JP3736054B2 - Plasma processing equipment - Google Patents

Plasma processing equipment Download PDF

Info

Publication number
JP3736054B2
JP3736054B2 JP18945297A JP18945297A JP3736054B2 JP 3736054 B2 JP3736054 B2 JP 3736054B2 JP 18945297 A JP18945297 A JP 18945297A JP 18945297 A JP18945297 A JP 18945297A JP 3736054 B2 JP3736054 B2 JP 3736054B2
Authority
JP
Japan
Prior art keywords
processing chamber
microwave
plasma
plasma processing
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18945297A
Other languages
Japanese (ja)
Other versions
JPH1140394A (en
Inventor
仁 田村
成一 渡辺
宗雄 古瀬
誠浩 角屋
浩康 助迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18945297A priority Critical patent/JP3736054B2/en
Publication of JPH1140394A publication Critical patent/JPH1140394A/en
Application granted granted Critical
Publication of JP3736054B2 publication Critical patent/JP3736054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
半導体集積回路等の製造にあたり、膜の形成、加工等にプラズマ処理装置が用いられる。本発明は安定なプラズマを均一に生成することにより高品位なプラズマ処理を可能とするプラズマ処理装置を提供することに寄与する。
【0002】
【従来の技術】
通常のプラズマ処理装置では処理室に処理に適したガスを所定の流量供給し、そのガスを排気する速度を調整して処理室を処理に適した圧力に制御することが行われる。さらに処理室に電磁波を供給してプラズマを発生させ、プラズマ処理を行う。プラズマは処理室内の電磁界分布に対応した分布で発生する。プラズマ中の電磁界分布は電磁波の供給方法、プラズマの密度、圧力などのプラズマ特性、処理室の形状等により決まる。従来のプラズマ処理装置ではプラズマ中の電磁界分布に関して十分考慮されておらず、電磁波電力の有効利用、プラズマ分布の制御などが必ずしも適切に行われていない問題があった。
【0003】
【発明が解決しようとする課題】
前記従来技術によると処理室に投入した電磁波の電力が必ずしもプラズマの発生に有効に利用されていない問題があった。プラズマ中でとりやすい電磁界分布と投入する電磁波の電磁界分布が必ずしも対応しないため安定したプラズマの生成が行われないという問題があった。
【0004】
【課題を解決するための手段】
上記課題は、その内側が排気される処理室と、この処理室内に配置され被処理基板が載置される電極と、この電極の上方の前記処理室の上部に配置され誘電体製の窓部材と、この窓部材の上方に配置されその上方から導入されたマイクロ波による放射状の表面電流が上面を流れる導電体製の部材であって前記マイクロ波を前記窓部材に導くための孔の複数が円周状に配置された部材と、前記処理室の周囲に配置されこの処理室内に静磁界を形成するための手段とを備えたプラズマ処理装置であって、前記マイクロ波のうち電界の方向が傾いて位相が異なる複数の波が重ね合わされて形成された右回りの円偏波が、前記孔の各々から前記窓部材へ放射され、この窓部材を介して前記処理室内に導入されるプラズマ処理装置により解決できる。
【0005】
さらに、前記は複数の方形状を組み合わせた形状を備えたことにより解決できる。さらには、前記から、電界の方向が傾いて位相が異なる複数の波長の波が重ね合わされて放射されることにより解決できる。さらにまた、前記孔は、その内部に前記複数の波のうち一方の波とは異なる波長の波がその内側を通過して放射される誘電体製の部材を備えたことにより解決できる。
【0006】
【発明の実施の形態】
本発明の第1の実施例を図1を用いて説明する。例えばマグネトロンなどのマイクロ波源101により発生した例えば周波数2.45GHzのマイクロ波はアイソレー夕102、整合器103を介して同軸導波管変換器104に伝送される。同軸導波管変換器104によりマイクロ波は軸対称な同軸線路105の基本モードに変換され、整合室106を介してモード変換器107にもたらされる。整合室106は内部または外部導体の直径が同軸線路105と異なるサイズの同軸線路で長さが1/4波長の線路であり、モード変換器107と同軸線路105の接続部でインピーダンス不整合により発生する電力の反射を防止している。またモード変換器107は投入されたマイクロ波の電磁界を同軸線路の基本モードから以下に説明する部材109の励振に適した分布に変換する作用を持つ。
【0007】
モード変換器107の下部には結合孔108を有する部材109があり、結合孔108、マイクロ波導入窓110を介して処理室111にマイクロ波が導入される。部材109はアルミニウム、銅などの導電率の高い金属でできている。マイクロ波導入窓はマイクロ波に対する損失が小さく、プラズマ処理に悪影響を与えにくい誘電体として例えば石英、アルミナセラミックなどでできている。処理室111には図示しないガス導入系および排気系が接続され、処理室をプラズマ処理に適した圧力、ガス雰囲気に保持することができる。処理室111の周囲には静磁界の発生装置112が設置され、処理室111内に電子サイクロトロン共鳴現象を発生させる程度の静磁界を発生させることができる。投入するマイクロ波の周波数が例えば2.45GHzの場合、電子サイクロトロン共鳴は0.0875テスラで起きることが知られており、マイクロ波電力はプラズマに強く吸収され、低い圧力でも高密度のプラズマを容易に発生させることができる。また処理室内の静磁界分布を調整することで、処理室内のプラズマ分布等を制御することができる。静磁界の発生装置112として例えば電磁石、永久磁石などを用いることができる。
【0008】
処理室111内には被処理基板113を設置するための電極114が設けられている。電極114には高周波電源115が整合器116を介して接続され、被処理基板113に例えば13.56MHzなどの周波数の高周波を加えることができる。
【0009】
図2を用いて結合孔108を有する部材109の構造を示す。同軸状のモード変換器107により部材109の表面にはマイクロ波表面電流201が放射状に流れる。これに対し結合孔108は互いに直交する2つの長方形状の穴202および203からなっている。長方形状の穴202および203はそれぞれマイクロ波表面電流201に対し互いに逆方向に45°傾斜しており、さらにこれらはある円周状に配置されている。また穴202には誘電体204が装荷されている。
【0010】
一般に導電率の高い物質で囲まれた長方形状の穴は方形導波管として動作させることができ、長辺の長さが半波長以上の場合に穴を通してマイクロ波を伝送することができる。長方形状の穴202、203は方形導波管として動作するよう、長辺の長さがマイクロ波の波長の半波長以上の長さになっている。部材109の厚さ(穴202、203の深さ)は穴202を通ったマイクロ波と穴203を通ったマイクロ波で位相がおよそ90度異なる厚さに設定されている。一般に誘電体中で電磁波の波長は真空または空気中の電磁波の波長に比べ短くなる。方形導波管の最低次のモードであるTE10モードの管内波長は式(1)の様にあらわされることが知られている。
【0011】
【数1】

Figure 0003736054
【0012】
ただし
λg :TE10モードの管内波長
λo :真空中の波長
εr :導波管内の比誘電率
a :方形導波管の長辺の長さ
例えば導波管長辺の長さが65mmで内部に石英(比誘電率3.78とする)を入れた方形導波管の管内波長は71.9mmとなる。また空気(比誘電率1.0とする。)が入った同じサイズの方形導波管の管内波長は362mmとなる。従って両者の位相差が90度になる導波管の長さは22.4mmとなる。実際には部材109の厚さは管内波長に比べて短いこと、穴202、203を組み合わせた十字形状の穴は厳密には式(1)を満たさないこと等から部材109の厚さの最適値は前記計算値を必ずしも満足しない場合がある。
【0013】
長方形状の穴202と203は方形導波管として動作しているため、穴202、203内部でのマイクロ波電界の方向は図2に示すようにマイクロ波表面電流201に対し互いに逆方向に45°傾いたマイクロ波電界205のようになる。前述のように部材109の厚さは穴202と203を通過するマイクロ波の位相差が90度となるように設定されており、その両者のマイクロ波の電界は互いに90度の角度をなすため、部材109とマイクロ波導入窓110の接続面では両者の合成により円偏波が形成される。図2の例では8組の穴202、203が設けられており、これらが同位相で励振されるため、前記円偏波がそれぞれの組から同じ位相で放射される。
【0014】
磁化プラズマは静磁界の方向に対して右回りの円偏波(以下R波)と左回りの円偏波(以下L波)で異なる伝搬特性を示すことが知られている。R波は電子サイクロトロン共鳴を起こし、プラズマに強く吸収されるのに対し、L波は電子サイクロトロン共鳴を起こさないためあまり強く吸収されず、プラズマ端面で反射される割合が大きい。部材109によりR波を発生させることでマイクロ波電力を効率良くプラズマに吸収させることができる。そのため低出力のマイクロ波源を用いても高密度のプラズマを容易に発生させることができる。またプラズマに対するマイクロ波の吸収がよくなるため、マイクロ波立体回路部の余計な加熱が少なく、安定してプラズマを発生させることができる。
【0015】
図3に部材109として使用可能な他の構造を示す。式(1)によれば方形導波管の管内波長は導波管の長辺の長さにより変ることがわかる。そこで誘電体を装荷した導波管にかわり長辺の長さの異なる導波管を用いることで同様の効果を持たせることができる。長辺の長さの異なる2つの長方形状の穴を互いに90度傾けて組み合わせ、十字状の穴301を形成する。十字状の穴301は2つの方形導波管を組み合わせた構造と考えることができ、それぞれの導波管の管内波長は式(1)に従って求めることができる。例えば長辺の長さ65mmと80mmの2つの長方形を90度傾けて組み合わせた場合、それぞれの管内波長は362mmおよび190mmとなるので位相差を90度とするには導波管の長さ(部材109の高さ)を100mmとすればよい。この場合も図2に示した場合と同様、最適値は前記計算値を必ずしも満足しない場合がある。
【0016】
図4に部材109として使用可能な他の構造を示す。誘電体板402を傾けて円形の穴401内に装荷した構造となっている。誘電体中を進む電磁波の波長は真空中と比べて短くなる。従って誘電体板402と平行な電界成分を持つ電磁波は誘電体板402と垂直な成分を持つ電磁波とで波長が異なり、この両者が重なりあって円偏波を発生させることができる。
【0017】
磁化プラズマに吸収されやすい円偏波を発生させるには電界の方向が傾いた複数の波を位相をずらして重ねあわせればよい。前述の例では電界の傾きおよび位相差が90度である2つの波を重ねあわせる例を示したが、位相差、電界の傾きは90度に限定されるものではなく他の角度であってもよい。また重ねあわせる波の数は2つに限定されるものではなく更に多くてもよい。
【0018】
【発明の効果】
本発明によれば、プラズマ中でとりやすい電磁界分布と投入する電磁波の電磁界分布を対応させることができるのでプラズマ発生に必要な電力を低減するとともに安定してプラズマを発生させることができる効果がある。
【図面の簡単な説明】
【図1】本発明に係わるマイクロ波プラズマ処理装置を説明する図面。
【図2】結合孔を有する部材109の構造の第一例を説明する図面。
【図3】結合孔を有する部材109の構造の第二例を説明する図面。
【図4】結合孔を有する部材109の構造の第三例を説明する図面。
【符号の説明】
101…マイクロ波源、102…アイソレー夕、103…整合器、104…同軸導波管変換器、105…同軸線路、106…整合室、107…モード変換器、108…結合孔、109…部材、110…マイクロ波導入窓、111…処理室、112…静磁界の発生装置、113…被処理基板、114…電極、115…高周波電源、116…整合器、201…マイクロ波表面電流、202…長方形状の穴、203…長方形状の穴、204…誘電体、205…マイクロ波電界、301…十字状の穴、401…円形の穴、402…誘電体板。[0001]
BACKGROUND OF THE INVENTION
In manufacturing a semiconductor integrated circuit or the like, a plasma processing apparatus is used for forming or processing a film. The present invention contributes to providing a plasma processing apparatus that enables high-quality plasma processing by uniformly generating stable plasma.
[0002]
[Prior art]
In a normal plasma processing apparatus, a gas suitable for processing is supplied to a processing chamber at a predetermined flow rate, and the processing chamber is controlled to a pressure suitable for processing by adjusting the speed of exhausting the gas. Further, an electromagnetic wave is supplied to the processing chamber to generate plasma and perform plasma processing. Plasma is generated in a distribution corresponding to the electromagnetic field distribution in the processing chamber. The electromagnetic field distribution in the plasma is determined by the electromagnetic wave supply method, plasma characteristics such as plasma density and pressure, the shape of the processing chamber, and the like. In the conventional plasma processing apparatus, the electromagnetic field distribution in the plasma is not sufficiently considered, and there is a problem that the electromagnetic wave power is not effectively used and the plasma distribution is not properly controlled.
[0003]
[Problems to be solved by the invention]
According to the prior art, there is a problem that the power of the electromagnetic wave input into the processing chamber is not always effectively used for generating plasma. There is a problem that stable plasma generation cannot be performed because the electromagnetic field distribution that is easy to take in the plasma does not necessarily correspond to the electromagnetic field distribution of the input electromagnetic wave.
[0004]
[Means for Solving the Problems]
The above-described problems include a processing chamber whose inside is evacuated, an electrode disposed in the processing chamber and on which a substrate to be processed is placed, and a dielectric window member disposed above the processing chamber above the electrode. And a member made of a conductor that is disposed above the window member and has a radial surface current due to the microwave introduced from above the window member, and a plurality of holes for guiding the microwave to the window member. A plasma processing apparatus comprising a circumferentially arranged member and means for forming a static magnetic field in the processing chamber disposed around the processing chamber, wherein an electric field direction of the microwave is A clockwise circularly polarized wave formed by superposing a plurality of waves that are inclined and different in phase is radiated from each of the holes to the window member and is introduced into the processing chamber through the window member. It can be solved by the device.
[0005]
Furthermore, the hole can be solved by providing a shape obtained by combining a plurality of square shapes. Furthermore, the problem can be solved by overlapping and radiating waves of a plurality of wavelengths whose phases are different from each other and whose phase is inclined from the hole . Furthermore, the hole can be solved by providing a dielectric member in which a wave having a wavelength different from one of the plurality of waves is radiated through the inside thereof.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment of the present invention will be described with reference to FIG. For example, a microwave having a frequency of 2.45 GHz generated by a microwave source 101 such as a magnetron is transmitted to the coaxial waveguide converter 104 via the isolator 102 and the matching unit 103. The microwave is converted by the coaxial waveguide converter 104 into the fundamental mode of the axially symmetric coaxial line 105, and is sent to the mode converter 107 through the matching chamber 106. The matching chamber 106 is a coaxial line whose inner or outer conductor diameter is different from that of the coaxial line 105 and has a length of ¼ wavelength, and is generated due to impedance mismatch at the connection between the mode converter 107 and the coaxial line 105. To prevent the reflection of power. The mode converter 107 has an effect of converting the input microwave electromagnetic field into a distribution suitable for excitation of the member 109 described below from the basic mode of the coaxial line.
[0007]
A member 109 having a coupling hole 108 is provided below the mode converter 107, and the microwave is introduced into the processing chamber 111 through the coupling hole 108 and the microwave introduction window 110. The member 109 is made of a metal having high conductivity such as aluminum or copper. The microwave introduction window is made of, for example, quartz, alumina ceramic or the like as a dielectric that has a small loss with respect to the microwave and does not adversely affect the plasma processing. A gas introduction system and an exhaust system (not shown) are connected to the processing chamber 111, and the processing chamber can be maintained at a pressure and gas atmosphere suitable for plasma processing. A static magnetic field generator 112 is installed around the processing chamber 111, and can generate a static magnetic field to the extent that an electron cyclotron resonance phenomenon is generated in the processing chamber 111. For example, when the frequency of the input microwave is 2.45 GHz, it is known that electron cyclotron resonance occurs at 0.0875 Tesla, and the microwave power is strongly absorbed by the plasma, so that a high-density plasma can be easily obtained even at a low pressure. Can be generated. Further, by adjusting the static magnetic field distribution in the processing chamber, the plasma distribution and the like in the processing chamber can be controlled. As the static magnetic field generator 112, for example, an electromagnet, a permanent magnet, or the like can be used.
[0008]
An electrode 114 for installing a substrate to be processed 113 is provided in the processing chamber 111. A high frequency power source 115 is connected to the electrode 114 via a matching unit 116, and a high frequency with a frequency such as 13.56 MHz can be applied to the substrate 113 to be processed.
[0009]
The structure of the member 109 having the coupling hole 108 will be described with reference to FIG. The microwave surface current 201 flows radially on the surface of the member 109 by the coaxial mode converter 107. On the other hand, the coupling hole 108 includes two rectangular holes 202 and 203 that are orthogonal to each other. The rectangular holes 202 and 203 are inclined 45 ° in opposite directions with respect to the microwave surface current 201, respectively, and are arranged in a certain circumferential shape. A dielectric 204 is loaded in the hole 202.
[0010]
In general, a rectangular hole surrounded by a material having high conductivity can be operated as a rectangular waveguide, and microwaves can be transmitted through the hole when the length of the long side is a half wavelength or more. The rectangular holes 202 and 203 have a longer side length equal to or longer than a half wavelength of the microwave so that the rectangular holes 202 and 203 operate as a rectangular waveguide. The thickness of member 109 (depth of holes 202 and 203) is set to a thickness that is approximately 90 degrees different in phase between the microwave passing through hole 202 and the microwave passing through hole 203. In general, the wavelength of electromagnetic waves in a dielectric is shorter than the wavelength of electromagnetic waves in vacuum or air. It is known that the in-tube wavelength of the TE10 mode, which is the lowest order mode of the rectangular waveguide, is expressed as shown in Equation (1).
[0011]
[Expression 1]
Figure 0003736054
[0012]
However, λ g : In-tube wavelength of TE10 mode λ o : Wavelength in vacuum ε r : Relative permittivity in waveguide a: Length of long side of rectangular waveguide, for example, length of long side of waveguide is 65 mm and inside The in-tube wavelength of a rectangular waveguide in which quartz (with a relative dielectric constant of 3.78) is placed is 71.9 mm. In addition, the in-tube wavelength of a rectangular waveguide of the same size containing air (with a relative dielectric constant of 1.0) is 362 mm. Therefore, the length of the waveguide where the phase difference between them is 90 degrees is 22.4 mm. Actually, the thickness of the member 109 is shorter than the in-tube wavelength, and the cross-shaped hole combining the holes 202 and 203 does not strictly satisfy the formula (1). May not necessarily satisfy the calculated value.
[0013]
Since the rectangular holes 202 and 203 operate as rectangular waveguides, the direction of the microwave electric field inside the holes 202 and 203 is 45 opposite to the microwave surface current 201 as shown in FIG. It becomes like a microwave electric field 205 inclined by °. As described above, the thickness of the member 109 is set so that the phase difference between the microwaves passing through the holes 202 and 203 is 90 degrees, and the electric fields of both microwaves form an angle of 90 degrees with each other. At the connecting surface of the member 109 and the microwave introduction window 110, circular polarization is formed by combining the two. In the example of FIG. 2, eight sets of holes 202 and 203 are provided, and these are excited in the same phase, so that the circularly polarized wave is radiated from each set in the same phase.
[0014]
Magnetized plasma is known to exhibit different propagation characteristics for clockwise circularly polarized waves (hereinafter R waves) and counterclockwise circularly polarized waves (hereinafter L waves) with respect to the direction of the static magnetic field. The R wave causes electron cyclotron resonance and is strongly absorbed by the plasma, whereas the L wave does not cause electron cyclotron resonance and is not so strongly absorbed and is reflected at the plasma end face. By generating the R wave by the member 109, the microwave power can be efficiently absorbed by the plasma. Therefore, high-density plasma can be easily generated even when a low-power microwave source is used. Moreover, since the absorption of the microwave with respect to plasma becomes good, there is little extra heating of a microwave solid circuit part, and it can generate a plasma stably.
[0015]
FIG. 3 shows another structure that can be used as the member 109. According to equation (1), it is understood that the in-tube wavelength of the rectangular waveguide varies depending on the length of the long side of the waveguide. Therefore, the same effect can be obtained by using a waveguide having a different long side instead of the waveguide loaded with a dielectric. Two rectangular holes having different long sides are tilted and combined with each other by 90 degrees to form a cross-shaped hole 301. The cross-shaped hole 301 can be considered as a structure in which two rectangular waveguides are combined, and the in-tube wavelength of each waveguide can be obtained according to the equation (1). For example, when two long rectangles with a length of 65 mm and 80 mm are combined with an inclination of 90 degrees, the in-tube wavelengths are 362 mm and 190 mm, respectively. 109 height) may be 100 mm. In this case, as in the case shown in FIG. 2, the optimum value may not always satisfy the calculated value.
[0016]
FIG. 4 shows another structure that can be used as the member 109. The dielectric plate 402 is tilted and loaded into the circular hole 401. The wavelength of the electromagnetic wave traveling in the dielectric is shorter than in vacuum. Therefore, the electromagnetic wave having an electric field component parallel to the dielectric plate 402 has a wavelength different from that of the electromagnetic wave having a component perpendicular to the dielectric plate 402, and the two can overlap to generate a circularly polarized wave.
[0017]
In order to generate a circularly polarized wave that is easily absorbed by the magnetized plasma, a plurality of waves whose directions of electric fields are inclined may be superposed with their phases shifted. In the above example, two waves having an electric field inclination and phase difference of 90 degrees are superimposed. However, the phase difference and electric field inclination are not limited to 90 degrees, and may be at other angles. Good. Further, the number of waves to be superimposed is not limited to two, and may be larger.
[0018]
【The invention's effect】
According to the present invention, an electromagnetic field distribution that can be easily obtained in plasma and an electromagnetic field distribution of an electromagnetic wave to be input can be made to correspond to each other, so that the power required for plasma generation can be reduced and plasma can be generated stably. There is.
[Brief description of the drawings]
FIG. 1 illustrates a microwave plasma processing apparatus according to the present invention.
FIG. 2 is a drawing for explaining a first example of the structure of a member 109 having a coupling hole.
FIG. 3 is a view for explaining a second example of the structure of a member 109 having a coupling hole.
FIG. 4 is a drawing for explaining a third example of the structure of the member 109 having a coupling hole.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 101 ... Microwave source, 102 ... Isolay, 103 ... Matching device, 104 ... Coaxial waveguide converter, 105 ... Coaxial line, 106 ... Matching chamber, 107 ... Mode converter, 108 ... Coupling hole, 109 ... Member, 110 DESCRIPTION OF SYMBOLS ... Microwave introduction window, 111 ... Processing chamber, 112 ... Static magnetic field generator, 113 ... Substrate to be processed, 114 ... Electrode, 115 ... High frequency power supply, 116 ... Matching device, 201 ... Microwave surface current, 202 ... Rectangular shape , 203 ... rectangular hole, 204 ... dielectric, 205 ... microwave electric field, 301 ... cross-shaped hole, 401 ... circular hole, 402 ... dielectric plate.

Claims (4)

その内側が排気される処理室と、この処理室内に配置され被処理基板が載置される電極と、この電極の上方の前記処理室の上部に配置され誘電体製の窓部材と、この窓部材の上方に配置されその上方から導入されたマイクロ波による放射状の表面電流が上面を流れる導電体製の部材であって前記マイクロ波を前記窓部材に導くための孔の複数が円周状に配置された部材と、前記処理室の周囲に配置されこの処理室内に静磁界を形成するための手段とを備えたプラズマ処理装置であって、
前記マイクロ波のうち電界の方向が傾いて位相が異なる複数の波が重ね合わされて形成された右回りの円偏波が、前記孔の各々から前記窓部材へ放射され、この窓部材を介して前記処理室内に導入されるプラズマ処理装置。
A processing chamber whose inside is evacuated, an electrode which is disposed in the processing chamber and on which a substrate to be processed is placed, a dielectric window member which is disposed above the processing chamber above the electrode, and the window disposed above the members plurality of circumferential holes for guiding the window member to said microwave radiating surface currents by the introduced microwave is a member made of a conductor through the top surface from above A plasma processing apparatus comprising: a member disposed in the processing chamber; and means for forming a static magnetic field in the processing chamber disposed around the processing chamber,
A clockwise circularly polarized wave formed by superimposing a plurality of waves having different phases in the direction of the electric field of the microwave is radiated from each of the holes to the window member, and through the window member. A plasma processing apparatus introduced into the processing chamber.
請求項1記載のプラズマ処理装置であって、前記は複数の方形状を組み合わせた形状を備えたプラズマ処理装置。The plasma processing apparatus according to claim 1, wherein the hole has a shape obtained by combining a plurality of square shapes. 請求項1または2に記載のプラズマ処理装置であって、前記から、電界の方向が傾いて位相が異なる複数の波長の波が重ね合わされて放射されるプラズマ処理装置。3. The plasma processing apparatus according to claim 1, wherein waves having a plurality of wavelengths with different directions and different phases are superimposed and emitted from the hole . 請求項3に記載のプラズマ処理装置であって、前記孔は、その内部に前記複数の波のうち一方の波とは異なる波長の波がその内側を通過して放射される誘電体製の部材を備えたプラズマ処理装置。4. The plasma processing apparatus according to claim 3, wherein the hole is a dielectric member through which a wave having a wavelength different from one of the plurality of waves is radiated through the hole. A plasma processing apparatus comprising:
JP18945297A 1997-07-15 1997-07-15 Plasma processing equipment Expired - Fee Related JP3736054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18945297A JP3736054B2 (en) 1997-07-15 1997-07-15 Plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18945297A JP3736054B2 (en) 1997-07-15 1997-07-15 Plasma processing equipment

Publications (2)

Publication Number Publication Date
JPH1140394A JPH1140394A (en) 1999-02-12
JP3736054B2 true JP3736054B2 (en) 2006-01-18

Family

ID=16241498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18945297A Expired - Fee Related JP3736054B2 (en) 1997-07-15 1997-07-15 Plasma processing equipment

Country Status (1)

Country Link
JP (1) JP3736054B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4209612B2 (en) * 2001-12-19 2009-01-14 東京エレクトロン株式会社 Plasma processing equipment
JP2006324551A (en) * 2005-05-20 2006-11-30 Shibaura Mechatronics Corp Plasma generator and plasma processing apparatus
JP7074795B2 (en) * 2020-04-21 2022-05-24 宏碩系統股▲フン▼有限公司 Synthetic diamond manufacturing equipment and microwave emission module used for it

Also Published As

Publication number Publication date
JPH1140394A (en) 1999-02-12

Similar Documents

Publication Publication Date Title
US7243610B2 (en) Plasma device and plasma generating method
KR100472582B1 (en) Plasma Treatment Equipment
JP3136054B2 (en) Plasma processing equipment
US6158383A (en) Plasma processing method and apparatus
US4877509A (en) Semiconductor wafer treating apparatus utilizing a plasma
JP5410950B2 (en) Plasma processing equipment
WO2010021382A1 (en) Microwave introduction mechanism, microwave plasma source and microwave plasma processing device
US5173641A (en) Plasma generating apparatus
JP5155235B2 (en) Plasma processing apparatus and plasma generation apparatus
JP5572329B2 (en) Plasma processing apparatus and plasma generation apparatus
JP2010525155A (en) Plasma generator
JP4209612B2 (en) Plasma processing equipment
JPH09289099A (en) Plasma processing method and device
JP4678905B2 (en) Plasma processing equipment
WO2021220551A1 (en) Plasma treatment device
JP5705290B2 (en) Plasma processing equipment
JP3736054B2 (en) Plasma processing equipment
JP4600928B2 (en) Microwave directional coupler, plasma generator, and plasma processing apparatus
JP3883615B2 (en) Plasma generator and plasma processing apparatus
JP3855468B2 (en) Plasma processing equipment
JP2007018819A (en) Treatment device and treatment method
JP4535356B2 (en) Plasma device
JP3823001B2 (en) Plasma processing equipment
JP4523566B2 (en) Dry etching equipment
JP2018006257A (en) Microwave plasma processing device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

LAPS Cancellation because of no payment of annual fees