JP3208995B2 - Plasma processing method and apparatus - Google Patents

Plasma processing method and apparatus

Info

Publication number
JP3208995B2
JP3208995B2 JP13012594A JP13012594A JP3208995B2 JP 3208995 B2 JP3208995 B2 JP 3208995B2 JP 13012594 A JP13012594 A JP 13012594A JP 13012594 A JP13012594 A JP 13012594A JP 3208995 B2 JP3208995 B2 JP 3208995B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
cavity
plasma processing
transmitting member
vacuum vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13012594A
Other languages
Japanese (ja)
Other versions
JPH07335631A (en
Inventor
直行 田村
克哉 渡辺
弘之 七田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13012594A priority Critical patent/JP3208995B2/en
Priority to TW083108449A priority patent/TW264601B/zh
Priority to KR1019940022983A priority patent/KR100321325B1/en
Priority to EP94114598A priority patent/EP0644575B1/en
Priority to US08/307,272 priority patent/US5580420A/en
Priority to DE69421872T priority patent/DE69421872T2/en
Publication of JPH07335631A publication Critical patent/JPH07335631A/en
Application granted granted Critical
Publication of JP3208995B2 publication Critical patent/JP3208995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はプラズマ処理方法及び装
置に係り、特にマイクロ波等の電磁波によってプラズマ
を発生させて均一に試料を処理するのに好適なプラズマ
処理方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a plasma processing method and apparatus, and more particularly to a plasma processing method and apparatus suitable for uniformly processing a sample by generating plasma by electromagnetic waves such as microwaves.

【0002】[0002]

【従来の技術】従来の技術の一例は、例えば電磁波透過
部材として石英放電管を利用した例として日立評論Vo
l.71−No.5(1989.5)に記載されてい
る。
2. Description of the Related Art An example of the prior art is an example in which a quartz discharge tube is used as an electromagnetic wave transmitting member.
l. 71-No. 5 (19899.5).

【0003】[0003]

【発明が解決しようとする課題】プラズマを利用した半
導体製造プロセスにおいては、被処理物に対してダメー
ジを与えることなく、均一に処理を行う必要がある。従
来の半導体製造装置の一例として、電磁波透過部材とし
て半球状の石英放電管を利用しているものがある。その
ため、導波管中を伝播してきた電磁波は石英放電管の形
状の影響を受けやすく、複雑な反射と屈折を繰り返して
石英放電管の内部に導入される。その結果、電磁波の伝
播モードとしてさまざまなモードが励起され、生成され
るプラズマの状態が不安定になりやすい。また、電磁波
透過部材として平板を利用した例においては空洞共振部
の径よりも小さい径の電磁波透過部材を設けているた
め、電磁波透過部材側側における電磁波の反射が一様と
ならず、即ち中心部と周辺部とで反射が異なり、放電領
域に導入される電磁波のエネルギー分布が不均一になり
やすい。そのため生成されるプラズマの分布が不均一と
なり、被処理物を均一に処理することが困難となる。こ
のように従来の方式は、生成されるプラズマの安定性と
均一性において不利な方式となっている。
In a semiconductor manufacturing process using plasma, it is necessary to uniformly process the workpiece without damaging it. As an example of a conventional semiconductor manufacturing apparatus, there is an apparatus using a hemispherical quartz discharge tube as an electromagnetic wave transmitting member. Therefore, the electromagnetic wave propagating in the waveguide is easily affected by the shape of the quartz discharge tube, and is introduced into the quartz discharge tube by repeating complicated reflection and refraction. As a result, various modes are excited as the propagation mode of the electromagnetic wave, and the state of the generated plasma tends to be unstable. Further, in the example where a flat plate is used as the electromagnetic wave transmitting member, the electromagnetic wave transmitting member having a diameter smaller than the diameter of the cavity resonance portion is provided, so that the electromagnetic wave reflection on the electromagnetic wave transmitting member side is not uniform, ie The reflection differs between the part and the peripheral part, and the energy distribution of the electromagnetic wave introduced into the discharge region tends to be non-uniform. Therefore, the distribution of the generated plasma becomes non-uniform, and it becomes difficult to uniformly process the object to be processed. As described above, the conventional method is disadvantageous in terms of stability and uniformity of generated plasma.

【0004】本発明の目的は、放電領域に導入する電磁
波のモードの遷移を抑え安定なプラズマを生成するとと
もに、放電領域に導入される電磁波のエネルギー分布を
一様にし均一なプラズマを生成することのできるプラズ
マ処理方法及び装置を提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to generate a stable plasma by suppressing a mode transition of an electromagnetic wave introduced into a discharge region and to generate a uniform plasma by making the energy distribution of the electromagnetic wave introduced into the discharge region uniform. It is an object of the present invention to provide a plasma processing method and apparatus which can be used.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、電磁波を装置内に導入する電磁波導入部と、電磁波
導入部に続き電磁波を伝搬させる空洞部と、空洞部につ
ながり放電領域を形成する真空容器と、空洞部と真空容
器との間に設けられ真空容器の一部を形成し電磁波のエ
ネルギーを真空容器内に略全面で透過させる電磁波透過
部材とから構成し、電磁波透過部材の有効透過部直径と
真空容器の内径とは略同径で、該径を被処理材の直径の
1.75倍以上とし、電磁波が電磁波透過部材及び放電
領域の境界面と空洞部の電磁波導入側端面との間で反射
を繰り返しTE01モードとなる定在波を形成させ、電磁
波導入部を伝播して来たTE11モードと混在させて放電
領域に導入するように構成した装置とし、空洞部を介し
て電磁波導入部からの電磁波を真空容器の放電領域に伝
播させ真空容器内の被処理物をプラズマ処理する方法に
おいて、電磁波導入部にTE11モードの電磁波を伝播さ
せ、電磁波が電磁波透過部材及び放電領域の境界面と空
洞部の電磁波導入側端面との間で反射を繰り返しTE01
モードとなる定在波を形成させ、電磁波導入部を伝播し
て来たTE11モードの電磁波と混在させて放電領域に導
入し、真空容器内に放電を生じさせる方法としたもので
ある。
In order to achieve the above object, an electromagnetic wave introducing section for introducing an electromagnetic wave into a device, a hollow section for transmitting an electromagnetic wave following the electromagnetic wave introducing section, and a discharge area connected to the hollow section are formed. A vacuum vessel to be provided, and an electromagnetic wave transmitting member that is provided between the cavity and the vacuum vessel, forms a part of the vacuum vessel, and transmits electromagnetic energy substantially all over the vacuum vessel. The diameter of the transmitting portion and the inner diameter of the vacuum vessel are substantially the same, and the diameter is 1.75 times or more the diameter of the material to be processed. to form a standing wave as a repeating TE 01 mode reflected between the, a structure the apparatus as a mix with TE 11 mode come to propagate electromagnetic wave introducing section for introducing the discharge region, a cavity Through the electromagnetic wave introduction section A method for plasma processing an object to be processed in the electromagnetic vacuum chamber is propagated to the discharge region of the vacuum vessel of the electromagnetic wave introducing portion to propagate electromagnetic waves in the TE 11 mode, and the boundary surface of the electromagnetic wave electromagnetic wave transmission member and the discharge region Reflection is repeated between the cavity and the electromagnetic wave introduction side end face TE 01
Mode becomes to form a standing wave, the electromagnetic wave introducing portion be mixed with the propagation of electromagnetic waves with TE 11 came mode introduced into the discharge region, it is obtained by a method of generating a discharge in the vacuum vessel.

【0006】[0006]

【作用】空洞部と真空容器との間に設けられた電磁波透
過部材を介して、電磁波のエネルギーを真空容器内に略
全面で透過させ、電磁波透過部材の有効透過部直径と真
空容器の内径とを略同径で、該径を被処理材の直径の
1.75倍以上とし、電磁波が電磁波透過部材及び放電
領域の境界面と空洞部の電磁波導入側端面との間で反射
を繰り返しTE01モードとなる定在波を形成させ、電磁
波導入部を伝播して来たTE11モードと混在させて放電
領域に導入するようにすることにより、電磁波透過部材
側の電磁波の反射端の性質が一様となるため、電磁波の
モードの遷移が抑えられ安定なプラズマを生成すること
ができるとともに、空洞部で励起される電磁波のモード
を限定してプラズマを発生させる部分での電磁波のエネ
ルギー分布を均一にすることができる。さらに、被処理
物の直径の1.75倍以上の真空容器としてそれに接続
する大型排気ダクトを組み合わせることによって、排気
コンダクタンスを大きくすることができ、低圧プロセス
あるいは大流量プロセスを可能にする。
According to the present invention, the energy of electromagnetic waves is transmitted through the entire surface of the vacuum vessel through an electromagnetic wave transmitting member provided between the cavity and the vacuum vessel. in substantially the same diameter and not less than 1.75 times the diameter of the material to be treated the該径, electromagnetic waves repeatedly reflected between the electromagnetic wave introducing end face of the boundary surface and the cavity portion of the electromagnetic wave transmission member and the discharge region TE 01 mode becomes to form a standing wave, by a mix and TE 11 modes which come to propagate electromagnetic wave introducing section so as to introduce the discharge region, the nature of the reflecting end of the electromagnetic wave of the electromagnetic wave transmission member side one As a result, the transition of the electromagnetic wave mode is suppressed and stable plasma can be generated, and the mode of the electromagnetic wave excited in the cavity is limited to make the energy distribution of the electromagnetic wave uniform in the part where the plasma is generated. To Rukoto can. Further, by combining a large-sized exhaust duct connected thereto as a vacuum vessel having a diameter of 1.75 times or more of the diameter of the object to be treated, the exhaust conductance can be increased, and a low-pressure process or a large-flow process can be realized.

【0007】プロセスガスの吹き出し口を電磁波透過部
材の近傍に設置することにより真空容器内でのガスの滞
留の影響が軽減され、プラズマを生成する部分における
プロセスガスの分布を一様にすることができる。また、
安定なプラズマを生成し、被処理物を均一に処理するた
めにはプラズマの生成部であるECR面の厚さ、及びE
CR面と被処理物との距離、ECR面と電磁波透過部材
との距離の適正化を行う必要がある。ECR面の厚さは
磁場勾配の関数として表される。ECR面における磁場
勾配の値を20G/cm以上、50G/cm以下の範囲
内に設定することにより安定で均一なプラズマを生成す
ることができる。ECR面と被処理物との距離、ECR
面と電磁波透過部材との距離はプラズマの密度と均一性
に対して大きく効く。ECR面と被処理物との距離が小
さすぎるとプラズマの拡散が十分でなく、被処理物に到
達するプラズマ(飽和イオン電流密度)の均一性が悪化
する。また、ECR面と電磁波透過部材との距離が小さ
すぎると電磁波の分布の影響を大きく受け、ECR面付
近で生成されるプラズマの均一性が悪化するため、被処
理物に到達するプラズマ(飽和イオン電流密度)の均一
性が悪化する。ECR面と被処理物との距離を30mm
以上、ECR面と電磁波透過部材との距離50mm以上
とすることにより、電磁波透過部材の消耗を低減し、且
つ、被処理物に到達するプラズマ(飽和イオン電流密
度)を均一にすることができる。このことにより、量産
ラインでの可動率向上,歩留まり向上を図ることができ
る。
By arranging the outlet of the process gas near the electromagnetic wave transmitting member, the influence of the stagnation of the gas in the vacuum vessel can be reduced, and the distribution of the process gas in the portion where plasma is generated can be made uniform. it can. Also,
In order to generate stable plasma and uniformly process an object to be processed, the thickness of the ECR surface, which is a plasma generation unit, and E
It is necessary to optimize the distance between the CR surface and the workpiece and the distance between the ECR surface and the electromagnetic wave transmitting member. The thickness of the ECR surface is expressed as a function of the magnetic field gradient. By setting the value of the magnetic field gradient on the ECR surface within the range of 20 G / cm or more and 50 G / cm or less, stable and uniform plasma can be generated. Distance between ECR surface and workpiece, ECR
The distance between the surface and the electromagnetic wave transmitting member greatly affects the density and uniformity of the plasma. If the distance between the ECR surface and the processing object is too small, the diffusion of the plasma is not sufficient, and the uniformity of the plasma (saturated ion current density) reaching the processing object is deteriorated. Further, if the distance between the ECR surface and the electromagnetic wave transmitting member is too small, the distribution of the electromagnetic wave is greatly affected, and the uniformity of the plasma generated near the ECR surface is deteriorated. Current density) is deteriorated. 30mm distance between ECR surface and workpiece
As described above, by setting the distance between the ECR surface and the electromagnetic wave transmitting member to be 50 mm or more, the consumption of the electromagnetic wave transmitting member can be reduced, and the plasma (saturated ion current density) reaching the object to be processed can be made uniform. As a result, it is possible to improve the operating ratio and the yield in the mass production line.

【0008】[0008]

【実施例】本発明の一実施例を図1ないし図3によって
説明する。図1は本発明の一実施例を示す。図2は図1
におけるガス導入部の詳細であり、図3は図1における
プラズマ生成部分を拡大した図である。本実施例はプラ
ズマを生成する手段としてマイクロ波と磁界を利用した
例である。1はマイクロ波を発生するマグネトロン、2
はマイクロ波を伝播する導波管、3は円矩形変換導波
管、4は空洞部、41は空洞部4の天板、5は磁場を発
生するソレノイドコイル、51は最上段のソレノイドコ
イル、6は電磁波透過部材(例えば石英平板)、7は真
空容器、8は被処理物を搭載するホルダ、9はホルダを
上下に移動させる駆動機構、10はホルダにエッチング
のためのRFバイアス電圧を印加するための高周波電
源、11はエッチングガスを真空容器7に導入するため
のシャワープレート、111はシャワープレート11に
設けられたガス吹き出し口、112はガス導入経路、1
2は真空容器7の圧力の調整を行うバリアブルバルブ、
13は真空容器7を真空に減圧するためのタ−ボ分子ポ
ンプ、14は粗引用真空ポンプである。15は生成され
たプラズマ、151はプラズマ15の境界面即ち電磁波
の反射面(有磁場条件の場合、電子密度>1×1011
/cm3となる面)を示す。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described with reference to FIGS. FIG. 1 shows an embodiment of the present invention. FIG. 2 shows FIG.
FIG. 3 is an enlarged view of a plasma generating portion in FIG. This embodiment is an example in which a microwave and a magnetic field are used as means for generating plasma. 1 is a magnetron that generates microwaves, 2
Is a waveguide for propagating microwaves, 3 is a circular-rectangular conversion waveguide, 4 is a hollow portion, 41 is a top plate of the hollow portion 4, 5 is a solenoid coil for generating a magnetic field, 51 is a topmost solenoid coil, 6 is an electromagnetic wave transmitting member (for example, a quartz flat plate), 7 is a vacuum vessel, 8 is a holder for mounting an object to be processed, 9 is a driving mechanism for moving the holder up and down, and 10 is applying an RF bias voltage for etching to the holder. A shower plate for introducing an etching gas into the vacuum vessel 7; a gas outlet 111 provided on the shower plate 11; a gas introduction path 112;
2 is a variable valve for adjusting the pressure of the vacuum vessel 7,
13 is a turbo molecular pump for depressurizing the vacuum vessel 7 to a vacuum, and 14 is a roughing vacuum pump. Reference numeral 15 denotes the generated plasma, and 151 denotes a boundary surface of the plasma 15, that is, a reflection surface of an electromagnetic wave (a surface having an electron density of> 1 × 10 11 / cm 3 in the case of a magnetic field).

【0009】真空容器7の内部はターボ分子ポンプ13
と粗引用真空ポンプ14によって減圧されている。試料
を処理する場合、プロセスガスをガス導入経路112か
ら電磁波透過部材6とシャワープレート11の間に導入
し、シャワープレート11に設けられたガス吹き出し口
111から真空容器7に導く。なお、シャワープレート
11を用いず、電磁波透過部材6の下面の周辺等にガス
吹き出し口を設けても同様な効果が得られる。真空容器
7の内部圧力を調節するためにバリアブルバルブ12を
設けている。
The inside of the vacuum vessel 7 is provided with a turbo molecular pump 13.
The pressure is reduced by the rough pump 14. When a sample is processed, a process gas is introduced between the electromagnetic wave transmitting member 6 and the shower plate 11 from the gas introduction path 112, and is guided to the vacuum vessel 7 from a gas outlet 111 provided in the shower plate 11. A similar effect can be obtained even if a gas outlet is provided around the lower surface of the electromagnetic wave transmitting member 6 without using the shower plate 11. A variable valve 12 is provided for adjusting the internal pressure of the vacuum vessel 7.

【0010】なお、真空容器7の内面側には、金属汚染
をさけるため、電極近傍に接地電位の部材であるアース
電極72を設け、真空容器7の内側に石英,セラミック
などで形成した円筒状の絶縁物カバー71を設置する。
絶縁物カバーは、この場合、真空容器7の内壁面とアー
ス電極72とにより形成された溝部に落とし込まれて保
持される。絶縁物カバー72は強度的におよびメンテナ
ンス周期を考慮し、例えば、5mm以上の厚さを有する
ようにしてあり、真空容器7とプラズマ15との電気導
通性を取るために、絶縁物カバー71を保持する保持部
材を兼ねたアース電極を設けている。また、金属汚染を
裂けるための方法としては、この他に、耐プラズマ性の
ある絶縁体(例えば石英、Al23、ムライト、Cr2
3等)や半導体(SiC等)で真空容器7内面を被っ
ても良い。なお、ホルダ8に高周波バイアス電力を印加
し、処理する場合には、上記耐プラズマ性のある絶縁物
の厚みは1mm以下にし、アース効果が得られやすくす
る方が好ましい。
In order to prevent metal contamination, an earth electrode 72, which is a member having a ground potential, is provided near the inner surface of the vacuum vessel 7 and a cylindrical member made of quartz, ceramic or the like is provided inside the vacuum vessel 7. Is installed.
In this case, the insulator cover is dropped and held in a groove formed by the inner wall surface of the vacuum vessel 7 and the ground electrode 72. The insulator cover 72 is designed to have a thickness of, for example, 5 mm or more in consideration of strength and a maintenance cycle. In order to obtain electrical conductivity between the vacuum vessel 7 and the plasma 15, the insulator cover 71 is provided. An earth electrode serving also as a holding member for holding is provided. Other methods for breaking metal contamination include other insulators having plasma resistance (for example, quartz, Al 2 F 3 , mullite, and Cr 2).
O 3 ) or a semiconductor (SiC or the like) may cover the inner surface of the vacuum vessel 7. When applying high-frequency bias power to the holder 8 for processing, it is preferable that the thickness of the above-mentioned plasma-resistant insulator be 1 mm or less so that the ground effect can be easily obtained.

【0011】マグネトロン1で発生したマイクロ波は導
波管2、円矩形変換導波管3を経由し、空洞部4、電磁
波透過部材6、シャワープレート11を経て真空容器7
に導かれる。真空容器7の周囲にはソレノイドコイル5
が設けられており、真空容器7の内部では磁界が存在す
る。電子は磁界からローレンツ力を受けて旋回運動を行
う。旋回運動の周期と電磁波の周波数がほぼ一致した場
合、電子は電磁波から効率良くエネルギーを受け取り、
電子サイクロトロン共鳴現象(Electron Cy
clotron Resonance、以下ECRと略
す)によってプラズマ15を生成する。装置ではECR
を起こす条件を満たす等磁界面(以下ECR面と略す)
が真空容器7の内部に存在するように設計されている。
図3に空洞部に導かれたマイクロ波の反射の様子を示
す。装置に導入された電磁波がつくる定在波aに示すよ
うに空洞部4の天板41と電磁波透過部材6の上面との
間で反射を繰り返す場合と、定在波bに示すように空洞
部4の天板41とシャワープレート11もしくは電磁波
透過部材6の下面との間で反射を繰り返す場合と、定在
波cに示すように空洞部4の天板41と生成されたプラ
ズマ15の境界面151との間で反射を繰り返す場合が
考えられる。プラズマ15の境界面151は実際にはあ
る厚みを有するが、以下簡単化して原理を説明する。生
成されたプラズマの密度が一定密度を越えた場合(有磁
場条件の場合、電子密度>1×1011個/cm3)、定
在波cが支配的となる。よって空洞部4の高さを変化さ
せた場合、空洞部4の天板41からプラズマ15の境界
面151までの距離(電磁波に対する等価距離:L=∫
√εr dx([0,l]の積分),εr=比誘電率、を用い
る)が、あるモードの管内波長の1/2の整数倍となる
時、該モードは共振を起こして定在波として空洞部4の
天板41からプラズマ15の境界面151の間に存在す
ることが可能であり、上記の条件を満たさないモードは
減衰して空洞部4の天板41からプラズマ15の境界面
151の間に存在することができなくなる。このように
空洞部分4の高さを適切に選ぶことにより、特定の単一
モードもしくは複数のモードのマイクロ波を、電磁波透
過部材6、シャワープレート11を経て真空容器7に導
くことが可能となり、均一で安定な高密度のプラズマを
発生させることができる。本実施例においては空洞部4
の直径を405mm、高さを0〜160mmの可変とし
た。また電磁波透過部材6の直径を404mm、真空容
器7の直径を350mm、電磁波透過部材6の下面とホ
ルダ8の上面との距離を175mmとした。
The microwave generated by the magnetron 1 passes through the waveguide 2, the circular-rectangular conversion waveguide 3, the cavity 4, the electromagnetic wave transmitting member 6, the shower plate 11, and the vacuum vessel 7.
It is led to. A solenoid coil 5 is provided around the vacuum vessel 7.
Is provided, and a magnetic field exists inside the vacuum vessel 7. Electrons receive a Lorentz force from a magnetic field to perform a turning motion. When the frequency of the rotating motion and the frequency of the electromagnetic wave are almost the same, the electrons receive energy efficiently from the electromagnetic wave,
Electron cyclotron resonance phenomenon (Electron Cy)
A plasma 15 is generated by clotron resonance (hereinafter abbreviated as ECR). ECR in equipment
Magnetic field surface that satisfies the conditions that cause the noise
Is designed to exist inside the vacuum vessel 7.
FIG. 3 shows how the microwave guided to the cavity is reflected. The case where the reflection is repeated between the top plate 41 of the cavity 4 and the upper surface of the electromagnetic wave transmitting member 6 as shown by the standing wave a generated by the electromagnetic wave introduced into the device, and the case where the cavity is 4 and the lower surface of the shower plate 11 or the electromagnetic wave transmitting member 6, and the boundary between the top plate 41 of the cavity 4 and the generated plasma 15 as shown by the standing wave c. It is conceivable that the reflection is repeated between the reflected light and the reflected light 151. Although the boundary surface 151 of the plasma 15 actually has a certain thickness, the principle will be briefly described below. When the density of the generated plasma exceeds a certain density (in the case of a magnetic field condition, the electron density> 1 × 10 11 / cm 3 ), the standing wave c becomes dominant. Therefore, when the height of the cavity 4 is changed, the distance from the top plate 41 of the cavity 4 to the boundary surface 151 of the plasma 15 (equivalent distance to electromagnetic waves: L = ∫)
When √εr dx (integral of [0, l], εr = relative permittivity) becomes an integral multiple of の of the guide wavelength of a mode, the mode causes resonance and a standing wave Can exist between the top plate 41 of the cavity 4 and the boundary surface 151 of the plasma 15. Modes that do not satisfy the above conditions are attenuated and the boundary surface of the plasma 15 from the top plate 41 of the cavity 4 is attenuated. 151 cannot be present. By appropriately selecting the height of the hollow portion 4 in this manner, it becomes possible to guide a microwave of a specific single mode or a plurality of modes to the vacuum vessel 7 via the electromagnetic wave transmitting member 6 and the shower plate 11, Uniform and stable high-density plasma can be generated. In this embodiment, the cavity 4
Has a diameter of 405 mm and a height of 0 to 160 mm. The diameter of the electromagnetic wave transmitting member 6 was 404 mm, the diameter of the vacuum vessel 7 was 350 mm, and the distance between the lower surface of the electromagnetic wave transmitting member 6 and the upper surface of the holder 8 was 175 mm.

【0012】なお、以下に述べる図4〜図8の傾向は上
に述べた寸法に限定されるものではない。電磁波によっ
てプラズマを発生させて試料を処理する装置において、
電磁波を装置内に導入する電磁波導入部と、放電領域を
形成する真空容器と、電磁波を伝搬させる空洞部とから
構成され、該空洞部から前記放電領域を気密に分離する
部材であって、前記空洞部での電磁波エネルギーを前記
放電領域に略全面で透過させる部材とを備え、該部材は
前記試料の被処理面を覆い、電磁波の進行方向に対して
略垂直方向面を有することを特徴とする装置であれば共
通してもっている性質である。
Note that the tendencies of FIGS. 4 to 8 described below are not limited to the dimensions described above. In an apparatus for processing a sample by generating plasma by electromagnetic waves,
An electromagnetic wave introduction unit for introducing an electromagnetic wave into the device, a vacuum container forming a discharge region, and a cavity configured to propagate the electromagnetic wave, a member that hermetically separates the discharge region from the cavity, A member for transmitting the electromagnetic wave energy in the cavity substantially all over the discharge region, wherein the member covers a surface to be processed of the sample, and has a surface substantially perpendicular to a traveling direction of the electromagnetic wave. This is the property common to all devices that do.

【0013】図4に空洞部4の高さを変化させたときに
被処理物に到達するイオン電流密度の大きさと均一性
を、図5にそのときのマイクロ波の反射波の挙動の一例
を示す。図4及び図5から空洞部4の寸法を変化させる
ことにより、飽和イオン電流密度の大きさ、均一性及び
マイクロ波の反射波が変化することが判る。ここで図4
において飽和イオン電流密度が大きく、均一性が良好な
上部空洞寸法の条件(l1〜l2の範囲)を図5にあては
めると、反射波が0となる条件にも、最大となる条件に
もなっておらず、両条件の中間部分、即ちある程度の反
射波が返っている条件となっている。このときのマイク
ロ波は単一モードと言うよりは複数モードの合成になっ
ていると考えられる。なお、導波管2あるいは円矩形変
換導波管3の部分にスタブチューナ等の整合手段をも設
けることにより、図5で反射波の大きい所でも電磁波を
有効にプラズマに入力することができる。
FIG. 4 shows the magnitude and uniformity of the ion current density reaching the object when the height of the cavity 4 is changed, and FIG. 5 shows an example of the behavior of the reflected microwave wave at that time. Show. It can be seen from FIGS. 4 and 5 that the size and uniformity of the saturated ion current density and the microwave reflected wave are changed by changing the dimensions of the cavity 4. Here, FIG.
Applying the condition (range of l 1 to l 2 ) of the upper cavity size where the saturated ion current density is large and the uniformity is good in FIG. 5, the condition where the reflected wave becomes 0 and the condition where the reflected wave becomes the maximum are obtained. It is not in the middle of both conditions, that is, the condition that a certain amount of reflected wave is returned. The microwave at this time is considered to be a combination of a plurality of modes rather than a single mode. By providing a matching means such as a stub tuner at the waveguide 2 or the circular / rectangular conversion waveguide 3, an electromagnetic wave can be effectively input to the plasma even in a place where the reflected wave is large in FIG.

【0014】図6にECR面と被処理物を搭載するホル
ダ8との距離を一定として電磁波透過部材6とECR面
の距離を変化させたときに被処理面に到達する飽和イオ
ン電流密度の大きさと均一性を、図7に電磁波透過部材
6とECR面の距離を一定としてECR面と被処理物を
搭載するホルダ8との距離を変化させたときに被処理面
に到達する飽和イオン電流密度の大きさと均一性を示
す。図6から電磁波透過部材6とECR面の距離を離す
に従って飽和イオン電流密度分布の均一性が向上するこ
とが判る。別の実験によれば飽和イオン電流密度の均一
性を10%以下にするためには電磁波透過部材6とEC
R面の距離は50mm以上必要であることが判明した。
また図7からECR面と被処理物を搭載するホルダ8と
の距離を離すに従って飽和イオン電流密度分布の均一性
が向上することが判る。別の実験によればECR面と被
処理物を搭載するホルダ8との距離を30mmよりも小
さくすると均一性が急に悪くなるため、飽和イオン電流
密度分布の均一性を10%以下にするためにはECR面
と被処理物を搭載するホルダ8との距離は30mm以上
必要であることが判明した。
FIG. 6 shows the magnitude of the saturated ion current density that reaches the surface to be processed when the distance between the electromagnetic wave transmitting member 6 and the ECR surface is changed while keeping the distance between the ECR surface and the holder 8 on which the object to be processed is fixed. FIG. 7 shows the saturation ion current density that reaches the surface to be processed when the distance between the ECR surface and the holder 8 on which the object is mounted is changed while keeping the distance between the electromagnetic wave transmitting member 6 and the ECR surface constant. Shows the size and uniformity of FIG. 6 shows that the uniformity of the saturation ion current density distribution improves as the distance between the electromagnetic wave transmitting member 6 and the ECR surface increases. According to another experiment, in order to make the uniformity of the saturated ion current density 10% or less, the electromagnetic wave transmitting member 6 and the EC
It turned out that the distance of the R-plane needs to be 50 mm or more.
Further, it can be seen from FIG. 7 that the uniformity of the saturation ion current density distribution improves as the distance between the ECR surface and the holder 8 on which the workpiece is mounted increases. According to another experiment, if the distance between the ECR surface and the holder 8 on which the object to be processed is made smaller than 30 mm, the uniformity suddenly deteriorates, so that the uniformity of the saturated ion current density distribution is reduced to 10% or less. It was found that the distance between the ECR surface and the holder 8 on which the object was mounted was required to be 30 mm or more.

【0015】図8にECR面の中心における磁場勾配を
変化させたときに被処理物に到達する飽和イオン電流密
度の大きさと均一性を示す。図8から磁場勾配の値を変
化させたとき、50G/cm、40G/cm、30G/
cmに設定した場合の放電安定性に大きな差は無いが、
20G/cmに設定した場合、やや放電が安定しない傾
向が出はじめる。別の実験によれば磁場勾配を15G/
cm以下に設定した場合、放電が安定しないことが判明
した。また、図8から磁場勾配の値を上げていった場
合、飽和イオン電流密度の試料内での平均値に大差は無
いが、均一性が悪化する傾向がある。以上のことから、
安定かつ均一な高密度のプラズマを得るためにはECR
面の中心における磁場勾配の値を20G/cm以上、5
0G/cm以下の範囲内に設定することが有効である。
さらに均一なプラズマを得るにはECRを起こす条件を
満たす等磁界面を被処理物の処理面に対して略平坦面と
する必要がある。なお、図1に示す様に、上段ソレノイ
ドコイル51の内径もしくはヨークの内径(Dy)は被
処理物や電磁波透過部材6の直径より小さくすることに
より、中心軸上の磁場強度を容易に強くすることがで
き、磁場勾配20G/cm以上、50G/cm以下でか
つ被処理物の表面に平行な面内で平坦な磁場を容易に得
ることができる。また、真空容器7の直径としては、被
処理物の直径に対して+50mm以上にすれば10%以
下の均一性を確保することが可能であった。このように
制御するために、主磁束用電磁コイルと制御用電磁コイ
ルを大きな空隙を設けることなく配置してある。
FIG. 8 shows the magnitude and uniformity of the saturated ion current density that reaches the object when the magnetic field gradient at the center of the ECR plane is changed. When changing the value of the magnetic field gradient from FIG. 8, 50 G / cm, 40 G / cm, 30 G / cm
cm, there is no significant difference in discharge stability.
When it is set to 20 G / cm, the discharge tends to be slightly unstable. According to another experiment, a magnetic field gradient of 15 G /
cm, it was found that the discharge was not stable. Further, when the value of the magnetic field gradient is increased from FIG. 8, there is no large difference in the average value of the saturated ion current density in the sample, but the uniformity tends to deteriorate. From the above,
In order to obtain stable and uniform high-density plasma, ECR
The value of the magnetic field gradient at the center of the surface is 20 G / cm or more,
It is effective to set within the range of 0 G / cm or less.
In order to obtain a more uniform plasma, it is necessary to make the iso-magnetic surface satisfying the condition for causing ECR a substantially flat surface with respect to the processing surface of the processing object. As shown in FIG. 1, the inner diameter of the upper solenoid coil 51 or the inner diameter (Dy) of the yoke is made smaller than the diameter of the object to be processed or the electromagnetic wave transmitting member 6, thereby easily increasing the magnetic field strength on the central axis. Thus, a flat magnetic field with a magnetic field gradient of 20 G / cm or more and 50 G / cm or less and in a plane parallel to the surface of the object can be easily obtained. Further, if the diameter of the vacuum container 7 is set to +50 mm or more with respect to the diameter of the object to be processed, it is possible to secure uniformity of 10% or less. In order to perform such control, the main magnetic flux electromagnetic coil and the control electromagnetic coil are arranged without providing a large gap.

【0016】本発明の第2の実施例を図9に示す。本実
施例はプラズマを生成する手段として電磁波のみを利用
した例である。本図において図1と同符号は同一部材を
示し説明を省略する。
FIG. 9 shows a second embodiment of the present invention. This embodiment is an example in which only electromagnetic waves are used as means for generating plasma. In this figure, the same reference numerals as in FIG. 1 denote the same members, and a description thereof will be omitted.

【0017】本実施例では磁場が無いため、電子密度が
7×1010個/cm3を超えるとマイクロ波がプラズマ
中に入らない点のみが前記一実施例と異なる点である
が、マイクロ波の反射端がプラズマ15の境界面151
となるため、磁場に起因する物理現象以外の作用は前記
一実施例の場合と同じである。
In this embodiment, since there is no magnetic field, only the point that the microwave does not enter the plasma when the electron density exceeds 7 × 10 10 / cm 3 is different from the above-mentioned embodiment. Is the boundary surface 151 of the plasma 15
Therefore, the operation other than the physical phenomenon caused by the magnetic field is the same as that of the above-described embodiment.

【0018】これまでは、マイクロ波(例えば2.45
GHz)を用いた実施例を示してきたが、何らこれに限
定されるものではない。電磁波によってプラズマを発生
させて試料を処理する方法において、電磁波を装置内に
導入する電磁波導入部、放電領域となる真空容器、電磁
波を共振させる空洞部分から構成され、空洞部から放電
領域を気密に分離する部材であって、空洞部での電磁波
エネルギーを放電領域に略全面で透過させる該部材を備
え、該部材は試料の被処理面を覆い、電磁波の進行方向
に対して略垂直方向面を有する装置であれば同様な効果
が期待できる。
Until now, microwaves (eg 2.45)
GHz), but the present invention is not limited to this. In a method of processing a sample by generating plasma by electromagnetic waves, the method comprises an electromagnetic wave introduction part for introducing the electromagnetic waves into the apparatus, a vacuum vessel serving as a discharge region, and a cavity part for resonating the electromagnetic waves. A member that separates and transmits the electromagnetic wave energy in the cavity almost entirely to the discharge region, the member covers a surface to be processed of the sample, and has a surface substantially perpendicular to a traveling direction of the electromagnetic wave. A similar effect can be expected if the device has the same.

【0019】[0019]

【発明の効果】以上説明したように、本発明によればプ
ラズマを発生させる部分における電磁波のエネルギー分
布を一様にすることができ、均一なプラズマを生成する
ことが可能となるとともに、真空容器内でのプラズマに
よる金属汚染を防止することができる。従って、半導体
製造装置に本発明を適用することによって大口径のウエ
ハを均一,歩留まり良く処理することができる。
As described above, according to the present invention, it is possible to make the energy distribution of electromagnetic waves uniform in a portion where plasma is generated, to generate uniform plasma, and to realize a vacuum vessel. Metal contamination due to plasma in the inside can be prevented. Therefore, by applying the present invention to a semiconductor manufacturing apparatus, a large-diameter wafer can be processed uniformly and with good yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す有磁場マイクロ波プラ
ズマエッチング装置の構成図である。
FIG. 1 is a configuration diagram of a magnetic field microwave plasma etching apparatus showing an embodiment of the present invention.

【図2】図1の装置におけるガス導入部の詳細を示す詳
細図である。
FIG. 2 is a detailed view showing details of a gas introduction unit in the apparatus of FIG.

【図3】図1の装置におけるプラズマ生成部分の拡大図
である。
FIG. 3 is an enlarged view of a plasma generation portion in the apparatus of FIG.

【図4】図1の装置における空洞部の寸法を変化させた
ときの被処理物に到達するイオン電流密度の大きさおよ
び均一性を示した図である。
FIG. 4 is a diagram showing the magnitude and uniformity of an ion current density that reaches a workpiece when the size of a cavity in the apparatus of FIG. 1 is changed.

【図5】図1の装置における空洞部の寸法を変化させた
ときのマイクロ波の反射波を示す図である。
FIG. 5 is a diagram showing reflected waves of microwaves when the dimensions of a cavity in the apparatus of FIG. 1 are changed.

【図6】図1の装置における電磁波透過部材とECR面
との距離を変化させたときの被処理物に到達するイオン
電流密度の大きさおよび均一性を示した図である。
FIG. 6 is a diagram showing the magnitude and uniformity of the ion current density reaching the object when the distance between the electromagnetic wave transmitting member and the ECR surface in the apparatus of FIG. 1 is changed.

【図7】図1の装置におけるECR面と被処理物を搭載
するホルダとの距離を変化させたときの被処理物に到達
するイオン電流密度の大きさおよび均一性を示した図で
ある。
FIG. 7 is a diagram showing the magnitude and uniformity of the ion current density reaching the object when the distance between the ECR surface and the holder for mounting the object is changed in the apparatus of FIG. 1;

【図8】図1の装置における磁場勾配を変化させたとき
の被処理物に到達するイオン電流密度の大きさおよび均
一性を示した図である。
FIG. 8 is a diagram showing the magnitude and uniformity of the ion current density reaching the object when the magnetic field gradient in the apparatus of FIG. 1 is changed.

【図9】本発明の他の実施例を示す無磁場マイクロ波プ
ラズマエッチング装置の構成図である。
FIG. 9 is a configuration diagram of a non-magnetic field microwave plasma etching apparatus showing another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…マグネトロン、2…導波管、3…円矩形変換導波
管、4…空洞部、41…空洞部天板、5…ソレノイドコ
イル、51…ソレノイドコイル、6…電磁波透過部材、
7…真空容器、8…ホルダ、9…駆動機構、10…高周
波電源、11…シャワ−プレ−ト、111…ガス吹き出
し口、112…ガス導入経路、12…バリアブルバル
ブ、13…ターボ分子ポンプ、14…粗引用真空ポン
プ、15…プラズマ、151…プラズマ境界面、71…
絶縁物カバー、72…アース電極。
DESCRIPTION OF SYMBOLS 1 ... magnetron, 2 ... waveguide, 3 ... circular rectangular conversion waveguide, 4 ... hollow part, 41 ... hollow part top plate, 5 ... solenoid coil, 51 ... solenoid coil, 6 ... electromagnetic wave transmission member,
7 ... Vacuum container, 8 ... Holder, 9 ... Drive mechanism, 10 ... High frequency power supply, 11 ... Shower plate, 111 ... Gas outlet, 112 ... Gas introduction path, 12 ... Variable valve, 13 ... Turbo molecular pump, 14 ... rough quote vacuum pump, 15 ... plasma, 151 ... plasma boundary surface, 71 ...
Insulator cover, 72 ... ground electrode.

フロントページの続き (56)参考文献 特開 平5−74592(JP,A) 特開 平6−104096(JP,A) 特開 平1−222446(JP,A) 特開 平5−190501(JP,A) 特開 平5−266992(JP,A) 特開 平6−53170(JP,A) 特開 平4−302429(JP,A) 特開 平5−190501(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/3065 C23F 4/00 Continuation of front page (56) References JP-A-5-74592 (JP, A) JP-A-6-104096 (JP, A) JP-A-1-222446 (JP, A) JP-A-5-190501 (JP) JP-A-5-266992 (JP, A) JP-A-6-53170 (JP, A) JP-A-4-302429 (JP, A) JP-A-5-190501 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/3065 C23F 4/00

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】空洞部を介して電磁波導入部からの電磁波
を真空容器の放電領域に伝播させ前記真空容器内の被処
理物をプラズマ処理する方法において、前記電磁波導入
部にTE11モードの電磁波を伝播させ、前記電磁波が前
記電磁波透過部材及び前記放電領域の境界面と前記空洞
部の電磁波導入側端面との間で反射を繰り返しTE01
ードとなる定在波を形成させ、前記電磁波導入部を伝播
して来たTE11モードの電磁波と混在させて前記放電領
域に導入し、前記真空容器内に放電を生じさせることを
特徴とするプラズマ処理方法。
1. A method for plasma processing an object to be processed in said vacuum chamber to propagate in the discharge region of the vacuum vessel electromagnetic waves from the electromagnetic wave introducing part via the cavity, the TE 11 mode to the electromagnetic wave introducing part electromagnetic waves And the electromagnetic wave repeats reflection between the boundary surface of the electromagnetic wave transmitting member and the discharge region and the end surface on the electromagnetic wave introduction side of the cavity to form a standing wave in a TE 01 mode, and the electromagnetic wave introduction unit the plasma processing method characterized by causing the electromagnetic wave and to mix the TE 11 mode came propagated and introduced into the discharge region, cause discharge in the vacuum vessel.
【請求項2】請求項1記載において、前記空洞部での電
磁波を前記放電領域に略全面に透過させるプラズマ処理
方法。
2. The plasma processing method according to claim 1, wherein the electromagnetic wave in the cavity is transmitted to substantially the entire surface of the discharge region.
【請求項3】請求項1記載において、前記放電は電磁波
と磁界とを用い、前記磁場における電子のラーマー旋回
運動の周期と前記電磁波の周波数を一致させて電子を加
速する電子サイクロトロン共鳴現象を利用するプラズマ
処理方法。
3. The electron cyclotron resonance phenomenon according to claim 1, wherein the discharge uses an electromagnetic wave and a magnetic field, and accelerating the electrons by matching the cycle of the Larmor swirling motion of the electrons in the magnetic field with the frequency of the electromagnetic wave. Plasma processing method.
【請求項4】電磁波を装置内に導入する電磁波導入部
と、前記電磁波導入部に続き前記電磁波を伝搬させる空
洞部と、前記空洞部につながり放電領域を形成する真空
容器と、前記空洞部と前記真空容器との間に設けられ前
記真空容器の一部を形成し前記電磁波のエネルギーを前
記真空容器内に略全面で透過させる電磁波透過部材とか
ら構成し、前記電磁波透過部材の有効透過部直径と前記
真空容器の内径とは略同径で、該径を被処理材の直径の
1.75倍以上とし、前記電磁波が前記電磁波透過部材
及び前記放電領域の境界面と前記空洞部の電磁波導入側
端面との間で反射を繰り返しTE01モードとなる定在波
を形成させ、前記電磁波導入部を伝播して来たTE11
ードと混在させて前記放電領域に導入するよう構成した
ことを特徴とするプラズマ処理装置。
4. An electromagnetic wave introducing section for introducing an electromagnetic wave into the device, a cavity for transmitting the electromagnetic wave following the electromagnetic wave introducing section, a vacuum vessel connected to the cavity to form a discharge region, and An electromagnetic wave transmitting member that is provided between the vacuum container and forms a part of the vacuum container and transmits the energy of the electromagnetic wave through substantially the entire surface of the vacuum container; and an effective transmitting portion diameter of the electromagnetic wave transmitting member. And the inner diameter of the vacuum vessel are substantially the same, and the diameter is set to 1.75 times or more of the diameter of the material to be processed, and the electromagnetic wave is introduced into the cavity through the electromagnetic wave transmitting member and the boundary between the discharge region and the cavity. It is configured to form a standing wave that repeats reflection with the side end face and becomes a TE 01 mode, and introduces the electromagnetic wave introduction part into the discharge region in a mixed state with the TE 11 mode that has propagated. And Zuma processing apparatus.
【請求項5】請求項4記載において、前記放電は電磁波
と磁界のECR作用を用いた手段とし、前記磁場はソレ
ノイドコイルを用いて発生させ、前記ソレノイドコイル
の内径もしくはコイルケ−スのヨ−クの内径を、被処理
物及び前記電磁波透過部材の径よりも小さくしたプラズ
マ処理装置。
5. The apparatus according to claim 4, wherein said discharge is means using an ECR effect of an electromagnetic wave and a magnetic field, and said magnetic field is generated by using a solenoid coil, and an inner diameter of said solenoid coil or a yoke of a coil case is provided. A plasma processing apparatus in which the inner diameter of the substrate is smaller than the diameter of the object to be processed and the electromagnetic wave transmitting member.
【請求項6】請求項5記載において、前記電磁波透過部
材と前記ECR面との距離を50mm以上としたプラズ
マ処理装置。
6. The plasma processing apparatus according to claim 5, wherein a distance between said electromagnetic wave transmitting member and said ECR surface is 50 mm or more.
【請求項7】請求項5記載において、前記ECR面と前
記被処理物との距離を30mm以上としたプラズマ処理
装置。
7. The plasma processing apparatus according to claim 5, wherein a distance between the ECR surface and the object is 30 mm or more.
【請求項8】請求項5記載において、前記ECR面にお
ける磁場勾配の値を20G/cm以上、50G/cm以
下の範囲内に設定したプラズマ処理装置。
8. The plasma processing apparatus according to claim 5, wherein a value of a magnetic field gradient on the ECR surface is set in a range from 20 G / cm to 50 G / cm.
【請求項9】請求項4記載において、前記真空容器内へ
のプロセスガスの吹き出し口を前記電磁波透過部材の近
傍で被処理物と平行に分散して設置したプラズマ処理装
置。
9. The plasma processing apparatus according to claim 4, wherein the outlets of the process gas into the vacuum vessel are installed in a vicinity of the electromagnetic wave transmitting member so as to be distributed in parallel with the object to be processed.
JP13012594A 1993-09-17 1994-06-13 Plasma processing method and apparatus Expired - Lifetime JP3208995B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP13012594A JP3208995B2 (en) 1994-06-13 1994-06-13 Plasma processing method and apparatus
TW083108449A TW264601B (en) 1993-09-17 1994-09-13
KR1019940022983A KR100321325B1 (en) 1993-09-17 1994-09-13 Plasma generation method and apparatus and plasma processing method and apparatus using the same
EP94114598A EP0644575B1 (en) 1993-09-17 1994-09-16 Plasma generating method and apparatus and plasma processing method and apparatus
US08/307,272 US5580420A (en) 1993-09-17 1994-09-16 Plasma generating method and apparatus and plasma processing method and apparatus
DE69421872T DE69421872T2 (en) 1993-09-17 1994-09-16 Plasma generation method and device and plasma processing method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13012594A JP3208995B2 (en) 1994-06-13 1994-06-13 Plasma processing method and apparatus

Publications (2)

Publication Number Publication Date
JPH07335631A JPH07335631A (en) 1995-12-22
JP3208995B2 true JP3208995B2 (en) 2001-09-17

Family

ID=15026552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13012594A Expired - Lifetime JP3208995B2 (en) 1993-09-17 1994-06-13 Plasma processing method and apparatus

Country Status (1)

Country Link
JP (1) JP3208995B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102340595B1 (en) * 2017-08-16 2021-12-20 대우조선해양 주식회사 Optimized cooling system using waste HVAC cooling air

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4680400B2 (en) 2001-02-16 2011-05-11 東京エレクトロン株式会社 Plasma device and manufacturing method thereof
JP5357486B2 (en) 2008-09-30 2013-12-04 東京エレクトロン株式会社 Plasma processing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102340595B1 (en) * 2017-08-16 2021-12-20 대우조선해양 주식회사 Optimized cooling system using waste HVAC cooling air

Also Published As

Publication number Publication date
JPH07335631A (en) 1995-12-22

Similar Documents

Publication Publication Date Title
US6158383A (en) Plasma processing method and apparatus
KR920002864B1 (en) Apparatus for treating matrial by using plasma
US4776918A (en) Plasma processing apparatus
JP3233575B2 (en) Plasma processing equipment
US4101411A (en) Plasma etching apparatus
JP3217274B2 (en) Surface wave plasma processing equipment
US5290993A (en) Microwave plasma processing device
KR101183047B1 (en) Plasma processing apparatus
US6427621B1 (en) Plasma processing device and plasma processing method
JP2007048718A (en) Plasma treatment device
JPH06251896A (en) Plasma treatment method and device
JP2010525155A (en) Plasma generator
JP4008728B2 (en) Plasma processing equipment
JP7001456B2 (en) Plasma processing equipment
JPH06342771A (en) Dry etching apparatus
JPH07263187A (en) Plasma treatment device
JPH0319332A (en) Microwave plasma treatment device
JPH09289099A (en) Plasma processing method and device
JP3208995B2 (en) Plasma processing method and apparatus
KR102521817B1 (en) plasma processing unit
JP2965169B2 (en) Microwave discharge reaction device and electrode device
JP2932946B2 (en) Plasma processing equipment
JPH09293599A (en) Plasma treating method and device
JP3047801B2 (en) Plasma processing method and apparatus
JP2019121514A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070713

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 12

EXPY Cancellation because of completion of term