JPH0519671B2 - - Google Patents
Info
- Publication number
- JPH0519671B2 JPH0519671B2 JP58226133A JP22613383A JPH0519671B2 JP H0519671 B2 JPH0519671 B2 JP H0519671B2 JP 58226133 A JP58226133 A JP 58226133A JP 22613383 A JP22613383 A JP 22613383A JP H0519671 B2 JPH0519671 B2 JP H0519671B2
- Authority
- JP
- Japan
- Prior art keywords
- fuel
- distribution
- multiplication factor
- infinite multiplication
- enrichment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 87
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 15
- 238000009835 boiling Methods 0.000 claims description 12
- 239000002574 poison Substances 0.000 claims description 4
- 231100000614 poison Toxicity 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 22
- 229910052770 Uranium Inorganic materials 0.000 description 11
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 11
- 239000008188 pellet Substances 0.000 description 9
- 230000009257 reactivity Effects 0.000 description 5
- 238000005253 cladding Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000000498 cooling water Substances 0.000 description 3
- 230000000712 assembly Effects 0.000 description 2
- 238000000429 assembly Methods 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001093 Zr alloy Inorganic materials 0.000 description 1
- WZECUPJJEIXUKY-UHFFFAOYSA-N [O-2].[O-2].[O-2].[U+6] Chemical compound [O-2].[O-2].[O-2].[U+6] WZECUPJJEIXUKY-UHFFFAOYSA-N 0.000 description 1
- FCTBKIHDJGHPPO-UHFFFAOYSA-N dioxouranium Chemical compound O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004992 fission Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- 239000003758 nuclear fuel Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 229910000439 uranium oxide Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Description
【発明の詳細な説明】
[発明の技術分野]
本発明は、沸騰水型原子炉用燃料集合体に関す
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel assembly for a boiling water nuclear reactor.
[発明の技術的背景とその問題点]
沸騰水型原子炉は、通常第1図に示す如く構成
されており図中符号1は原子炉圧力容器を示す。
この原子炉圧力容器1の中心部には多数の燃料集
合体2…を装荷してなる炉心3が設置されてい
る。また原子炉圧力容器1の内部には冷却水4が
炉心3の上方まで収容されている。そして原子炉
圧力容器1の上方には気水分離器5及び蒸気乾燥
器6が収容されている。さらに原子炉圧力容器1
の周壁には、上部に主蒸気出口ノズル7、その下
方に給水ノズル8がそれぞれ接続されている。[Technical Background of the Invention and Problems thereof] A boiling water nuclear reactor is generally constructed as shown in FIG. 1, and reference numeral 1 in the figure indicates a reactor pressure vessel.
A reactor core 3 loaded with a large number of fuel assemblies 2 is installed in the center of the reactor pressure vessel 1. Further, cooling water 4 is accommodated inside the reactor pressure vessel 1 up to the upper part of the reactor core 3 . A steam separator 5 and a steam dryer 6 are housed above the reactor pressure vessel 1. Furthermore, reactor pressure vessel 1
A main steam outlet nozzle 7 is connected to the upper part of the peripheral wall, and a water supply nozzle 8 is connected to the lower part thereof.
前記燃料集合体2は、第2図及び第3図に示す
如く構成されている。第2図は燃料集合体の斜視
図であり、第3図は燃料集合体の横断面図であ
る。すなわち燃料集合体2は角筒状のチヤンネル
9内に多数の燃料棒10…をマトリツクス状(例
えば8×8本)に配列し、それらの燃料棒10…
の上端部および下端部を上部タイプレート11及
び下部タイプレート12によりそれぞれ支持し、
さらにこれら上部タイプレート11および下部タ
イプレート12間の複製箇所をスペーサ13…に
て支持することによつて燃料棒10…の相互の間
隔を一定に保持する構成となつている。 The fuel assembly 2 is constructed as shown in FIGS. 2 and 3. FIG. 2 is a perspective view of the fuel assembly, and FIG. 3 is a cross-sectional view of the fuel assembly. That is, the fuel assembly 2 has a large number of fuel rods 10 arranged in a matrix (e.g. 8×8) in a rectangular cylindrical channel 9, and these fuel rods 10...
The upper end portion and the lower end portion are supported by an upper tie plate 11 and a lower tie plate 12, respectively,
Further, by supporting the duplicated portions between the upper tie plate 11 and the lower tie plate 12 with spacers 13, the mutual spacing between the fuel rods 10 is maintained constant.
前記燃料棒10は、第4図に示すように構成さ
れている。第4図は燃料棒を一部切欠して示す側
面図であり、例えばジルカロイよりなる被覆管1
4内に円柱状ペレツトとして形成された多数のウ
ラン燃料15…を積層し、上方よりスプリング1
6で押圧して封入した構成のもので、各ウラン燃
料15は酸化ウラン(UO2)の粉末を焼結して一
定形状のペレツトとして形成されている。なお、
被覆管14の上端および下端開口は上部端栓17
A、下部端栓17Bによりそれぞれ密閉されてい
る。また、第3図中、燃料棒10A(図中G印で
示す)はUO2と可燃性毒物としてのGd2O2(ガト
リニア)の混合粉末を焼結したペレツトを封入し
た燃料棒であり、以後Gd入り燃料棒と称する。
この場合のカドリニアの濃度は5wt%程度であ
り、また、Gd入り燃料棒本数は7本程度である。 The fuel rod 10 is constructed as shown in FIG. FIG. 4 is a partially cutaway side view of a fuel rod, for example, a cladding tube 1 made of Zircaloy.
A large number of uranium fuels 15 formed as cylindrical pellets are stacked in the spring 1 from above.
Each uranium fuel 15 is formed into pellets of a certain shape by sintering uranium oxide (UO 2 ) powder. In addition,
The upper and lower end openings of the cladding tube 14 are connected to upper end plugs 17.
A and each are sealed by a lower end plug 17B. In addition, in FIG. 3, the fuel rod 10A (indicated by G in the figure) is a fuel rod in which pellets of sintered mixed powder of UO 2 and Gd 2 O 2 (Gatlinia) as a burnable poison are enclosed. Hereinafter, it will be referred to as a Gd-containing fuel rod.
In this case, the concentration of Cadolinia is about 5 wt%, and the number of Gd-containing fuel rods is about 7.
上記構成によると冷却水4は炉心3を下方から
上方に上昇しその際炉心3におけるウラン燃料の
核分裂に伴つて発生する熱エネルギーにより沸騰
する。発生した蒸気は気水分離器5及び蒸気乾燥
機6を介して主蒸気出口ノズル7より発電所のタ
ービン駆動用として取出される。またタービン
(図示せず)を通過した蒸気は復水器(図示せず)
で冷却液化され、冷却水4として再度給水入口ノ
ズル8より圧力容器1へ供給される。 According to the above configuration, the cooling water 4 rises from below to above the reactor core 3 and is boiled by the thermal energy generated as a result of nuclear fission of the uranium fuel in the reactor core 3. The generated steam is taken out from a main steam outlet nozzle 7 via a steam separator 5 and a steam dryer 6 for use in driving a turbine of a power plant. In addition, the steam that has passed through the turbine (not shown) is transferred to a condenser (not shown).
The water is cooled and liquefied, and is again supplied to the pressure vessel 1 from the water supply inlet nozzle 8 as cooling water 4.
ところで、従来の燃料集合体にあつては、燃料
棒10内に封入するウラン燃料15…の濃縮度を
すべて同一としており、炉心3の上下方向の235U
濃縮度分布は第5図の如く一様となつていた。第
5図は横軸に濃縮度(wt%)をとり縦軸に燃料
棒位置をとり燃料棒軸方向における235U濃縮度分
布を示した図であり、第5図に示す例では一様に
3.0(wt%)である。 By the way, in the conventional fuel assembly, the enrichment of the uranium fuel 15 sealed in the fuel rods 10 is all the same, and the enrichment of the uranium fuel 15 in the vertical direction of the reactor core 3 is the same.
The concentration distribution was uniform as shown in Figure 5. Figure 5 is a diagram showing the 235 U enrichment distribution in the axial direction of the fuel rods, with the horizontal axis representing the enrichment (wt%) and the vertical axis representing the fuel rod position.
3.0 (wt%).
また、Gdの混入量も燃料棒軸方向で一様とな
つており、例えば、第6図のごとく約7本の燃料
棒の全長にわたつてGdが混入されていた。なお
第6図は横軸にGd入燃料棒の本数をとり縦軸に
燃料棒位置をとり軸方向におけるGd混入量分布
を示した図である。 Furthermore, the amount of Gd mixed in was also uniform in the axial direction of the fuel rods, and for example, as shown in FIG. 6, Gd was mixed over the entire length of about seven fuel rods. Note that FIG. 6 is a diagram showing the distribution of the amount of Gd mixed in the axial direction, with the number of Gd-containing fuel rods plotted on the horizontal axis and the fuel rod position plotted on the vertical axis.
ところで、一般に炉心3の実効増倍率Keffは実
効平均無限増倍率∞に比例する。また炉心3の
上端から下方へ向つてZの位置における炉心出力
をP、無限増倍率をK∞とするとき、実効平均無
限増倍率∞は、次の式()によつて近似的に
表わされる。 By the way, in general, the effective multiplication factor K eff of the core 3 is proportional to the effective average infinite multiplication factor ∞ . Further, when the core power at position Z downward from the top of the core 3 is P and the infinite multiplication factor is K ∞ , the effective average infinite multiplication factor ∞ is approximately expressed by the following equation (). .
∞=∫K∞・P・dZ/∫P・dZ ……
特に、燃料を有効に利用する、という観点から
は、運転サイクル末期において、実効平均無限増
倍率∞を高めることが必要である。 ∞ = ∫K ∞・P・dZ/∫P・dZ ... In particular, from the viewpoint of using fuel effectively, it is necessary to increase the effective average infinite multiplication factor ∞ at the end of the driving cycle.
上記無限増倍率K∞は235U濃縮度にほぼ比例す
る。また燃焼度がある値(103MWd/t)を越え
ると第7図に示すように燃焼度に逆比例する。第
7図は横軸に燃焼度をとり縦軸に無限増倍率K∞
をとり、燃焼度変化に伴なう無限増倍率K∞変化
を示した図で、線図Aは濃縮度が3.0(wt%)の場
合、線図Bは濃縮度が3.5(wt%)の場合、線図C
は濃縮度が4.0(wt%)の場合をそれぞれ示す。 The above infinite multiplication factor K ∞ is approximately proportional to the 235 U enrichment. Furthermore, when the burnup exceeds a certain value (10 3 MWd/t), it becomes inversely proportional to the burnup as shown in Figure 7. Figure 7 shows the burnup on the horizontal axis and the infinite multiplication factor K ∞ on the vertical axis.
This is a diagram showing the infinite multiplication factor K ∞ change as the burnup changes. Diagram A is for an enrichment of 3.0 (wt%), and diagram B is for an enrichment of 3.5 (wt%). If the diagram C
indicates the case where the concentration is 4.0 (wt%).
しかしながら、従来燃料棒10内の上下方向の
235U濃縮度分布及びGd混入量がほぼ一様であり、
一方燃焼は上端部および下端部ではあまり進まず
中央部分で良く燃焼するという分布であるのでサ
イクル末期における無限増倍率K∞は分布は第8
図に示すようになる。第8図は横軸に無限増倍率
(K∞)および炉心出力をとり、サイクル末期にお
ける無限増倍率(K∞)および炉心出力の軸方向
分布を示した図であり、炉心出力を破線で、無限
増倍率(K∞)を実線でそれぞれ示す。すなわち
炉心出力分布は無限増倍率(K∞)分布とは逆に
なつており、炉心出力が高い所では無限増倍率
(K∞)が低くなつている。したがつて前記式
()からも明らかなように実効平均無限増倍率
K∞を高めることはできず炉心3の反応度を高め
る上では好ましいことではなかつた。 However, conventionally, the vertical direction inside the fuel rod 10
235 U enrichment distribution and Gd contamination amount are almost uniform,
On the other hand, the distribution is such that combustion does not progress much at the upper and lower ends and burns well at the center, so the infinite multiplication factor K ∞ at the end of the cycle is 8th in the distribution.
The result will be as shown in the figure. Figure 8 is a diagram showing the axial distribution of the infinite multiplication factor (K ∞ ) and core power at the end of the cycle, with the horizontal axis representing the infinite multiplication factor (K ∞ ) and the core power. The infinite multiplication factor (K ∞ ) is shown by a solid line. In other words, the core power distribution is opposite to the infinite multiplication factor (K ∞ ) distribution, and the infinite multiplication factor (K ∞ ) is low where the core power is high. Therefore, as is clear from the above equation (), the effective average infinite multiplication factor
K ∞ could not be increased, which was not desirable in terms of increasing the reactivity of the core 3.
[発明の目的]
本発明は以上の点にもとづいてなされたもので
その目的とするところは、サイクル末期において
無限増倍率K∞の上下方向の分布が炉心の上下方
向出力分布と同一傾向を呈するように235U濃縮度
分布及びGd入り燃料棒本数分布を設定して中性
子の有効利用を図り、平均無限増倍率∞を高め
ることにより、ウラン燃料を増加することなしに
炉心反応度を高めうる沸騰水型原子炉用燃料集合
体を提供することにある。[Objective of the Invention] The present invention has been made based on the above points, and its purpose is to ensure that the vertical distribution of the infinite multiplication factor K ∞ exhibits the same tendency as the vertical power distribution of the core at the end of the cycle. By setting the 235 U enrichment distribution and the distribution of the number of Gd-filled fuel rods to make effective use of neutrons and increasing the average infinite multiplication factor ∞ , boiling can increase core reactivity without increasing uranium fuel. An object of the present invention is to provide a fuel assembly for a water reactor.
[発明の概要]
すなわち本発明による沸騰水型原子炉用燃料集
合体は、チヤンネル内に複数本の燃料棒を収容し
上下端を上部タイプレートおよび下部タイプレー
トで支持してなる沸騰水型原子炉用燃料集合体に
おいて、燃料集合体軸方向上端部および下端部の
燃料濃縮度を中央部より低くするとともに、燃料
集合体軸方向上端部および下端部の可燃性毒物含
有量を中央部より少なくした構成である。[Summary of the Invention] That is, the fuel assembly for a boiling water nuclear reactor according to the present invention is a boiling water nuclear reactor fuel assembly in which a plurality of fuel rods are housed in a channel and the upper and lower ends are supported by an upper tie plate and a lower tie plate. In a fuel assembly for a reactor, the fuel enrichment at the upper and lower ends in the axial direction of the fuel assembly is lower than in the center, and the content of burnable poisons at the upper and lower ends in the axial direction of the fuel assembly is lower than in the center. This is the configuration.
このような濃縮度及びGd分布を与えることに
よつて、サイクル末期において炉心出力の高い部
分ほどウラン燃料と中性子照射も多くなり、それ
によつて中性子の有効利用を図ることができると
ともに、炉心反応度を高めることが可能となる。 By providing such enrichment and Gd distribution, the areas with higher core power receive more uranium fuel and neutron irradiation at the end of the cycle, which makes it possible to utilize neutrons effectively and to reduce core reactivity. It becomes possible to increase the
[発明の実施例]
以下、本発明の一実施例を第9図ないし第16
図を参照して説明する。[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 9 to 16.
This will be explained with reference to the figures.
第9図は、沸騰水型原子炉用燃料集合体を構成
する多数の燃料棒のうちの1本を示す縦断面図で
ある。燃料棒101は、細長い被覆管102の内
部に円柱状ペレツトとして形成された多数のウラ
ン燃料棒103A,103B,…,103Nを積
層し、上端よりスプリング104で押圧し、被覆
管102の上端部および下端部をそれぞれ上部栓
体105及び下部栓体106で密封した構成とな
つている。上記ウラン燃料103A,103B,
…,103Nは酸化ウランの粉末を焼結して円柱
状のペレツトに形成したものであり、それらの
235U濃縮度は従来のようにすべて一定ではなく、
第10図に示すように上端部および下端部の濃縮
度を中央部の濃縮度より低くしてある。第10図
は横軸に濃縮度(wt%)をとり縦軸に燃料棒位
置をとり濃縮度の軸方向分布を示した図であり、
上端部および下端部では2.50(wt%)、中央部では
3.25(wt%)である。 FIG. 9 is a longitudinal cross-sectional view showing one of the many fuel rods constituting a fuel assembly for a boiling water reactor. The fuel rod 101 is constructed by stacking a large number of uranium fuel rods 103A, 103B, ..., 103N formed as cylindrical pellets inside an elongated cladding tube 102, and pressing them from the upper end with a spring 104. The lower ends are sealed with an upper plug 105 and a lower plug 106, respectively. The above uranium fuel 103A, 103B,
..., 103N are cylindrical pellets formed by sintering uranium oxide powder;
The 235 U concentration is not constant as in the past;
As shown in FIG. 10, the concentration at the upper and lower ends is lower than that at the center. Figure 10 is a diagram showing the axial distribution of enrichment, with the horizontal axis representing the enrichment (wt%) and the vertical axis representing the fuel rod position.
2.50 (wt%) at the top and bottom, and at the middle
3.25 (wt%).
なお、総ての燃料棒101に、このような濃縮
度分布をつけなくてもよく、燃料集合体平均とし
て軸方向に濃縮度分布がついていればよい。 Note that it is not necessary to provide such an enrichment distribution to all the fuel rods 101, and it is sufficient that the enrichment distribution is provided in the axial direction as an average of the fuel assemblies.
次にGd分布について説明する。即ち第11図
に示すように燃料集合体の上端部および下端部で
は断面で見て6本のGd入り燃料棒111が存在
し、これに対して中央部では8本のGd入り燃料
棒111が存在するように構成されている。これ
を各断面でみると上端部および下端部では第12
図に示すように、中央部では第13図に示すよう
に構成されている。なお、例えば第12図に示す
Gd入燃料棒111は上端部およびし下端部にGd
入燃料ペレツトを有し、その間は通常の燃料ペレ
ツトである。また第13図に示すGd入燃料棒1
11は中央部にGd入燃料ペレツトを有し上端部、
下端部は通常の燃料ペレツトである。 Next, the Gd distribution will be explained. That is, as shown in FIG. 11, there are six Gd-containing fuel rods 111 in the cross section at the upper and lower ends of the fuel assembly, whereas in the center, there are eight Gd-containing fuel rods 111. configured to exist. Looking at this in each cross section, at the upper and lower ends, the 12th
As shown in the figure, the central portion is constructed as shown in FIG. 13. For example, as shown in FIG.
The Gd-filled fuel rod 111 has Gd at its upper end and lower end.
The fuel pellets in between are normal fuel pellets. In addition, Gd-filled fuel rod 1 shown in Fig. 13
11 has a Gd-containing fuel pellet in the center and an upper end,
The lower end is a regular fuel pellet.
以上の構成をもとに第14図ないし第16図を
参照して作用を説明する。第14図は横軸に燃焼
度(MWd/t)をとり縦軸に無限増倍率(K∞)
をとり、中央部の無限増倍率(K∞)変化(図中
破線で示す)および上、下端部の無限増倍率
(K∞)変化(図中実線で示す)を示した図であ
る。また第15図はサイクル初期の炉心出力(図
中破線で示す)および無限増倍率(K∞)の軸方
向分布を示す図であり、第16図はサイクル末期
の炉心出力(図中破線で示す)及無限増倍率
(K∞)の軸方向を示す図である。すなわちサイク
ル初期においては中央部の無限増倍率(K∞)は
燃料濃縮度が高いにもかかわらずGd量が多いた
めに第14図の破線のD1点に示すように上、下
端部の無限増倍率(K∞)(図中実線のE1点)より
低くなつている。この為サイクル初期の炉心出力
分布は第15図に示すように無限増倍率(K∞)
の分布に従がつて上、下端部で高く、中央部で低
い分布となつている。 Based on the above configuration, the operation will be explained with reference to FIGS. 14 to 16. In Figure 14, burnup (MWd/t) is plotted on the horizontal axis and infinite multiplication factor (K ∞ ) is plotted on the vertical axis.
This is a diagram showing the infinite multiplication factor (K ∞ ) change at the center (indicated by a broken line in the figure) and the infinite multiplication factor (K ∞ ) change at the upper and lower ends (indicated by a solid line in the figure). Fig. 15 is a diagram showing the axial distribution of the core power at the beginning of the cycle (indicated by the broken line in the figure) and the infinite multiplication factor (K ∞ ), and Fig. 16 is a diagram showing the core power at the end of the cycle (indicated by the broken line in the figure). ) and the axial direction of the infinite multiplication factor (K ∞ ). In other words, at the beginning of the cycle, the infinite multiplication factor (K ∞ ) at the center is large due to the large amount of Gd despite the high fuel enrichment. It is lower than the multiplication factor (K ∞ ) (solid line E1 point in the figure). For this reason, the core power distribution at the beginning of the cycle has an infinite multiplication factor (K ∞ ) as shown in Figure 15.
According to the distribution of , it is high at the top and bottom and low at the center.
このような状態で燃焼が進むので、サイクル末
期における燃焼度分布も、第15図で示したと同
様即ち上端部および下端部で燃焼が進み、中央部
で燃焼が進まないという分布となる。その結果上
端部および下端部の無限増倍率K∞は、第14図
の実線のE2点に達し、これに対して中央部の無
限増倍率(K∞)は、破線のD2点に達する。 Since combustion proceeds in such a state, the burnup distribution at the end of the cycle is similar to that shown in FIG. 15, that is, combustion proceeds at the upper and lower ends and does not proceed at the center. As a result, the infinite multiplication factor K ∞ at the upper and lower ends reaches point E 2 on the solid line in Figure 14, whereas the infinite multiplication factor (K ∞ ) at the center reaches point D 2 on the broken line. .
そしてサイクル末期の無限増倍率(K∞)分布、
及び炉心出力分布は第16図に示すようになる。
すなわち炉心出力分布は無限増倍率(K∞)の分
布に従がつて、中央部で高く、上下端部で低い出
力分布となつている。よつて、前述した式()
において、無限増倍率K∞が高い所の炉心出力が
高くなつているので実効平均無限増倍率∞は大
きくなる。そして、サイクル末期において、中央
部の反応度の高い場所において、中性子が燃料に
効果的に利用され、また、上端部および下端部の
出力を低くすることにより、図示しない上下反射
体への中性子漏れを低減させることが可能となり
燃料の有効利用を図ることもできる。 And the infinite multiplication factor (K ∞ ) distribution at the end of the cycle,
The core power distribution is as shown in FIG.
In other words, the core power distribution follows the distribution of the infinite multiplication factor (K ∞ ), with high power at the center and low power at the upper and lower ends. Therefore, the above formula ()
In , the effective average infinite multiplication factor ∞ increases because the core power is increasing in areas where the infinite multiplication factor K ∞ is high. At the end of the cycle, neutrons are effectively used for fuel in the central area with high reactivity, and by lowering the output at the upper and lower ends, neutrons leak to the upper and lower reflectors (not shown). This makes it possible to reduce the amount of fuel used, thereby making it possible to use fuel more effectively.
なお本発明は上記実施例の構成に限定されるも
のではなく、例えば第17図に示すように、235U
濃縮度分布を三段階としてもよい。また、Gd分
布についても、第18図に示すように先端部、中
央部の切れ目を235U濃縮度分布と多少ずらして構
成してもよく、さらに三段階構成にする等種々の
態様が考えられる。 Note that the present invention is not limited to the configuration of the above embodiment; for example, as shown in FIG. 17, 235 U
The concentration distribution may be in three stages. Furthermore, regarding the Gd distribution, as shown in Figure 18, the cuts at the tip and center may be configured to be slightly shifted from the 235 U enrichment distribution, and various other configurations are possible, such as a three-stage configuration. .
[発明の効果]
以上詳述したように本発明による沸騰水型原子
炉用燃料集合体は、チヤンネル内に複数本の燃料
棒を収容し上下端を上部タイプレートおよび下部
タイプレートで支持してなる沸騰水型原子炉用燃
料集合体において、燃料集合体軸方向上端部およ
び下端部の燃料濃縮度を中央部より低くするとと
もに、燃料集合体軸方向上端部および下端部の可
燃性毒物含有量を中央部より少なくした構成であ
る。[Effects of the Invention] As detailed above, the fuel assembly for a boiling water reactor according to the present invention accommodates a plurality of fuel rods in a channel and supports the upper and lower ends with an upper tie plate and a lower tie plate. In a fuel assembly for a boiling water reactor, the fuel enrichment at the axial upper and lower ends of the fuel assembly is lower than that at the center, and the burnable poison content at the axial upper and lower ends of the fuel assembly is lowered. This is a configuration in which the number of parts is smaller than that of the central part.
したがつて燃料の有効利用を図ることが可能と
なり、燃料を増加することなしに炉心反応度を高
めることができる。 Therefore, it is possible to utilize fuel effectively, and the core reactivity can be increased without increasing the amount of fuel.
第1図ないし第8図は従来例を示す図で、第1
図は沸騰水型原子炉の概略図、第2図は燃料集合
体の斜視図、第3図は燃料集合体の横断面図、第
4図は燃料棒を一部切欠して示す側面図、第5図
は沸騰水型原子炉の炉心の235U濃縮度分布図、第
6図はGd混入量分布を示す図、第7図は濃縮度
をパラメータとした無限増倍率K∞の燃焼度によ
る変化を示す図、第8図はサイクル末期の炉心出
力分布及び無限増倍率K∞分布を示す図、第9図
ないし第16図は本発明の一実施例を示す図で、
第9図は燃料棒の縦断面図、第10図は燃料棒の
ウラン燃料の235U濃縮度分布図、第11図はGd
混入量分布を示す図、第12図は燃料集合体の上
下端部の横断面図、第13図は燃料集合体の中央
部の横断面図、第14図は無限増倍率K∞の燃焼
度変化を示す図、第15図はサイクル初期の炉心
出力および無限増倍率K∞分布を示す図、第16
図はサイクル末期の炉心出力および無限増倍率
K∞の分布を示す図、第17図および第18図は
他の実施例を示す図で、第17図は235U濃縮度分
布図、第18図はGd混入量分布図である。
2……燃料集合体、3……炉心、9……チヤン
ネル、11……上部タイプレート、12……下部
タイプレート、101……燃料棒、103A〜1
03N……ウラン燃料、111……Gd入燃料棒。
Figures 1 to 8 are diagrams showing conventional examples.
The figure is a schematic diagram of a boiling water reactor, Figure 2 is a perspective view of a fuel assembly, Figure 3 is a cross-sectional view of the fuel assembly, and Figure 4 is a side view showing a partially cut away fuel rod. Figure 5 is a diagram showing the 235 U enrichment distribution in the core of a boiling water reactor, Figure 6 is a diagram showing the distribution of Gd mixed in, and Figure 7 is based on the burnup of infinite multiplication factor K ∞ with enrichment as a parameter. FIG. 8 is a diagram showing the core power distribution and infinite multiplication factor K ∞ distribution at the end of the cycle, and FIGS. 9 to 16 are diagrams showing an embodiment of the present invention.
Figure 9 is a vertical cross-sectional view of a fuel rod, Figure 10 is a 235 U enrichment distribution map of uranium fuel in the fuel rod, and Figure 11 is a Gd
A diagram showing the mixed amount distribution, Figure 12 is a cross-sectional view of the upper and lower ends of the fuel assembly, Figure 13 is a cross-sectional view of the central part of the fuel assembly, and Figure 14 is the burnup at infinite multiplication factor K ∞ . Figure 15 shows the core power and infinite multiplication factor K∞ distribution at the beginning of the cycle, Figure 16 shows the changes.
The figure shows the core power and infinite multiplication factor at the end of the cycle.
Figures 17 and 18 are diagrams showing the distribution of K ∞ , and Figures 17 and 18 are diagrams showing other examples. Figure 17 is a 235 U enrichment distribution diagram, and Figure 18 is a Gd contamination distribution diagram. 2... Fuel assembly, 3... Core, 9... Channel, 11... Upper tie plate, 12... Lower tie plate, 101... Fuel rod, 103A~1
03N...Uranium fuel, 111...Gd-filled fuel rod.
Claims (1)
端を上部タイプレートおよび下部タイプレートで
支持してなる沸騰水型原子炉用燃料集合体におい
て、燃料集合体軸方向上端部および下端部の燃料
濃縮度を中央部より低くするとともに、燃料集合
体軸方向上端部および下端部の可燃性毒物含有量
を中央部より少なくしたことを特徴とする沸騰水
型原子炉用燃料集合体。1. In a fuel assembly for a boiling water reactor, in which a plurality of fuel rods are accommodated in a channel and the upper and lower ends are supported by an upper tie plate and a lower tie plate, the fuel at the upper and lower ends in the axial direction of the fuel assembly is 1. A fuel assembly for a boiling water nuclear reactor, characterized in that the enrichment level is lower than that of the central part, and the burnable poison content of the upper and lower ends in the axial direction of the fuel assembly is lower than that of the central part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58226133A JPS60117182A (en) | 1983-11-30 | 1983-11-30 | Fuel aggregate for boiling-water type reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58226133A JPS60117182A (en) | 1983-11-30 | 1983-11-30 | Fuel aggregate for boiling-water type reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60117182A JPS60117182A (en) | 1985-06-24 |
JPH0519671B2 true JPH0519671B2 (en) | 1993-03-17 |
Family
ID=16840362
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58226133A Granted JPS60117182A (en) | 1983-11-30 | 1983-11-30 | Fuel aggregate for boiling-water type reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60117182A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0644052B2 (en) * | 1986-09-03 | 1994-06-08 | 株式会社日立製作所 | Fuel assembly |
JPH0636048B2 (en) * | 1986-09-24 | 1994-05-11 | 東京電力株式会社 | Fuel assembly |
JPH0640139B2 (en) * | 1987-04-08 | 1994-05-25 | 三菱原子力工業株式会社 | Fuel assembly with partial length gadolinia applied to pressurized water reactor |
JP2723252B2 (en) * | 1988-06-01 | 1998-03-09 | 株式会社東芝 | Reactor fuel assemblies |
JP2625404B2 (en) * | 1995-06-09 | 1997-07-02 | 株式会社日立製作所 | Fuel assembly |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5027152A (en) * | 1973-04-10 | 1975-03-20 |
-
1983
- 1983-11-30 JP JP58226133A patent/JPS60117182A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5027152A (en) * | 1973-04-10 | 1975-03-20 |
Also Published As
Publication number | Publication date |
---|---|
JPS60117182A (en) | 1985-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4994233A (en) | Fuel rod with axial regions of annular and standard fuel pellets | |
JPH0519671B2 (en) | ||
US5440598A (en) | Fuel bundle design for enhanced usage of plutonium fuel | |
JPS61102586A (en) | Blanket fuel aggregate | |
JPS6039195B2 (en) | fuel assembly | |
JPH0437391B2 (en) | ||
JP2966877B2 (en) | Fuel assembly | |
EP0613152A1 (en) | Mid-enrichment axial blanket for a nuclear reactor fuel rod | |
JPH0552475B2 (en) | ||
JP4351798B2 (en) | Fuel assemblies and reactors | |
JPH07113672B2 (en) | Fuel assembly for nuclear reactor | |
JP4046870B2 (en) | MOX fuel assembly | |
JP2610254B2 (en) | Boiling water reactor | |
JPH0342438B2 (en) | ||
JPH0376434B2 (en) | ||
JPH0555836B2 (en) | ||
JP2507321B2 (en) | Fuel assembly | |
JPH0376435B2 (en) | ||
JP3063247B2 (en) | Fuel assembly | |
JPH0324638B2 (en) | ||
JPS62261988A (en) | Boilint water type reactor | |
JPS60205281A (en) | Fuel aggregate for boiling-water type reactor | |
JP2656279B2 (en) | Fuel assembly for boiling water reactor | |
JP2000258574A (en) | Fuel assembly | |
WO2000019448A1 (en) | Fuel assembly |