンサ用電極として要求される優れた特性をもつ
ものが得られる。
In the above embodiments, the case where the porosity of the porous Al layer is controlled by adjusting the current density has been described. However, the present invention is not limited to this, and the porosity of the porous Al layer can be controlled by the conditions such as the composition, concentration, temperature and stirring of the plating bath.
In any case, as long as the Al layer is made porous, one having excellent characteristics required as an electrode for an electrolytic capacitor can be obtained.

【0030】[0030]

【発明の効果】以上に説明したように、本発明において
は、導電性基体の上に電気めっきした多孔質Al層によ
って表面積の増大を図っているため、静電容量が大きく
且つ機械強度が優れた電解コンデンサ用電極が得られ
る。そして、多孔質Al層の厚みや空隙率がめっき条件
によって制御されるため、要求に応じた特性を付与する
ことができ、高性能化,小型化に対応した電解コンデン
サとなる。しかも、Al箔をエッチングする場合にみら
れた多段階処理や廃液処理等のように工程の複雑化,付
帯設備の設置等の問題を招くことなく、基本的には電気
Alめっき装置だけの簡単な設備で製造することが可能
となる。
As described above, in the present invention, since the surface area is increased by the porous Al layer electroplated on the conductive substrate, the electrostatic capacity is large and the mechanical strength is excellent. An electrode for an electrolytic capacitor is obtained. Then, since the thickness and porosity of the porous Al layer are controlled by the plating conditions, it is possible to provide the characteristics required, and it is possible to provide an electrolytic capacitor that is compatible with higher performance and smaller size. Moreover, it does not cause problems such as multi-step processing and waste solution processing that are observed when etching Al foil, such as complication of processes and installation of incidental equipment. It is possible to manufacture with various equipment.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性基体の表面に電気めっきによって
多孔質のAl層が形成されていることを特徴とする電解
コンデンサ用電極。
1. An electrode for an electrolytic capacitor, wherein a porous Al layer is formed on the surface of a conductive substrate by electroplating.
【請求項2】 請求項1記載の導電性基体が多孔質であ
ることを特徴とする電解コンデンサ用電極。
2. An electrode for an electrolytic capacitor, wherein the conductive substrate according to claim 1 is porous.
JP4030046A 1992-01-21 1992-01-21 Electrode for electrolytic capacitor Pending JPH05198461A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4030046A JPH05198461A (en) 1992-01-21 1992-01-21 Electrode for electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4030046A JPH05198461A (en) 1992-01-21 1992-01-21 Electrode for electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05198461A true JPH05198461A (en) 1993-08-06

Family

ID=12292882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4030046A Pending JPH05198461A (en) 1992-01-21 1992-01-21 Electrode for electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05198461A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245066A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Electrode material for electrolytic capacitor
US9847183B2 (en) 2011-01-06 2017-12-19 Sungkyunkwan University Foundation For Corporate Collaboration Nano-porous electrode for super capacitor and manufacturing method thereof
JP2023517091A (en) * 2020-03-11 2023-04-21 スリーディー グラス ソリューションズ,インク Ultra high surface area integrated capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010245066A (en) * 2009-04-01 2010-10-28 Nippon Chemicon Corp Electrode material for electrolytic capacitor
US9847183B2 (en) 2011-01-06 2017-12-19 Sungkyunkwan University Foundation For Corporate Collaboration Nano-porous electrode for super capacitor and manufacturing method thereof
JP2023517091A (en) * 2020-03-11 2023-04-21 スリーディー グラス ソリューションズ,インク Ultra high surface area integrated capacitor

Similar Documents

Publication Publication Date Title
CA1099092A (en) Electrically conductive and corrosion resistant current collector and/or container
JP4561428B2 (en) Porous valve metal thin film, manufacturing method thereof, and thin film capacitor
KR101251101B1 (en) Porous valve metal thin film, method for production thereof and thin film capacitor
KR20030051734A (en) Tantalum and Tantalum Nitride Powder Mixtures for Electrolytic Capacitors Substrates
JPH06505829A (en) Anode for porous electrolysis
EP1374262B1 (en) Capacitor substrates made of refractory metal nitrides
US4198278A (en) Method for producing anode aluminum foils for electrolytic condensers
JPH05198461A (en) Electrode for electrolytic capacitor
JP4985582B2 (en) Method for producing tantalum porous membrane and method for producing tantalum porous electrode foil
JPS59167009A (en) Method of producing electrode material for electrolytic condenser
JP5201109B2 (en) Method for producing porous electrode for electrolytic capacitor
JP2022532284A (en) Electrode structure and its manufacturing method
JP2008252019A (en) Method for manufacturing thin-film capacitor
JPH059710A (en) Production of aluminum electrode for electrolytic capacitor
JPH1154382A (en) Aluminum foil for electrolytic capacitor having high electrostatic capacity and manufacture of aluminum foil for the electrolytic capacitor
JP2009152273A (en) Porous electrode for electrolytic capacitor, and manufacturing method thereof
JPH04162707A (en) Material of electrode for electrolytic capacitor and manufacture thereof
JP3473683B2 (en) Aluminum foil for electrolytic capacitors
JP2828738B2 (en) Solid electrolytic capacitors
JPH07297089A (en) Aluminum foil for electrolytic capacitor electrode and its manufacturing method
JPH079870B2 (en) Method for manufacturing aluminum electrode for electrolytic capacitor
SU1129661A1 (en) Process for machining aluminium foil for capacitors with oxide dielectric
JPS63306614A (en) Manufacture of aluminum electrode for electrolytic capacitor
JPH06267803A (en) Electrode material for capacitor
CN116641005A (en) Method for improving specific volume of corrosion foil

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021112