JPH05198317A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05198317A
JPH05198317A JP4031596A JP3159692A JPH05198317A JP H05198317 A JPH05198317 A JP H05198317A JP 4031596 A JP4031596 A JP 4031596A JP 3159692 A JP3159692 A JP 3159692A JP H05198317 A JPH05198317 A JP H05198317A
Authority
JP
Japan
Prior art keywords
electrolyte
lithium
positive electrode
weight
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031596A
Other languages
Japanese (ja)
Inventor
Yuichi Aihara
雄一 相原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuasa Corp
Original Assignee
Yuasa Corp
Yuasa Battery Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuasa Corp, Yuasa Battery Corp filed Critical Yuasa Corp
Priority to JP4031596A priority Critical patent/JPH05198317A/en
Publication of JPH05198317A publication Critical patent/JPH05198317A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To improve the charge efficiency and the cycle life by using the electrolyte, in which phthalide or derivertive is added, as the organic solvent, in which lithium salt is dissolved, or the ion conductive high molecular compound. CONSTITUTION:At the time of manufacturing a positive electrode 4, manganese dioxide at 85 parts by weight, acetylene black as the conductive material at 10 parts by weight, polytetrafluoroethylene as the binder at 5 parts by weight are kneaded to be formed into a sheet, and thereafter, a positive electrode 4 at a desired diameter is punched out from a mold, and the high temperature vacuum drying is performed to make the positive electrode 4 pressure-contact to a positive electrode current collector 1. Next, at the time of manufacturing a negative electrode 5, a metal lithium foil at a desired diameter is punched out, and it is made to pressure-contact to a negative electrode current collector 2. Next, as the electrolyte to be filled, the electrolyte obtained by dissolving lithium perchlorate as the solute in the mixture solvent of propylene carbonate and dimethoxyethane at 1mol/l is used, and phthalide as the addition agent is dissolved in this electrolyte at 0.1mol/l, and a separator 6 is impregnated with this electrolyte.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、周囲温度下で可逆的に
作動するリチウム二次電池に係り、詳しくは電解質の改
良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery that operates reversibly at ambient temperature, and more particularly to improvement of electrolyte.

【0002】[0002]

【従来の技術】最近のマイクロエレクトロニクス化は、
各種電子機器のメモリーバックアップ用電源に代表され
るように、電池の電子機器内収納、エレクトロニクス電
子および回路との一体化に伴って、小型化、軽量化、薄
型化され、さらに高エネルギー密度を有する電池が要望
されている。一次電池の分野では、既にリチウム電池な
どの小型、軽量の電池が実用化されているが、その用途
分野は限られている。そこで従来の鉛電池、ニッケル−
カドミウム電池に代わる電池として、より小型軽量化が
可能な非水電解液を用いたリチウム二次電池が注目され
ているが、電極活物質のサイクル特性、自己放電特性な
どの実用物性を満足するものが見いだされていないこと
が原因で現在も多くの研究機関で検討されている。
2. Description of the Related Art Recent microelectronics is
As represented by a memory backup power supply for various electronic devices, it has been made smaller, lighter, and thinner with the integration of batteries in electronic devices and integration with electronics electronics and circuits, and has a high energy density. Batteries are desired. In the field of primary batteries, small and lightweight batteries such as lithium batteries have already been put into practical use, but their fields of use are limited. Therefore, conventional lead batteries, nickel-
As a battery that replaces the cadmium battery, a lithium secondary battery that uses a non-aqueous electrolyte that can be made smaller and lighter is drawing attention, but one that satisfies the practical physical properties such as the cycle characteristics and self-discharge characteristics of the electrode active material. It is still being investigated by many research institutes because it has not been found.

【0003】特にこのタイプの二次電池の問題点として
重要なことは、負極活物質であるリチウムが、充電時に
負極表面に樹枝状に成長することにより正極と接して電
池内部で短絡を生じたり、あるいはモッシー状に析出す
ることによりリチウムの脱落等が生じ、その結果充放電
サイクルがきわめて短くなるということである。これ
は、放電時にリチウムがイオンとなって溶出すると、負
極表面が凹凸状になりその後の充電時にリチウムが凸部
に集中的に析出する傾向があるためである。また、これ
らの析出リチウムは、表面積が大きな微粒子状であるた
め活性度が高く、そのため有機電解液と反応して電解液
を分解し電解質を劣化させるのでサイクル特性が極めて
悪くなる。
What is particularly important as a problem of this type of secondary battery is that the negative electrode active material, lithium, grows in a dendritic manner on the surface of the negative electrode during charging, thereby coming into contact with the positive electrode and causing a short circuit inside the battery. Alternatively, the deposition in the form of mossy causes the loss of lithium and the like, resulting in a very short charge / discharge cycle. This is because, when lithium is ionized and eluted during discharging, the surface of the negative electrode becomes uneven, and lithium tends to be concentrated on the convex portion during subsequent charging. Further, these precipitated lithium particles are highly active because they are in the form of fine particles having a large surface area. Therefore, they react with the organic electrolytic solution to decompose the electrolytic solution and deteriorate the electrolyte, resulting in extremely poor cycle characteristics.

【0004】この対策として、特開昭52−5423号
公報などに負極にリチウム合金を用いることが既に提案
されている。しかしながら、リチウム−アルミニウム合
金に代表されるように合金の強度が低いため、充放電の
繰り返しによって電極のわれや微細化を生じることなど
からサイクル特性の向上は難しかった。その他のリチウ
ム合金にしても同様のことが言える。また、最近では種
々の添加剤が提案されているが、依然としてその充放電
効率は低く満足できないのが現状である。
As a countermeasure against this, it has already been proposed to use a lithium alloy for the negative electrode in Japanese Patent Laid-Open Publication No. 52-5423. However, since the strength of the alloy is low as represented by a lithium-aluminum alloy, it is difficult to improve the cycle characteristics because the electrodes are cracked or miniaturized due to repeated charging and discharging. The same applies to other lithium alloys. Although various additives have been proposed recently, the charge / discharge efficiency is still low and unsatisfactory.

【0005】[0005]

【発明が解決しようとする課題】本発明は、上記従来技
術の問題点に鑑みなされたものであり、充放電効率およ
びサイクル寿命を改良したリチウム二次電池を提供する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems of the prior art, and an object of the present invention is to provide a lithium secondary battery having improved charge / discharge efficiency and cycle life.

【0006】[0006]

【課題を解決するための手段】本発明は、上記目的を達
成すべく、リチウム塩を溶解した有機溶媒あるいはイオ
ン伝導性高分子化合物に、フタライドもしくはその誘導
体を添加した電解質を用いたことを特徴とするリチウム
二次電池である。
In order to achieve the above object, the present invention is characterized by using an electrolyte obtained by adding a phthalide or a derivative thereof to an organic solvent or an ion conductive polymer compound in which a lithium salt is dissolved. And a lithium secondary battery.

【0007】[0007]

【作 用】リチウムの充放電効率が低くなる原因とし
て、リチウムによる溶媒の還元反応によりリチウムが電
気化学的に不活性化すること、及び析出したリチウムの
脱落によるものとが考えられる。従って、電解液中にお
けるリチウムの充放電効率を向上させるためには、リチ
ウム極と電解液界面の状態を変化させ、溶媒−リチウム
間の反応、及びデンドライトの成長を制御する必要があ
る。そこで上記の構成とし、リチウムの充放電効率を向
上させた。その理由は明確でないが、 (1)添加剤がリチウム極に吸着され、溶媒とリチウム
の反応を抑制する。 (2)添加剤がリチウムと反応し、リチウム極表面にL
+ イオン伝導性の保護膜を形成する。この保護膜によ
って、溶媒とリチウム極とのリチウムイオンのやり取り
は、その膜を通って行われるため、溶媒との直接反応が
抑制される。の2点によると考えられる。
[Operation] It is considered that the reason why the charge / discharge efficiency of lithium decreases is that the lithium is electrochemically inactivated by the reduction reaction of the solvent with lithium and that the deposited lithium is removed. Therefore, in order to improve the charge / discharge efficiency of lithium in the electrolytic solution, it is necessary to change the state of the interface between the lithium electrode and the electrolytic solution to control the reaction between the solvent and lithium and the growth of dendrite. Therefore, the above-mentioned configuration is adopted to improve the charge / discharge efficiency of lithium. Although the reason is not clear, (1) the additive is adsorbed on the lithium electrode and suppresses the reaction between the solvent and lithium. (2) The additive reacts with lithium to form L on the lithium electrode surface.
An i + ion conductive protective film is formed. By this protective film, the exchange of lithium ions between the solvent and the lithium electrode is performed through the film, so that the direct reaction with the solvent is suppressed. It is considered that there are two points.

【0008】[0008]

【実施例】以下、本発明の実施例について、図面を参照
して説明する。 (実施例)図1は、正極に二酸化マンガン、負極に金属
リチウム、および非水溶媒からなる電解液を用いたリチ
ウム二次電池の断面図であり、1は正極集電体を兼ねた
ケース、2は負極集電体となる封口板、3はケースと封
口板を絶縁するポリプロピレン製ガスケット、4は正
極、5は負極、6はセパレータである。
Embodiments of the present invention will be described below with reference to the drawings. (Example) FIG. 1 is a cross-sectional view of a lithium secondary battery using an electrolytic solution containing manganese dioxide for the positive electrode, metallic lithium for the negative electrode, and a non-aqueous solvent, and 1 is a case which also serves as a positive electrode current collector, Reference numeral 2 is a sealing plate that serves as a negative electrode current collector, 3 is a polypropylene gasket that insulates the case and the sealing plate, 4 is a positive electrode, 5 is a negative electrode, and 6 is a separator.

【0009】次に、製造方法について説明する。まず、
正極4を作成すべく二酸化マンガン85重量部、導電材
としてアセチレンブラック10重量部、および結着剤と
してポリテトラフルオロエチレン5重量部を混練し、厚
さ0.7mmのシート状に成形した後、直径15mmに
打ち抜いた。その後高温真空乾燥し、正極集電体1に圧
着した。次に負極5を形成すべく厚さ0.4mmの金属
リチウム箔を直径16mmに打ち抜き負極集電体2に圧
着した。次にセパレータ6としてポリプロピレン製微孔
膜を前述の正極4と負極5との間に配置した。電解液
は、プロピレンカーボネートとジメトキシエタンの1:
1混合溶媒に溶質として、過塩素酸リチウムを1mol
/lとなるように溶解したものを用い、これに添加剤と
してフタライドを0.1mol/l溶解して前述のセパ
レータ6に染み込ませて電池を作製した。この様にして
作製した電池Aについて次の試験を実施した。 サイクル試験 試験温度:25℃ 充 電:定電流 0.5mA, 終止電圧 3.5V 放 電:定電流 1.0mA, 終止電圧 2.4V
Next, the manufacturing method will be described. First,
To prepare the positive electrode 4, 85 parts by weight of manganese dioxide, 10 parts by weight of acetylene black as a conductive material, and 5 parts by weight of polytetrafluoroethylene as a binder were kneaded to form a sheet having a thickness of 0.7 mm. It was punched out to a diameter of 15 mm. Then, it was vacuum-dried at high temperature and pressure-bonded to the positive electrode current collector 1. Next, in order to form the negative electrode 5, a metal lithium foil having a thickness of 0.4 mm was punched into a diameter of 16 mm and pressure-bonded to the negative electrode current collector 2. Next, a polypropylene microporous film was placed as the separator 6 between the positive electrode 4 and the negative electrode 5 described above. The electrolytic solution is propylene carbonate and dimethoxyethane 1: 1:
1 mol of lithium perchlorate as a solute in 1 mixed solvent
A battery was prepared by using phthalide as an additive in an amount of 0.1 mol / l and dissolving it in the separator 6 described above. The following test was carried out on the battery A thus manufactured. Cycle test Test temperature: 25 ° C Charge: Constant current 0.5mA, Final voltage 3.5V Discharge: Constant current 1.0mA, Final voltage 2.4V

【0010】(比較例)電解液に添加剤としてフタライ
ドを添加せずに実施例と同様に比較例の電池Bを作製
し、同様の方法で試験を実施した。
(Comparative Example) A battery B of Comparative Example was prepared in the same manner as in Example without adding phthalide as an additive to the electrolytic solution, and a test was conducted in the same manner.

【0011】図2にサイクル試験の結果を示す。図2か
ら明らかなように、電池Aは電池Bに比べて容量の低下
が少なく、本発明の効果が発揮されているのがわかる。
本発明による添加剤を添加できる有機溶媒は、特に限定
されるものではなく、例えば、プロピレンカーボネー
ト、エチレンカーボネート、ジエチルカーボネート、γ
−ブチロラクトン、スルホラン、1,3−ジメチル−2
−イミダゾリジノンに代表される高誘電率溶媒、および
テトラヒドロフラン、2−メチルテトラヒドロフラン、
1,2−ジメトキシエタン、1,3−ジオキソラン、4
−メチル−1,3−ジオキソランに代表される低粘度溶
媒がある。これらの中から1種以上の溶媒を用いた電解
液を使用してもよい。また、溶質であるリチウム塩につ
いても、例えばLiClO4 、LiSCN、LiB
4 、LiAsF6 、LiCF3 SO3 、LiCF3
2 、などの無機イオン塩や、ドデジルベンゼンスルホ
ン酸リチウム等の有機イオン塩が挙げられる。これらの
イオン性化合物は、2種以上を併用してもよい。
FIG. 2 shows the result of the cycle test. As is clear from FIG. 2, the capacity of the battery A is less decreased than that of the battery B, and the effect of the present invention is demonstrated.
The organic solvent to which the additive according to the present invention can be added is not particularly limited, and for example, propylene carbonate, ethylene carbonate, diethyl carbonate, γ
-Butyrolactone, sulfolane, 1,3-dimethyl-2
A high dielectric constant solvent represented by imidazolidinone, and tetrahydrofuran, 2-methyltetrahydrofuran,
1,2-dimethoxyethane, 1,3-dioxolane, 4
There are low viscosity solvents represented by -methyl-1,3-dioxolane. You may use the electrolyte solution using the solvent of 1 or more types among these. Further, regarding a lithium salt as a solute, for example, LiClO 4 , LiSCN, LiB
F 4 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 C
Examples thereof include inorganic ion salts such as O 2 and organic ion salts such as lithium dodecylbenzenesulfonate. Two or more kinds of these ionic compounds may be used in combination.

【0012】[0012]

【発明の効果】上述した如く、本発明は充放電効率およ
びサイクル寿命を改良したリチウム二次電池を提供する
ことができるのでその工業的価値は極めて大である。
INDUSTRIAL APPLICABILITY As described above, the present invention can provide a lithium secondary battery with improved charge / discharge efficiency and cycle life, and therefore its industrial value is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す縦断面図である。FIG. 1 is a vertical sectional view showing an embodiment of the present invention.

【図2】本発明の実施例と従来の比較例とのサイクル特
性の比較を示すグラフである。
FIG. 2 is a graph showing a comparison of cycle characteristics between an example of the present invention and a conventional comparative example.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 無機化合物を溶解した有機溶媒あるいは
イオン伝導性高分子化合物に、フタライドもしくはその
誘導体を添加した電解質を用いることを特徴とするリチ
ウム二次電池。
1. A lithium secondary battery using an electrolyte prepared by adding phthalide or a derivative thereof to an organic solvent or an ion conductive polymer compound in which an inorganic compound is dissolved.
JP4031596A 1992-01-21 1992-01-21 Lithium secondary battery Pending JPH05198317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031596A JPH05198317A (en) 1992-01-21 1992-01-21 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031596A JPH05198317A (en) 1992-01-21 1992-01-21 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05198317A true JPH05198317A (en) 1993-08-06

Family

ID=12335582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031596A Pending JPH05198317A (en) 1992-01-21 1992-01-21 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05198317A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170814A4 (en) * 1999-11-29 2006-11-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte and non-aqueous electrolyte cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170814A4 (en) * 1999-11-29 2006-11-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte and non-aqueous electrolyte cell

Similar Documents

Publication Publication Date Title
EP3605710B1 (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN109980285B (en) Electrolyte system for lithium-chalcogen cells
JP4543085B2 (en) Additive for lithium secondary battery
KR100413816B1 (en) Electrode active materials for lithium secondary batteries, method for preparing the same, and lithium secondary batteries using the same
EP3605708B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
JP2002075447A (en) Electrolyte liquid for lithium-sulfur cell, and lithium- sulfur cell using the same
JP5410277B2 (en) Nonaqueous electrolyte additive having cyano group and electrochemical device using the same
US6146791A (en) Hydrogenated fullerenes as an additive to carbon anode for rechargeable lithium-ion batteries
JPH0896849A (en) Nonaqueous electrolytic secondary battery
KR100416150B1 (en) Method of preparing lithium secondary battery and lithium secondary battery prepared by same
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JPH0456079A (en) Nonaqueous electrolyte for lithium secondary battery and lithium secondary battery thereof
JP4710230B2 (en) Secondary battery electrolyte and secondary battery
JP2003109662A (en) Method of manufacturing secondary battery
JPH07282846A (en) Nonaqueous electrolytic battery
JPH05198317A (en) Lithium secondary battery
KR100432669B1 (en) Negative active material for rechargeable lithium batteries and preparing for same
KR100330151B1 (en) A electrolyte for a lithium secondary battery
JPH0359963A (en) Lithium secondary battery
JP3115839B2 (en) Lithium secondary battery
JPH09245798A (en) Lithium secondary battery
KR20190025994A (en) Rechargeable electrochemical lithium ion battery
KR100440932B1 (en) Electrolytes for lithium rechargeable battery
JPH07282845A (en) Nonaqueous electrolytic secondary battery