JPH0640139B2 - Fuel assembly with partial length gadolinia applied to pressurized water reactor - Google Patents
Fuel assembly with partial length gadolinia applied to pressurized water reactorInfo
- Publication number
- JPH0640139B2 JPH0640139B2 JP62084687A JP8468787A JPH0640139B2 JP H0640139 B2 JPH0640139 B2 JP H0640139B2 JP 62084687 A JP62084687 A JP 62084687A JP 8468787 A JP8468787 A JP 8468787A JP H0640139 B2 JPH0640139 B2 JP H0640139B2
- Authority
- JP
- Japan
- Prior art keywords
- gadolinia
- fuel
- core
- length
- axial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Monitoring And Testing Of Nuclear Reactors (AREA)
- Solid Fuels And Fuel-Associated Substances (AREA)
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は加圧水型原子炉(以下PWRと称す)の部分長
ガドリニア入り燃料集合体に関するものである。The present invention relates to a fuel assembly with a partial length gadolinia for a pressurized water reactor (hereinafter referred to as PWR).
[従来の技術] 原子炉の反応度制御は、制御棒クラスタ操作及び1次冷
却材中のほう素濃度調整の独立した2つの方法にて実施
している。これらの制御方式に加えて、炉心寿命初期に
おける余剰反応度制御及び高温出力運転状態で減速材温
度係数を負にするため、熱中性子の吸収断面積の大きい
物質(ほう素)を含むバーナブルポイズン棒を使用して
いる。[Prior Art] Reactor reactivity control is carried out by two independent methods, namely, control rod cluster operation and adjustment of boron concentration in the primary coolant. In addition to these control methods, a burnable poison containing a substance (boron) with a large thermal neutron absorption cross section is used in order to make the moderator temperature coefficient negative at the time of excess reactivity control and high-temperature output operation in the early core life. I'm using a stick.
また、上記と同様の目的でバーナブルポイズン棒の廃棄
物処理、燃料経済性等の観点よりUO2燃料ペレットに
熱中性子吸収断面積の大きいGd2O3を混在したUO
2燃料ペレットを充填した燃料棒(以下ガドリニア入り
燃料棒と称す)による燃料集合体(以下ガドリニア入り
燃料集合体と称す)の使用も行われようとしている。但
し、このガドリニア入り燃料集合体は、取替炉心(2サ
イクル目以降の炉心)での使用目的とし、ガドリニアが
燃料有効長にわたって軸方向に均一分布した燃料棒(以
下、全長ガドリニア入り燃料棒と称す)を含む燃料集合
体(以下、全長ガドリニア入り燃料集合体と称す)であ
る。Further, for the same purpose as above, from the viewpoint of waste treatment of burnable poison rods, fuel economy, etc., UO 2 fuel pellets mixed with Gd 2 O 3 having a large thermal neutron absorption cross section are mixed with UO.
(2 ) Fuel rods (hereinafter referred to as gadolinia-containing fuel rods) filled with fuel pellets are also being used. However, this gadolinia-containing fuel assembly is intended for use in a replacement core (core after the second cycle), and fuel rods with gadolinia uniformly distributed in the axial direction over the active fuel length (hereinafter referred to as full-length gadolinia-containing fuel rods). (Hereinafter referred to as “fuel assembly”) (hereinafter, referred to as full-length gadolinia-containing fuel assembly).
[発明が解決しようとする問題点] 全長ガドリニア入り燃料集合体は、取替炉心に使用する
場合については、装荷体数が少ないことなどにより、燃
焼に伴う軸方向出力分布の変化が比較的少ない。即ち、
第4図に取替炉心に全長ガドリニア入り燃料集合体を使
用した場合の軸方向燃料計算の典型例のグラフを示す
が、アキシャルオフセット[(炉心上半分の出力−炉心
下半分の出力)/(炉心上半分の出力+炉心下半分の出
力)を意味し、軸方向出力分布の歪み度の目安である]
の振れ巾も小さく、Fz(軸方向ピーキングファクター
で、軸方向における相対平均出力の最大値)も大きくな
っておらず、核的に問題はない。[Problems to be Solved by the Invention] When a full-length gadolinia-containing fuel assembly is used in a replacement core, the change in the axial power distribution due to combustion is relatively small due to the small number of loading bodies. . That is,
Fig. 4 shows a graph of a typical example of axial fuel calculation when a full length gadolinia-containing fuel assembly is used in the replacement core. The axial offset [(upper half core power-lower core half power) / ( Power of the upper half of the core + power of the lower half of the core), which is a measure of the degree of distortion of the axial power distribution]
Has a small fluctuation range, and F z (the axial peaking factor, which is the maximum value of the relative average output in the axial direction) has not become large, so there is no nuclear problem.
しかしながら、初装荷炉心の場合には、減速材温度係数
を負に保つ観点より全長ガドリニア入り燃料集合体数の
使用量が多いこと及び炉心上・下端の冷却材温度差に伴
い、炉心上端でより大きな負の反応度帰還がかかり、ア
キシャルオフセットが寿命初期において、かなり負側
(約−10%)より燃焼が進むことにより、下部側のガ
ドリニア(Gd)が上部側より早く燃え、軸方向出力分
布が大きく変化する。第5図にアキシャルオフセット
(A.O.)及びFzの燃焼に伴う変化例を示す。However, in the case of the initially loaded core, from the viewpoint of keeping the moderator temperature coefficient negative, the amount of fuel assemblies with full-length gadolinia used is large, and due to the difference in coolant temperature between the upper and lower ends of the core, A large negative reactivity feedback is applied, and combustion progresses from the negative side (about -10%) in the axial offset at the beginning of life, so that the gadolinia (Gd) on the lower side burns faster than the upper side, and the axial output distribution Changes greatly. In Figure 5 shows the variations caused by the combustion of the axial offset (A.O.) and F z.
アキシャルオフセットの振れ巾も大きく、Fzも大きく
なり、炉心最高線出力密度の制御条件を逸脱する可能性
が生じている。The swing range of the axial offset is large and F z is also large, which may cause a deviation from the control condition of the maximum core power density.
また、PWRの軸方向出力分布制御法としては、通常毎
月アキシャルオフセットの目標値を定め、アキシャルオ
フセットが目標値±5%範囲内となるよう出力分布制御
を実施しているが、アキシャルオフセットが急激に大き
く振れた場合には、目標値を頻繁に変更する必要が生
じ、炉心管理上好ましくない。As the axial power distribution control method of PWR, usually, a target value of axial offset is set every month, and output distribution control is performed so that the axial offset is within the target value ± 5% range. If it largely fluctuates, it is necessary to change the target value frequently, which is not preferable for core management.
本発明は上述した事情に鑑みてなされたもので、初装荷
炉心の時から使用するのに適当な部分長ガドリニア入り
燃料集合体を提供しようとするものである。The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide a fuel assembly containing a partial length gadolinia suitable for use from the time of initial loading core.
[問題点を解決するための手段] 本発明の部分長ガドリニア入り燃料集合体は第1図に示
すように上・下部の1b,1cにガドリニアなし燃料ペ
レット(濃縮ウランによるUO2燃料ペレット)、中央
部1aにはガドリニア入り燃料ペレットを充填した燃料
棒(以下部分長ガドリニア入り燃料棒と称す)より構成
されている。[Means for Solving the Problems] As shown in FIG. 1, a fuel assembly containing a partial length gadolinia of the present invention has gadolinia-free fuel pellets (UO 2 fuel pellets with enriched uranium) in upper and lower portions 1b and 1c, as shown in FIG. The central portion 1a is composed of fuel rods filled with fuel pellets containing gadolinia (hereinafter referred to as fuel rods with gadolinia containing partial length).
Xは燃料棒上部1bのガドリニアなし燃料ペレットを充
填した長さ、Yは燃料棒下部1cのガドリニアなし燃料
ペレットを充填した長さ、は燃料棒の燃料を充填した
長さである燃料有効長で、燃料棒中央部1aにはガドリ
ニア入り燃料ペレットが充填されている。ガドリニアな
し燃料ペレット部分はガドリニア入り燃料ペレット部分
に比べて反応度が高いのでXの長さがYの長さより長く
なれば、アキシャルオフセットは負側より正側へ移行す
る。X is the length of the fuel rod upper portion 1b filled with gadolinia-free fuel pellets, Y is the length of the fuel rod lower portion 1c filled with gadolinia-free fuel pellets, and is the fuel effective length that is the length of the fuel rod filled with fuel. The fuel rod central portion 1a is filled with gadolinia-containing fuel pellets. Since the fuel pellet portion without gadolinia has higher reactivity than the fuel pellet portion with gadolinia, when the length of X becomes longer than the length of Y, the axial offset shifts from the negative side to the positive side.
前記X,Yの割合は、炉心寿命初期の高温全出力及び平
衡キセノンの炉心状態でアキシャルオフセット(A.
O.)が0%近傍、即ち、+3%>A.O.>−3%で
あるように設定する。The ratios of X and Y are such that the axial offset (A.
O. ) Is near 0%, that is, + 3%> A. O. > 3%.
従って、本発明の部分長ガドリニア入り燃料集合体の構
成は燃料の軸方向上・下部に、それぞれ所定長さにUO
2燃料ペレットを充填し、中央部にGd2O3を混在さ
せたUO2燃料ペレットであるガドリニア入り燃料ペレ
ットを充填したものである。Therefore, the structure of the fuel assembly containing the partial length gadolinia of the present invention has UOs of predetermined lengths on the upper and lower portions of the fuel in the axial direction.
Two fuel pellets are filled, and a gadolinia-containing fuel pellet which is a UO 2 fuel pellet in which Gd 2 O 3 is mixed is filled in the central portion.
XとYは炉心有効長の3%から13%に維持することが
アキシャルオフセットを零近辺に保持して、軸方向ピー
キングファクターFzも低下させるためには効果的であ
る。Maintaining X and Y from 3% to 13% of the effective core length is effective for keeping the axial offset near zero and also reducing the axial peaking factor F z .
[作用] 燃料棒の軸方向上・下部にガドリニアを含まないUO2
燃料ペレットを充填するので、この上・下部の長さを炉
心寿命初期のアキシャルオフセットが0%近傍となるよ
うに設定すると、炉心上半分の出力と、炉心下半分の出
力がほぼ均等となるので、炉心の上・下半分のガドリニ
アはほぼ均等に燃え、燃焼に伴う上・下半分のガドリニ
ア残存度の差は比較的少なくなる。このことにより、燃
焼に伴う軸方向出力分布の変化は少なくなる。即ち、ア
キシャルオフセットの振れ巾は小さくなり、Fzも小さ
くなり、炉心最高線出力密度も小さくなる。[Operation] UO 2 that does not include gadolinia in the axial upper and lower parts of the fuel rod
Since the fuel pellets are filled, if the upper and lower lengths are set so that the axial offset at the beginning of the core life is close to 0%, the output in the upper half of the core and the output in the lower half of the core become almost equal. The gadolinia in the upper and lower halves of the core burn almost evenly, and the difference in gadolinia survival rate in the upper and lower halves due to combustion becomes relatively small. This reduces changes in the axial power distribution due to combustion. That is, runout width of the axial offset is reduced, F z becomes small, even smaller core maximum linear power density.
[実施例] 以下、添付図に基づいて本発明の実施例を詳細に説明す
る。Embodiments Embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
サイクル長さ16ケ月の初装荷炉心について、一次元拡
散計算コードを使用して、第1図に示す燃料上部のガド
リニアなしの燃料長X、燃料棒下部のガドリニアなしの
燃料長Yをパラメータにして検討した結果、前記初装荷
炉心に適した部分長ガドリニア入り燃料棒の寸法を第2
図に示す。この場合、X=27.0cm、Y=16.2c
m、(=364.8cm)となる。この場合のアキシャ
フルオフセット及びFzの燃焼度に伴う変化を第3図に
示す。図において破線は全長ガドリニア入り燃料棒の場
合、実線はこの実施例の部分長ガドリニア入り燃料棒の
場合で、ガドリニア入り燃料ペレットに含まれるガドリ
ニア(Gd2O3)のwt%は6%で、従来の全長ガド
リニア入り燃料棒の場合のGd2O3wt%も同様に6
%である。第3図に示すように、部分長ガドリニア入り
燃料棒を使用した場合、従来の全長ガドリニア入り燃料
棒を使用した場合に比べ、Fz,A.O.共に振れが少
なくなっている。Using a one-dimensional diffusion calculation code, the fuel length X without gadolinia above the fuel and the fuel length Y without gadolinia below the fuel rod shown in Fig. 1 were used as parameters for the initially loaded core with a cycle length of 16 months. As a result of the examination, the size of the fuel rod with a partial length gadolinia suitable for the initially loaded core
Shown in the figure. In this case, X = 27.0 cm, Y = 16.2c
m, (= 364.8 cm). FIG. 3 shows changes in the axial offset and Fz with burnup in this case. In the figure, the broken line is the case of the fuel rod with full length gadolinia, the solid line is the case of the fuel rod with partial length gadolinia of this example, and the wt% of gadolinia (Gd 2 O 3 ) contained in the fuel pellet with gadolinia is 6%, Gd 2 O 3 wt% in the case of the conventional full length gadolinia-containing fuel rod is also 6
%. As shown in FIG. 3, when the fuel rod containing the partial length gadolinia was used, F z , A. O. Both shakes are less.
[発明の効果] 以上詳細に説明した本発明によれば、燃焼に伴う軸方向
出力分布の変化を抑制でき、炉心最高線出力密度制限の
逸脱の問題を解決することが可能である。また、アキシ
ャルオフセット(A.O.)の振れ巾も小さくなり、炉
心管理が容易となる。[Effects of the Invention] According to the present invention described in detail above, it is possible to suppress the change in the axial power distribution due to combustion, and it is possible to solve the problem of deviation from the core maximum line power density limit. Further, the swing range of the axial offset (A.O.) becomes small, and the core management becomes easy.
第1図は本発明の部分長ガドリニア入り燃料棒の説明
図、第2図は本発明の一実施例を示す部分長ガトリニア
入り燃料棒の寸法図、第3図は同実施例と従来の全長ガ
ドリニア入り燃料棒を初装荷炉心に使用した場合の
Fz,A.O.対燃焼度のグラフ、第4図は従来の全長
ガドリニア入り燃料棒を取替炉心に用いた場合の典型例
を示すFz,A.O.対サイクル燃焼度のグラフ、第5
図は従来の全長ガドリニア入り燃料棒を初装荷炉心に使
用した場合のFz,A.O.対燃焼度のグラフである。 1a…燃料棒中央部、1b…燃料棒上部、 1c…燃料棒下部。FIG. 1 is an explanatory view of a fuel rod with a partial length gadolinia according to the present invention, FIG. 2 is a dimensional diagram of a fuel rod with a partial length gadolinia according to an embodiment of the present invention, and FIG. F z , A. When the fuel rod with gadolinia is used in the initial core O. FIG. 4 is a graph of burnup vs. Fz, A.F. showing a typical example in which a conventional full length gadolinia-containing fuel rod is used in a replacement core. O. Graph of burnup vs. cycle, No. 5
The figure shows the F z , A.A. When a conventional full length gadolinia-containing fuel rod is used in the initial core. O. It is a graph of burnup. 1a ... central part of fuel rod, 1b ... upper part of fuel rod, 1c ... lower part of fuel rod.
Claims (1)
長さYにわたりUO2燃料ペレットを充填し、中央部に
はGd2O3を混在させたUO2燃料ペレットであるガ
ドリニア入り燃料ペレットを充填した燃料棒において、
XおよびYは炉心有効長の3%から13%の範囲にあ
り、かつXはYより長く、また、XとYの差は、(炉心
上半分の出力−炉心下半分の出力)/(炉心上半分の出
力+炉心下半分の出力)で定義されるアキシャルオフセ
ットを零近辺に保持するように調節することを特徴とす
る加圧水型原子炉に適用される部分長ガドリニア入り燃
料集合体。1. A axial upper portion of the fuel rods over the length X and the lower portion of the length Y filled with UO 2 fuel pellets, the center portion is a UO 2 fuel pellets mix Gd 2 O 3 gadolinia containing In a fuel rod filled with fuel pellets,
X and Y are in the range of 3% to 13% of the effective core length, and X is longer than Y, and the difference between X and Y is (power of upper half of core-power of lower half of core) / (core A fuel assembly with a partial length gadolinia applied to a pressurized water reactor characterized in that an axial offset defined by (upper half power + lower core half power) is adjusted so as to be maintained near zero.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62084687A JPH0640139B2 (en) | 1987-04-08 | 1987-04-08 | Fuel assembly with partial length gadolinia applied to pressurized water reactor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62084687A JPH0640139B2 (en) | 1987-04-08 | 1987-04-08 | Fuel assembly with partial length gadolinia applied to pressurized water reactor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63250588A JPS63250588A (en) | 1988-10-18 |
JPH0640139B2 true JPH0640139B2 (en) | 1994-05-25 |
Family
ID=13837589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62084687A Expired - Lifetime JPH0640139B2 (en) | 1987-04-08 | 1987-04-08 | Fuel assembly with partial length gadolinia applied to pressurized water reactor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0640139B2 (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60117182A (en) * | 1983-11-30 | 1985-06-24 | 株式会社東芝 | Fuel aggregate for boiling-water type reactor |
JPS60205281A (en) * | 1984-03-30 | 1985-10-16 | 原子燃料工業株式会社 | Fuel aggregate for boiling-water type reactor |
-
1987
- 1987-04-08 JP JP62084687A patent/JPH0640139B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS63250588A (en) | 1988-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4636352A (en) | Nuclear fuel rod with burnable plate and pellet-clad interaction fix | |
US6005905A (en) | Initial core | |
JPH0378600B2 (en) | ||
JP3874466B2 (en) | Fuel assembly | |
JPH0640139B2 (en) | Fuel assembly with partial length gadolinia applied to pressurized water reactor | |
JPH01277798A (en) | Nuclear reactor fuel assembly | |
JP3124046B2 (en) | LWR fuel assemblies | |
JPS59147295A (en) | Fuel assembly | |
JP3318193B2 (en) | Fuel loading method | |
JPS6151275B2 (en) | ||
JPH0636047B2 (en) | Fuel assembly for nuclear reactor | |
JPS6017073B2 (en) | fuel assembly | |
JP3943624B2 (en) | Fuel assembly | |
JP3884192B2 (en) | MOX fuel assembly, reactor core, and operating method of reactor | |
JP3441149B2 (en) | Reactor core | |
JPS61147183A (en) | Fuel aggregate | |
JP2000009870A (en) | Fuel assembly and core of reactor | |
JP2625404B2 (en) | Fuel assembly | |
RU42128U1 (en) | FUEL TABLET OF A NUCLEAR REACTOR NUCLEAR REJECTOR WITH A BURNING ABSORBER | |
JPH0792513B2 (en) | Boiling water reactor | |
JP3124020B2 (en) | Operating method of boiling water reactor | |
JPH0827370B2 (en) | Boiling water reactor | |
JPS6280585A (en) | Initial loading core for nuclear reactor | |
JPH07234295A (en) | Reactor core | |
JPS6350679B2 (en) |