JPH05198388A - Plasma treating device - Google Patents

Plasma treating device

Info

Publication number
JPH05198388A
JPH05198388A JP4008200A JP820092A JPH05198388A JP H05198388 A JPH05198388 A JP H05198388A JP 4008200 A JP4008200 A JP 4008200A JP 820092 A JP820092 A JP 820092A JP H05198388 A JPH05198388 A JP H05198388A
Authority
JP
Japan
Prior art keywords
cavity resonator
mode
processing chamber
processing apparatus
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4008200A
Other languages
Japanese (ja)
Other versions
JP3123175B2 (en
Inventor
Hitoshi Tamura
仁 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04008200A priority Critical patent/JP3123175B2/en
Publication of JPH05198388A publication Critical patent/JPH05198388A/en
Application granted granted Critical
Publication of JP3123175B2 publication Critical patent/JP3123175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves

Abstract

PURPOSE:To excite only a desired resonant posture and provide an uniform plasma treatment by providing a filter for giving a loss to an other resonant posture in a cavity resonator so that the electromagnetic field in the resonator has only the desired resonant posture. CONSTITUTION:The microwave from a microwave generating source 5 is guided to a cylindrical cavity resonator 7 by a square waveguide 6. The resonator 7 is formed of a highly conductive metal, and the inner surface is plated with silver. A slot plate 3 has a connecting hole 8, and a dielectric part 10 for guiding microwaves is placed on the treating chamber side of the slot plate 3. A mode filter 9 of the highly conductive metal plated with silver is provided in the inner part of the resonator. Unnecessary modes which distribute the uniformity of plasma are suppressed by the filter 9, and only a desired mode is excited. Thus, unnecessary resonant postures are suppressed, the resonant state can be made single, and an uniform plasma treatment can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はVLSI等のプラズマ処
理を行うエッチング装置、CVD装置、アッシング装置
等のプラズマ処理装置のうちでマイクロ波を用いてプラ
ズマを発生させるプラズマ処理装置にかかわり、容易に
均一なプラズマ処理を得られるプラズマ処理装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing apparatus for generating plasma using microwaves among plasma processing apparatuses such as an etching apparatus for performing plasma processing of VLSI and the like, a CVD apparatus, an ashing apparatus, etc. The present invention relates to a plasma processing apparatus that can obtain uniform plasma processing.

【0002】[0002]

【従来の技術】マイクロ波を用いたプラズマ処理装置と
して、特開昭63−103088に示すものがある。こ
の装置はマイクロ波電力を空洞共振器に閉じ込めること
で、マイクロ波電界を高め、プラズマを効率よく発生さ
せるとしている。
2. Description of the Related Art As a plasma processing apparatus using a microwave, there is one shown in Japanese Patent Laid-Open No. 63-103088. This device is said to confine microwave power to a cavity resonator to enhance the microwave electric field and efficiently generate plasma.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、空
洞共振器にマイクロ波を供給する導波路の接続位置、処
理室にマイクロ波を放射するアンテナの構造などの影響
で共振器内の電磁界が乱され、均一にマイクロ波を処理
室に放射できない問題があった。そのため処理室に発生
するプラズマが不均一となり、基板に対する均一な処理
が困難となる。
In the above prior art, the electromagnetic field in the resonator is affected by the connection position of the waveguide for supplying the microwave to the cavity resonator and the structure of the antenna that radiates the microwave into the processing chamber. However, there was a problem that the microwave was not uniformly radiated to the processing chamber. Therefore, the plasma generated in the processing chamber becomes non-uniform, making it difficult to perform uniform processing on the substrate.

【0004】[0004]

【課題を解決するための手段】上記の問題を解決するに
は、空洞共振器内の電磁界を所定の共振姿態のみが発生
し、他の共振姿態が混入しないようにすればよい。
In order to solve the above-mentioned problems, it is sufficient to prevent the electromagnetic field in the cavity resonator from generating a predetermined resonance mode and mixing other resonance modes.

【0005】[0005]

【作用】空洞共振器内の共振姿態は共振器壁面で電界の
接線成分がないという境界条件のもとでヘルムホルツの
方程式を解けば理論的に求めることができる。空洞共振
器の形状が円柱や直方体のように幾何学的に単純な構造
の場合、共振姿態は解析的に容易に求めることができ
る。そのため空洞共振器としては円柱や直方体のものが
用いられることが多い。
The resonance mode in the cavity resonator can be theoretically obtained by solving the Helmholtz equation under the boundary condition that there is no tangential component of the electric field on the cavity wall surface. When the shape of the cavity resonator is a geometrically simple structure such as a cylinder or a rectangular parallelepiped, the resonance mode can be easily obtained analytically. Therefore, a columnar or rectangular parallelepiped is often used as the cavity resonator.

【0006】しかしプラズマ処理装置に用いられる実際
の空洞共振器では電磁界の励振用のアンテナや処理室に
マイクロ波を放射するためのアンテナなどを設ける必要
があり、完全な円柱や直方体にすることは不可能であ
る。また加工精度などの影響もあり、実際の共振姿態は
理論的に予想したものと異なる場合がある。この違いは
所望の共振姿態以外の他の共振姿態が混入したものと考
えることができる。そこで所望の共振姿態のみを励振す
るため他の共振姿態に対して損失を与えるフィルタを空
洞共振器内に装荷すればよい。
However, in an actual cavity resonator used in a plasma processing apparatus, it is necessary to provide an antenna for exciting an electromagnetic field and an antenna for radiating a microwave in a processing chamber, and a perfect cylinder or a rectangular parallelepiped is required. Is impossible. In addition, the actual resonance state may differ from the theoretically expected one due to the influence of processing accuracy. This difference can be considered to be a mixture of resonance modes other than the desired resonance mode. Therefore, in order to excite only the desired resonance mode, a filter that gives a loss to other resonance modes may be loaded in the cavity resonator.

【0007】フィルタの構成方法について以下で説明す
る。一般に電界は金属などの導電率の高い材質の表面で
接線成分を持たず、表面にたいして垂直となる。マイク
ロ波などの電界が存在する空間に導電率の高い金属を装
荷すると金属表面に対して電界が垂直となるように電界
が変化することになる。しかし電界にたいして表面が垂
直となるように導電率の高い金属を装荷した場合にはも
との電界分布に変化は起きない。そこで、空洞共振器内
で所望の共振姿態のみを励振するためには、導電率の高
い材料を所望の共振姿態の電界にたいしてその表面が垂
直となるように装荷すればよい。装荷した金属表面に平
行な電界の成分を持つ共振姿態は空洞共振器内に存在で
きなくなり、装荷した金属はフィルタとしての役割を果
たす。
The method of constructing the filter will be described below. In general, the electric field has no tangential component on the surface of a material having high conductivity such as metal and is perpendicular to the surface. When a metal having a high conductivity is loaded in a space where an electric field such as a microwave exists, the electric field changes so that the electric field is perpendicular to the metal surface. However, when a metal having high conductivity is loaded so that the surface is perpendicular to the electric field, the original electric field distribution does not change. Therefore, in order to excite only the desired resonance mode in the cavity resonator, a material having high conductivity may be loaded so that its surface is perpendicular to the electric field of the desired resonance mode. Resonant states with an electric field component parallel to the loaded metal surface can no longer exist in the cavity, and the loaded metal acts as a filter.

【0008】また所望の共振姿態に電界がゼロとなる位
置が存在する場合には、この位置に導電率の高い金属を
装荷してもよい。共振姿態として前述のように電界が金
属表面で表面にたいして垂直となるので、この境界条件
を満足しない共振姿態は空洞共振器内に存在できず、所
望の共振姿態のみを励振することができる。
When there is a position where the electric field is zero in the desired resonance state, a metal having high conductivity may be loaded at this position. As described above, since the electric field is a metal surface which is perpendicular to the surface as described above, a resonance mode that does not satisfy this boundary condition cannot exist in the cavity resonator, and only the desired resonance mode can be excited.

【0009】[0009]

【実施例】図1を用いて本発明の第1の実施例を説明す
る。図1に本発明を用いたエッチング装置を示す。処理
室1内には被処理基板2がスロット板3に対向して設置
されている。被処理基板2には例えば発振周波数13.
56MHzの高周波電源4が接続されており、処理に適
したバイアス電圧を加えることができる。処理室1は図
示しない処理ガスの導入系、及び排気系により処理に適
した所定の圧力に保持されている。マイクロ波発生源5
からの例えば周波数2.45GHzのマイクロ波は方形
導波管6により伝送され、側面から空洞共振器7に導入
される。空洞共振器7は円柱形で、共振モードとしてT
030モードで共振するものを用いている。図9に円柱
空洞共振器のTM030モードの半径方向の電界分布を示
す。電界ベクトル18は空洞共振器7の中心軸に平行な
成分のみを持ち、中心軸の方向に電磁界の強さは変化し
ない。またTM030モードの電磁界は中心軸にたいして
回転対称となっており、円周方向に電磁界の強さは変化
しない。円柱空洞共振器
EXAMPLE A first example of the present invention will be described with reference to FIG. FIG. 1 shows an etching apparatus using the present invention. The substrate 2 to be processed is installed in the processing chamber 1 so as to face the slot plate 3. The substrate 2 to be processed has, for example, an oscillation frequency of 13.
A 56 MHz high frequency power source 4 is connected, and a bias voltage suitable for processing can be applied. The processing chamber 1 is maintained at a predetermined pressure suitable for processing by an unillustrated processing gas introduction system and an exhaust system. Microwave source 5
A microwave having a frequency of 2.45 GHz, for example, is transmitted by the rectangular waveguide 6 and introduced into the cavity resonator 7 from the side surface. The cavity resonator 7 has a cylindrical shape and has a resonance mode of T
The one that resonates in the M 030 mode is used. FIG. 9 shows a radial electric field distribution in the TM 030 mode of the cylindrical cavity resonator. The electric field vector 18 has only a component parallel to the center axis of the cavity resonator 7, and the strength of the electromagnetic field does not change in the direction of the center axis. The electromagnetic field in the TM 030 mode is rotationally symmetrical with respect to the central axis, and the strength of the electromagnetic field does not change in the circumferential direction. Cylindrical cavity

【0010】の中心軸をz軸とした場合のTM030モー
ドの電磁界は
When the central axis of z is the z-axis, the electromagnetic field of TM 030 mode is

【数1】のようになる。It becomes like [Equation 1].

【0011】[0011]

【数1】 0 :0次ベッセル関数 j :虚数単位 J1 :1次ベッセル関数 ε :真空の誘電率 ω :マイクロ波の角周波数 kc=ρ03/a=ω/c c :光速(=3.0×108m/s) a :空洞共振器の半径 ρ03=8.654 またマイクロ波の周波数が例えば2.45GHzの場合
半径46.8mmおよび半径107.5mmの位置に電
界がゼロとなる位置が存在し、空洞共振器7の半径は1
68.5mmとなる。空洞共振器7は導電率の高い金属
例えば銅やアルミニウムなどでできており、損失をさら
に低減するために内面に銀めっきが施されている。スロ
ット板3には結合孔8が設けられている。一般に結合孔
8はスロットアンテナを構成するように設けると効率よ
くマイクロ波を放射することができる。スロットアンテ
ナはスロット板3の表面をマイクロ波によって流れる表
面電流に直角に設けることが望ましいことが知られてい
る。表面電流はマイクロ波の磁束密度と垂直に流れる。
従ってスロットはマイクロ波の磁束密度と平行に設ける
ことが望ましい。そのため結合孔8は空洞共振器7の所
望の共振姿態がTM030モードであることを考慮して図
13に示すように周方向に細長い形状をしている。ただ
し中央の結合孔8のみは簡単のため円形とした。スロッ
ト板3の処理室側には処理室1を所定の圧力に保ちなが
らマイクロ波を導入するための誘電体部品10が設置さ
れている。誘電体部品10の材質は例えば石英などのマ
イクロ波にたいして損失の小さい材料が用いられてい
る。空洞共振器7の内部には導電率の高い金属例えば銅
やアルミニウムなどでできたモードフィルタ9が装荷さ
れている。モードフィルタ9の構造を図2から図8に示
す。モードフィルタ9は空洞共振器7の内面と同様にマ
イクロ波の損失を低減するために銀めっきされている。
モードフィルタ9によりプラズマの均一性を乱す不要な
モードは抑制され、所望のTM030モードのみが励振さ
れる。不要な共振姿態が抑制されるため、プロセス条件
を変更しても被処理基板2にたいして均一なプラズマ処
理が容易に得られる。処理ガスの変更により第1の実施
例はCVD装置、アッシング装置等のプラズマ処理装置
として用いることができる。
[Equation 1] J 0 : 0th-order Bessel function j: Imaginary unit J 1 : 1st-order Bessel function ε: Vacuum permittivity ω: Microwave angular frequency k c = ρ 03 / a = ω / c c: Speed of light (= 3.0 × 10 8 m / s) a: radius of cavity resonator ρ 03 = 8.654 When the microwave frequency is, for example, 2.45 GHz, a position where the electric field becomes zero at a radius of 46.8 mm and a radius of 107.5 mm. And the radius of the cavity 7 is 1
It becomes 68.5 mm. The cavity resonator 7 is made of a metal having high conductivity, such as copper or aluminum, and has an inner surface plated with silver to further reduce loss. The slot plate 3 is provided with a coupling hole 8. Generally, when the coupling hole 8 is provided so as to form a slot antenna, microwaves can be efficiently radiated. It is known that it is desirable to provide the slot antenna on the surface of the slot plate 3 at right angles to the surface current flowing by the microwave. The surface current flows perpendicular to the magnetic flux density of the microwave.
Therefore, it is desirable that the slots be provided in parallel with the magnetic flux density of the microwave. Therefore, the coupling hole 8 has an elongated shape in the circumferential direction as shown in FIG. 13 considering that the desired resonance mode of the cavity resonator 7 is the TM 030 mode. However, only the central coupling hole 8 is circular for simplicity. On the processing chamber side of the slot plate 3, a dielectric component 10 for introducing a microwave while keeping the processing chamber 1 at a predetermined pressure is installed. The material of the dielectric component 10 is, for example, a material having a small loss with respect to microwaves such as quartz. A mode filter 9 made of a highly conductive metal such as copper or aluminum is loaded inside the cavity resonator 7. The structure of the mode filter 9 is shown in FIGS. The mode filter 9 is plated with silver in order to reduce the loss of microwaves, like the inner surface of the cavity resonator 7.
The mode filter 9 suppresses unnecessary modes that disturb the uniformity of plasma, and excites only the desired TM 030 mode. Since the unnecessary resonance state is suppressed, uniform plasma processing can be easily obtained on the substrate 2 to be processed even if the process conditions are changed. By changing the processing gas, the first embodiment can be used as a plasma processing apparatus such as a CVD apparatus and an ashing apparatus.

【0012】円柱空洞共振器のTM030モードのみを励
振するためのモードフィルタの構造を図2から図8に示
す。以下各モードフィルタについて説明する。図2、お
よび図3に示すモードフィルタは薄い金属板により作ら
れた円筒11に電磁界結合用の結合孔12を複数個設け
たものである。図2は上面図、図3は側面図を示す。円
筒11は導電率の高い金属例えば銅やアルミニウムなど
でできており、その表面にはさらに導電率の高い例えば
銀などでめっきが施され、マイクロ波の損失を低減して
いる。円筒11はその中心軸が空洞共振器7の中心軸と
一致するように共振器内に設置される。円筒11の半径
は円筒表面がTM030モードの電界がゼロとなる位置に
来るように定められる。マイクロ波の周波数が2.45
GHzの場合、円筒の半径は46.8mmまたは10
7.5mmとなる。第1の実施例では空洞共振器7の内
部に半径46.8mmおよび半径107.5mmのモー
ドフィルタをともに装荷した例を示したが、いづれか一
方のみを装荷してもよい。また結合孔12の形状は電磁
界の結合を強めるためにはマイクロ波の磁界と平行にス
ロット状に設置することが望ましいが、所望の結合度に
応じて任意に設定してよい。結合の強弱を制御すれば、
円筒内外の電磁界を制御することができる。すなわち結
合を弱めれば電磁界を円筒外部から励振する場合、円筒
内部の電磁界は円筒外部の電磁界と比較して弱くなり、
スロット板3の各結合孔12から放射されるマイクロ波
の強度を調節することができる。そのため発生するプラ
ズマの分布を制御でき、均一なプラズマ処理をさらに容
易に行うことができる。
The structure of the mode filter for exciting only the TM 030 mode of the cylindrical cavity resonator is shown in FIGS. 2 to 8. Each mode filter will be described below. The mode filter shown in FIGS. 2 and 3 is formed by providing a plurality of coupling holes 12 for electromagnetic field coupling in a cylinder 11 made of a thin metal plate. 2 shows a top view and FIG. 3 shows a side view. The cylinder 11 is made of a metal having a high conductivity, such as copper or aluminum, and the surface thereof is plated with silver having a higher conductivity, for example, to reduce microwave loss. The cylinder 11 is installed in the resonator so that its central axis coincides with the central axis of the cavity resonator 7. The radius of the cylinder 11 is determined so that the surface of the cylinder 11 is at a position where the electric field of TM 030 mode becomes zero. Microwave frequency is 2.45
For GHz, the radius of the cylinder is 46.8 mm or 10
It becomes 7.5 mm. In the first embodiment, an example in which a mode filter having a radius of 46.8 mm and a mode filter having a radius of 107.5 mm is both loaded inside the cavity resonator 7 is shown, but either one may be loaded. Further, the shape of the coupling hole 12 is preferably installed in a slot shape in parallel with the magnetic field of the microwave in order to enhance the coupling of the electromagnetic field, but may be arbitrarily set according to the desired degree of coupling. If you control the strength of the bond,
The electromagnetic field inside and outside the cylinder can be controlled. That is, if the electromagnetic field is excited from the outside of the cylinder by weakening the coupling, the electromagnetic field inside the cylinder becomes weaker than the electromagnetic field outside the cylinder.
The intensity of the microwave radiated from each coupling hole 12 of the slot plate 3 can be adjusted. Therefore, the distribution of generated plasma can be controlled, and uniform plasma treatment can be performed more easily.

【0013】図4および図5に示すモードフィルタは導
電率の高い金属例えば銅やアルミニウムの線材によって
作られた螺旋13である。図4は上面図、図5は側面図
を示す。螺旋13表面は導電率の高い材質、例えば銀な
どでめっきされており、マイクロ波の損失を減らしてい
る。螺旋13は図2及び図3に示す円筒と同様にTM
030モードの電界がゼロとなる位置に設置されるため、
螺旋13の半径はマイクロ波の周波数が2.45GHz
の場合、46.8mmまたは107.5mmである。線
材の直径は細い方がTM030モードの電磁界を乱す度合
いが小さいため望ましい。図2及び図3に示す円筒と同
様に半径46.8mmの螺旋と半径107.5mmの螺
旋を同時に空洞共振器7内部に装荷してもよいし、いづ
れか一方のみを装荷してもよい。螺旋13のピッチを変
更して螺旋の内部と外部の電磁界の結合の度合いを制御
することができる。
The mode filter shown in FIGS. 4 and 5 is a spiral 13 made of a wire having a high conductivity, such as copper or aluminum. 4 is a top view and FIG. 5 is a side view. The surface of the spiral 13 is plated with a material having high conductivity, such as silver, to reduce microwave loss. The spiral 13 has the same TM as the cylinder shown in FIGS.
Since it is installed at a position where the electric field in 030 mode is zero,
The radius of the spiral 13 has a microwave frequency of 2.45 GHz.
In the case of, it is 46.8 mm or 107.5 mm. It is desirable that the diameter of the wire is smaller because the degree of disturbing the TM 030 mode electromagnetic field is smaller. Similar to the cylinder shown in FIGS. 2 and 3, a spiral having a radius of 46.8 mm and a spiral having a radius of 107.5 mm may be simultaneously loaded inside the cavity resonator 7, or only one of them may be loaded. The pitch of the spiral 13 can be changed to control the degree of coupling of electromagnetic fields inside and outside the spiral.

【0014】図6及び図7に示すモードフィルタは導電
率の高い金属例えば銅やアルミニウムの複数の線材14
の上下を同じ材質でできたドーナツ状の部材15によっ
て固定した構造となっている。図6は上面図、図7は側
面図を示す。マイクロ波の損失を低減するため、表面に
は銀などの導電率の高い材料でめっきされている。線材
14はそれぞれTM030モードの電界がゼロとなる位置
に配置されるため、円周上に配置されている。各線材の
配置される円の半径は周波数2.45GHzのマイクロ
波を用いる場合には46.8mmまたは107.5mm
となる。線材14の直径およびドーナツ状の部材15の
厚みは小さい方がTM030モードの電磁界を乱す度合い
が小さいため望ましい。線材14の本数を変えることで
モードフィルタの内部と外部の電磁界の結合の度合いを
制御することができる。
The mode filter shown in FIGS. 6 and 7 has a plurality of wire rods 14 made of a metal having high conductivity, such as copper or aluminum.
Has a structure in which the upper and lower sides of the are fixed by a donut-shaped member 15 made of the same material. FIG. 6 shows a top view and FIG. 7 shows a side view. In order to reduce microwave loss, the surface is plated with a highly conductive material such as silver. The wire rods 14 are arranged at positions where the electric field in the TM 030 mode is zero, and thus are arranged on the circumference. The radius of the circle in which each wire is placed is 46.8 mm or 107.5 mm when a microwave with a frequency of 2.45 GHz is used.
Becomes It is desirable that the diameter of the wire 14 and the thickness of the doughnut-shaped member 15 are smaller because the degree of disturbing the TM 030 mode electromagnetic field is smaller. By changing the number of wires 14, the degree of coupling between the electromagnetic field inside and outside the mode filter can be controlled.

【0015】図8に空洞共振器7の内部に別の構造のモ
ードフィルタを装荷した状態を示す。このモードフィル
タは導電率の高い金属例えば銅やアルミニウムの薄い板
の円板16の中央に円形の穴17をあけた構造となって
おり、マイクロ波の損失を低減するために表面を銀など
の導電率の高い材料でめっきされている。TM030モー
ドの電界は空洞共振器7の中心軸に平行な成分のみを持
つため、中心軸に垂直に円板16を装荷してもTM030
モードを乱さない。空洞共振器7の中心軸に垂直な方向
の電界の成分を持つ共振姿態を有効に抑制することがで
きる。図8には円板16を2枚を装荷した例を示すが、
枚数は任意に定めてよい。穴17は電磁界を結合させる
ためのもので、その形状、個数は任意である。
FIG. 8 shows a state in which a mode filter having another structure is loaded inside the cavity resonator 7. This mode filter has a structure in which a circular hole 17 is formed in the center of a circular plate 16 of a thin plate made of a metal having a high conductivity, such as copper or aluminum, and the surface is made of silver or the like to reduce microwave loss. It is plated with a highly conductive material. Since the electric field of the TM 030 mode with only the component parallel to the central axis of the cavity resonator 7, even when loaded with vertically disc 16 to the central axis TM 030
Do not disturb the mode. It is possible to effectively suppress the resonance mode having the electric field component in the direction perpendicular to the central axis of the cavity resonator 7. FIG. 8 shows an example in which two discs 16 are loaded,
The number of sheets may be set arbitrarily. The hole 17 is for coupling an electromagnetic field, and its shape and number are arbitrary.

【0016】以上空洞共振器7の所望の共振姿態がTM
030モードの場合について述べたが他の共振姿態につい
ても同様に考えることができる。すなわち所望の共振姿
態の電界がゼロとなる位置に導電率の高い金属の表面が
来るようにモードフィルタを装荷する方法、または所望
の共振姿態の電界に垂直に導電率の高い金属を装荷する
方法を用いることで所望の共振姿態のみを得ることがで
きる。
The desired resonance mode of the cavity resonator 7 is TM
Although the case of the 030 mode has been described, other resonance modes can be considered in the same manner. That is, a method of loading a mode filter so that the surface of a metal having high conductivity comes to a position where the electric field of the desired resonance state becomes zero, or a method of loading a metal of high conductivity perpendicular to the electric field of the desired resonance state. By using, it is possible to obtain only the desired resonance mode.

【0017】円柱空洞共振器の所望の共振姿態がTM
030モード以外の共振姿態の一例とし
The desired resonance mode of the cylindrical cavity resonator is TM
As an example of resonance modes other than 030 mode

【0018】てTM011モードの場合を示す。TM011
ードの電界分布は
The case of the TM 011 mode is shown below. The electric field distribution of TM 011 mode is

【数2】のように表現できる。ただし、円柱空洞共振器
の中心軸をz軸とした円柱座標系で表現している。
It can be expressed as However, it is expressed in a cylindrical coordinate system with the central axis of the cylindrical cavity resonator as the z axis.

【0019】[0019]

【数2】 j :虚数単位 J0 :0次ベッセル関数 J1 :1次ベッセル関数 ε :真空の誘電率 ω :マイクロ波の角周波数 kc=ρ01/a a :空洞共振器の半径 ρ01=2.405 β=√k2−kc 2 k=ω/c c :光速(=3.0×108m/s) 図10に円柱空洞共振器のTM011モードの電界ベクト
ルの分布を示す。TM011モードの電界がゼロとなるの
は壁面を除けば破線で示す空洞共振器の中心軸19の中
点のみである。そのため電界がゼロの位置に金属表面を
持つモードフィルタを構成することは不可能である。そ
こでモードフィルタはその表面がTM011モードの電界
ベクトルと垂直な方向にくるよう構成する方法で設計す
ることになる。例えば図11及び図12に示すようなモ
ードフィルタを構成することができる。図11は上面
図、図12は側面図を示す。空洞共振器の内面20は破
線により示している。TM011モードで共振する円柱空
洞共振器の高さは例えばマイクロ波の周波数を2.45
GHz、円柱空洞の半径を100mmとすると、69.
2mmとなる。リング状線材21と弓状線材22を組み
合わせてモードフィルタは構成されている。線材は導電
率の高い金属例えば銅製であり、表面をさらに導電率の
高い材料例えば銀によりめっきされている。リング状線
材21と弓状線材22の直径は細い方が望ましい。弓状
線材22は8本、リング状線材21は3本の例を示した
が各本数は任意に設定してよい。
[Equation 2] j: imaginary unit J 0 : 0th order Bessel function J 1 : 1st order Bessel function ε: vacuum permittivity ω: microwave angular frequency k c = ρ 01 / a a: cavity resonator radius ρ 01 = 2. 405 β = √k 2 −k c 2 k = ω / cc: speed of light (= 3.0 × 10 8 m / s) FIG. 10 shows the electric field vector distribution of the TM 011 mode of the cylindrical cavity resonator. The electric field of the TM 011 mode becomes zero only at the midpoint of the central axis 19 of the cavity resonator shown by the broken line except the wall surface. Therefore, it is impossible to construct a mode filter having a metal surface at a position where the electric field is zero. Therefore, the mode filter is designed by a method in which the surface of the mode filter is perpendicular to the electric field vector of the TM 011 mode. For example, a mode filter as shown in FIGS. 11 and 12 can be configured. 11 is a top view and FIG. 12 is a side view. The inner surface 20 of the cavity is shown by the dashed line. The height of the cylindrical cavity resonator that resonates in the TM 011 mode is, for example, the microwave frequency of 2.45.
GHz, and the radius of the cylindrical cavity is 100 mm, 69.
2 mm. The mode filter is configured by combining the ring-shaped wire rod 21 and the arc-shaped wire rod 22. The wire is made of a metal having a high conductivity such as copper, and the surface thereof is plated with a material having a higher conductivity such as silver. It is desirable that the diameters of the ring-shaped wire rod 21 and the arc-shaped wire rod 22 are thin. Although the number of the bow-shaped wire rods 22 is eight and the number of the ring-shaped wire rods 21 is three, the number of each wire may be set arbitrarily.

【0020】図14に本発明の実施例に用いることので
きる空洞共振器を示す。図14に示す空洞共振器ではマ
イクロ波発生源からのマイクロ波を空洞共振器に伝送す
る方形導波管6は第1の円柱形の空洞共振器21の側面
に接続されている。空洞共振器21の共振姿態はTM
010モードである。空洞共振器21の下面には第2の空
洞共振器22と電磁界を結合するための結合孔23があ
る。空洞共振器22の共振姿態はTM030モードであ
る。空洞共振器21と空洞共振器22内部の共振姿態で
あるTM010モード、TM030モードの電界18を示す。
TM010モードはTM030モードの中央部のみを取り出し
たものであるため、結合孔23での両者の電磁界は完全
に一致し、効率よく空洞共振器22を励振することがで
きる。空洞共振器22の内部には図2から図8に示すい
ずれのモードフィルタを装荷してもよい。それぞれ空洞
共振器21、空洞共振器22の内半径はマイクロ波の周
波数が例えば2.45GHzの場合、46.8mm、1
07.5mmとなる。空洞共振器21を用いて空洞共振
器22を励振することで、方形導波管6を接続したこと
による電磁界の偏りが空洞共振器22に及ばなくなり、
より容易に空洞共振器22内の共振姿態を単一化でき
る。そのため均一なプラズマ処理を得ることができる。
FIG. 14 shows a cavity resonator that can be used in the embodiment of the present invention. In the cavity resonator shown in FIG. 14, the rectangular waveguide 6 that transmits the microwave from the microwave generation source to the cavity resonator is connected to the side surface of the first cylindrical cavity resonator 21. The resonance mode of the cavity resonator 21 is TM
It is in 010 mode. The lower surface of the cavity resonator 21 has a coupling hole 23 for coupling the second cavity resonator 22 and an electromagnetic field. The resonance mode of the cavity resonator 22 is the TM 030 mode. An electric field 18 in the TM 010 mode and the TM 030 mode, which are resonance states inside the cavity resonator 21 and the cavity resonator 22, is shown.
Since the TM 010 mode is obtained by extracting only the central portion of the TM 030 mode, the electromagnetic fields of the both in the coupling hole 23 are completely coincident with each other, and the cavity resonator 22 can be efficiently excited. Any of the mode filters shown in FIGS. 2 to 8 may be loaded inside the cavity resonator 22. The inner radii of the cavity resonator 21 and the cavity resonator 22 are 46.8 mm and 1 when the microwave frequency is 2.45 GHz, for example.
It becomes 07.5 mm. By exciting the cavity resonator 22 using the cavity resonator 21, the bias of the electromagnetic field due to the connection of the rectangular waveguide 6 does not reach the cavity resonator 22,
The resonance mode in the cavity resonator 22 can be unified more easily. Therefore, uniform plasma treatment can be obtained.

【0021】[0021]

【発明の効果】本発明を用いることにより、均一なプラ
ズマ処理が容易に得られる。
According to the present invention, uniform plasma treatment can be easily obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を用いたプラズマ処理装置を示す断面図
である。
FIG. 1 is a sectional view showing a plasma processing apparatus using the present invention.

【図2】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 2 is a diagram showing a mode filter used in an embodiment of the present invention.

【図3】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 3 is a diagram showing a mode filter used in an embodiment of the present invention.

【図4】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 4 is a diagram showing a mode filter used in an embodiment of the present invention.

【図5】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 5 is a diagram showing a mode filter used in an embodiment of the present invention.

【図6】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 6 is a diagram showing a mode filter used in an embodiment of the present invention.

【図7】本発明の実施例に用いるモードフィルタを示す
図である。
FIG. 7 is a diagram showing a mode filter used in an embodiment of the present invention.

【図8】本発明の実施例に用いる空洞共振器とモードフ
ィルタを示す図である。
FIG. 8 is a diagram showing a cavity resonator and a mode filter used in an example of the present invention.

【図9】TM030モードの電界分布を示す図である。FIG. 9 is a diagram showing an electric field distribution in TM 030 mode.

【図10】TM011モードの電界分布を示す図である。FIG. 10 is a diagram showing an electric field distribution in TM 011 mode.

【図11】本発明の実施例に用いるモードフィルタを示
す図である。
FIG. 11 is a diagram showing a mode filter used in an example of the present invention.

【図12】本発明の実施例に用いるモードフィルタを示
す図である。
FIG. 12 is a diagram showing a mode filter used in an embodiment of the present invention.

【図13】スロット板の構造を示す図である。FIG. 13 is a diagram showing a structure of a slot plate.

【図14】本発明の実施例に用いる空洞共振器を示す図
である。
FIG. 14 is a diagram showing a cavity resonator used in an example of the present invention.

【符号の説明】[Explanation of symbols]

1…処理室、 2…被処理基板、 3…スロット板、 4…高周波電源、 5…マイクロ波発生源、 6…方形導波管、 7…空洞共振器、 8…結合孔、 9…モードフィルタ、 10…誘電体部品、 11…円筒、 12…結合孔、 13…螺旋、 14…線材、 15…ドーナツ状部材、 16…円板、 17…穴、 18…電界ベクトル、 19…中心軸、 20…空洞共振器の内面、 21…空洞共振器、 22…空洞共振器、 23…結合孔。 DESCRIPTION OF SYMBOLS 1 ... Processing chamber, 2 ... Processed substrate, 3 ... Slot plate, 4 ... High frequency power supply, 5 ... Microwave generation source, 6 ... Rectangular waveguide, 7 ... Cavity resonator, 8 ... Coupling hole, 9 ... Mode filter , 10 ... Dielectric part, 11 ... Cylinder, 12 ... Coupling hole, 13 ... Spiral, 14 ... Wire, 15 ... Donut-shaped member, 16 ... Disc, 17 ... Hole, 18 ... Electric field vector, 19 ... Central axis, 20 ... Inner surface of cavity resonator, 21 ... Cavity resonator, 22 ... Cavity resonator, 23 ... Coupling hole.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/302 B 7353−4M 21/31 C 8518−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/302 B 7353-4M 21/31 C 8518-4M

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】マイクロ波発生源、空洞共振器、処理室、
処理室と空洞共振器を電磁的に結合する結合孔、処理室
を処理に適した圧力に保ちつつ、マイクロ波を空洞共振
器から処理室に導入するための誘電体部品、処理室内に
設置された被処理基板、処理室に処理ガスを導入するた
めのガス導入系、処理室を処理に適した圧力に保つため
の真空排気系からなるプラズマ処理装置において、空洞
共振器内の共振姿態を単一にするためのモードフィルタ
を空洞共振器内に設置したことを特徴とするプラズマ処
理装置。
1. A microwave source, a cavity resonator, a processing chamber,
A coupling hole for electromagnetically coupling the processing chamber and the cavity resonator, a dielectric component for introducing microwaves into the processing chamber from the cavity resonator while maintaining the pressure in the processing chamber suitable for processing, and is installed in the processing chamber. In a plasma processing apparatus that includes a substrate to be processed, a gas introduction system for introducing a processing gas into the processing chamber, and a vacuum exhaust system for maintaining the processing chamber at a pressure suitable for processing, the resonance mode inside the cavity resonator is A plasma processing apparatus, characterized in that a mode filter for equalization is installed in a cavity resonator.
【請求項2】請求項1記載のプラズマ処理装置におい
て、空洞共振器内の共振姿態を単一にするためのモード
フィルタが導電率の高い金属製であり、その表面が所望
の共振姿態の電界が存在しない位置に来る構造であるこ
とを特徴とするプラズマ処理装置。
2. The plasma processing apparatus according to claim 1, wherein the mode filter for making a single resonance mode in the cavity resonator is made of metal having high conductivity, and the surface thereof has an electric field of a desired resonance mode. A plasma processing apparatus characterized in that the structure is located at a position where there is no.
【請求項3】請求項1記載のプラズマ処理装置におい
て、空洞共振器内の共振姿態を単一にするためのモード
フィルタが所望の共振姿態の電界が存在しない位置に線
材が配置された導電率の高い線材でできた螺旋であるこ
とを特徴とするプラズマ処理装置。
3. The plasma processing apparatus according to claim 1, wherein the mode filter for making a single resonance mode in the cavity resonator has a wire rod arranged at a position where an electric field having a desired resonance mode does not exist. A plasma processing apparatus, which is a spiral made of a high wire rod.
【請求項4】請求項1記載のプラズマ処理装置におい
て、空洞共振器内の共振姿態を単一にするためのモード
フィルタが所望の共振姿態の電界が存在しない位置に導
電率の高い複数の線材が配置された構造であることを特
徴とするプラズマ処理装置。
4. The plasma processing apparatus according to claim 1, wherein the mode filter for making a single resonance mode in the cavity resonator has a plurality of wires having high conductivity at a position where an electric field having a desired resonance mode does not exist. A plasma processing apparatus having a structure in which is arranged.
【請求項5】請求項1記載のプラズマ処理装置におい
て、空洞共振器内の共振姿態を単一にするためのモード
フィルタが所望の共振姿態の電界にその表面が垂直とな
るように配置された導電率の高い金属板であることを特
徴とするプラズマ処理装置。
5. The plasma processing apparatus according to claim 1, wherein a mode filter for making a single resonance mode in the cavity resonator is arranged such that its surface is perpendicular to an electric field of a desired resonance mode. A plasma processing apparatus, which is a metal plate having high conductivity.
【請求項6】マイクロ波発生源、空洞共振器、処理室、
処理室と空洞共振器を電磁的に結合する結合孔、処理室
を処理に適した圧力に保ちつつ、マイクロ波を空洞共振
器から処理室に導入するための誘電体部品、処理室内に
設置された被処理基板、処理室に処理ガスを導入するた
めのガス導入系、処理室を処理に適した圧力に保つため
の真空排気系からなるプラズマ処理装置において、処理
室にマイクロ波を導入する空洞共振器を励振するための
空洞共振器を備えたことを特徴とするプラズマ処理装
置。
6. A microwave generation source, a cavity resonator, a processing chamber,
A coupling hole for electromagnetically coupling the processing chamber and the cavity resonator, a dielectric component for introducing microwaves into the processing chamber from the cavity resonator while maintaining the pressure in the processing chamber suitable for processing, and is installed in the processing chamber. A cavity for introducing microwaves into a processing chamber in a plasma processing apparatus including a substrate to be processed, a gas introduction system for introducing a processing gas into the processing chamber, and a vacuum exhaust system for maintaining a pressure suitable for the processing in the processing chamber. A plasma processing apparatus comprising a cavity resonator for exciting the resonator.
JP04008200A 1992-01-21 1992-01-21 Plasma processing equipment Expired - Fee Related JP3123175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04008200A JP3123175B2 (en) 1992-01-21 1992-01-21 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04008200A JP3123175B2 (en) 1992-01-21 1992-01-21 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH05198388A true JPH05198388A (en) 1993-08-06
JP3123175B2 JP3123175B2 (en) 2001-01-09

Family

ID=11686627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04008200A Expired - Fee Related JP3123175B2 (en) 1992-01-21 1992-01-21 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3123175B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646489A (en) * 1992-01-30 1997-07-08 Hitachi, Ltd. Plasma generator with mode restricting means
JP2000031732A (en) * 1998-07-10 2000-01-28 Nippon Dengyo Kosaku Co Ltd Antenna in common use for polarized wave
WO2002013249A1 (en) * 2000-08-02 2002-02-14 Tokyo Electron Limited Radial antenna and plasma processing apparatus comprising the same
JP2007184259A (en) * 2005-12-09 2007-07-19 Univ Nagoya Plasma generation device and manufacturing method using plasma treatment
EP1895565A1 (en) * 2006-09-01 2008-03-05 Canon Kabushiki Kaisha Plasma processing apparatus and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5646489A (en) * 1992-01-30 1997-07-08 Hitachi, Ltd. Plasma generator with mode restricting means
JP2000031732A (en) * 1998-07-10 2000-01-28 Nippon Dengyo Kosaku Co Ltd Antenna in common use for polarized wave
WO2002013249A1 (en) * 2000-08-02 2002-02-14 Tokyo Electron Limited Radial antenna and plasma processing apparatus comprising the same
US7807019B2 (en) 2000-08-02 2010-10-05 Tokyo Electron Limited Radial antenna and plasma processing apparatus comprising the same
JP2007184259A (en) * 2005-12-09 2007-07-19 Univ Nagoya Plasma generation device and manufacturing method using plasma treatment
EP1895565A1 (en) * 2006-09-01 2008-03-05 Canon Kabushiki Kaisha Plasma processing apparatus and method

Also Published As

Publication number Publication date
JP3123175B2 (en) 2001-01-09

Similar Documents

Publication Publication Date Title
TW400577B (en) Plasma generating apparatus
US5578165A (en) Coil configurations for improved uniformity in inductively coupled plasma systems
JP2822103B2 (en) An improved resonant radio frequency wave coupler device.
KR100238627B1 (en) Plasma processing apparatus
US4877509A (en) Semiconductor wafer treating apparatus utilizing a plasma
US6158383A (en) Plasma processing method and apparatus
JP3233575B2 (en) Plasma processing equipment
US5173641A (en) Plasma generating apparatus
JP3571054B2 (en) Plasma generator using microwave
JPH04503589A (en) Improved resonant radio frequency wave coupler device
JP3254069B2 (en) Plasma equipment
JPH07263187A (en) Plasma treatment device
JPH0319332A (en) Microwave plasma treatment device
JPH09289099A (en) Plasma processing method and device
JP3469987B2 (en) Plasma processing equipment
US6225592B1 (en) Method and apparatus for launching microwave energy into a plasma processing chamber
JP3123175B2 (en) Plasma processing equipment
JP4678905B2 (en) Plasma processing equipment
WO2021220551A1 (en) Plasma treatment device
JPH07263188A (en) Plasma treatment device
RU2120681C1 (en) Electron-cyclone resonance tuned device for microwave vacuum-plasma treatment of condensed media
JPH10177994A (en) Device and method for plasma treatment
JP3208995B2 (en) Plasma processing method and apparatus
JP3736054B2 (en) Plasma processing equipment
JPH09293599A (en) Plasma treating method and device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees