JPH0376434B2 - - Google Patents

Info

Publication number
JPH0376434B2
JPH0376434B2 JP57012821A JP1282182A JPH0376434B2 JP H0376434 B2 JPH0376434 B2 JP H0376434B2 JP 57012821 A JP57012821 A JP 57012821A JP 1282182 A JP1282182 A JP 1282182A JP H0376434 B2 JPH0376434 B2 JP H0376434B2
Authority
JP
Japan
Prior art keywords
fuel
assembly
uranium
corners
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57012821A
Other languages
Japanese (ja)
Other versions
JPS58129385A (en
Inventor
Ritsuo Yoshioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57012821A priority Critical patent/JPS58129385A/en
Publication of JPS58129385A publication Critical patent/JPS58129385A/en
Publication of JPH0376434B2 publication Critical patent/JPH0376434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子炉の運転停止時の反応度を低く抑
えることができる沸騰水形原子炉用燃料集合体に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel assembly for a boiling water nuclear reactor that is capable of suppressing reactivity at a low level during shutdown of a nuclear reactor.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

沸騰水形原子炉は、第1図に示す如く原子炉圧
力容器1の中心部に多数の燃料集合体2を装荷し
て炉心3を構成している。また圧力容器1の内部
には冷却水4が炉心3の上方まで収容されてい
る。また、圧力容器1内の上部には気水分離器5
及び蒸気乾燥器6が収容されている。さらに圧力
容器1の周壁上部には主蒸気出口ノズル7、その
下方に給水入口ノズル8が設けられている。
In a boiling water nuclear reactor, as shown in FIG. 1, a large number of fuel assemblies 2 are loaded in the center of a reactor pressure vessel 1 to form a reactor core 3. Moreover, cooling water 4 is accommodated inside the pressure vessel 1 up to the upper part of the reactor core 3 . In addition, a steam separator 5 is installed in the upper part of the pressure vessel 1.
and a steam dryer 6 are housed therein. Further, a main steam outlet nozzle 7 is provided at the upper part of the peripheral wall of the pressure vessel 1, and a water supply inlet nozzle 8 is provided below the main steam outlet nozzle 7.

前記燃料集合体2は、第2図及び第3図に示す
如く角筒状のチヤンネル9内に多数の燃料棒10
をマトリツクス状(通常8×8本)に配列し、そ
れらの上下端を上部タイプレート11及び下部タ
イプレート12により支持し、かつ上下タイプレ
ート11,12間の複数箇所をスペーサ13にて
支持することにより燃料棒10……相互の間隔を
一定に保つように構成されている。
The fuel assembly 2 includes a large number of fuel rods 10 in a rectangular cylindrical channel 9 as shown in FIGS. 2 and 3.
are arranged in a matrix (usually 8 x 8 pieces), their upper and lower ends are supported by an upper tie plate 11 and a lower tie plate 12, and multiple locations between the upper and lower tie plates 11 and 12 are supported by spacers 13. As a result, the fuel rods 10 are constructed so as to keep the mutual spacing constant.

前記各燃料棒10は、第4図に示す如く被覆管
14の内部に多数の円柱状ペレツト15……を積
重ね、上方よりばね16で押えて封入した構成の
もので、各ペレツト15は酸化ウランの粉末を焼
結して一定形状に形成される。
As shown in FIG. 4, each fuel rod 10 has a structure in which a large number of cylindrical pellets 15 are stacked inside a cladding tube 14 and sealed by a spring 16 from above, and each pellet 15 is filled with uranium oxide. is formed into a certain shape by sintering the powder.

そこで、炉心3におけるウランの核分裂により
圧力容器1内の冷却水4を沸騰させ、これによつ
て発生した蒸気を気水分離器5及び蒸気乾燥器6
を通して主蒸気出口ノズル7より発電所のタービ
ン駆動用として取出す。またタービンを通過した
蒸気は復水器で冷却液化され、冷却水4として再
び給水入口ノズル8より圧力容器1内へ供給され
る。
Therefore, the cooling water 4 in the pressure vessel 1 is boiled by nuclear fission of uranium in the reactor core 3, and the steam generated thereby is transferred to a steam separator 5 and a steam dryer 6.
The main steam is extracted through the main steam outlet nozzle 7 for use in driving the turbine of the power plant. Further, the steam that has passed through the turbine is cooled and liquefied in a condenser, and is again supplied into the pressure vessel 1 as cooling water 4 through a water supply inlet nozzle 8.

第5図は原子炉運転時における各燃料集合体2
の熱中性子束分布を示すもので、集合体外周部は
多量の冷却水4に接するため熱中性子束Φは高
く、逆に集合体中央部では低くなつている。
Figure 5 shows each fuel assembly 2 during reactor operation.
The thermal neutron flux Φ is high at the outer periphery of the assembly because it is in contact with a large amount of cooling water 4, and conversely, it is low at the center of the assembly.

一方、原子炉運転時における燃料集合体2の水
平断面における各所の出力Pは、第5図に示す如
くほぼ一様の分布となるようにすることが望まし
い。そこで出力Pが熱中性子束Φと核分裂断面積
Σとの積(Σ・Φ)として求められることから、
燃料集合体2の核分裂断面積Σを第5図の如く
集合体外周部で低く、中央部で高くなるようにし
て、燃料集合体各所の出力Pがほぼ一定となるよ
うにしている。このように運転時の出力分布は核
分裂断面積Σにより調整を図ることができるも
のであるが、さらに核分裂断面積Σfはウラン濃縮
度により変化する。したがつてウラン濃縮度の分
布を適当に設定することにより、燃料重合体各所
の運転時における出力をほぼ一定にすることがで
きる。
On the other hand, it is desirable that the output P at various points in the horizontal cross section of the fuel assembly 2 during nuclear reactor operation has a substantially uniform distribution as shown in FIG. Therefore, since the output P is obtained as the product (Σ・Φ) of the thermal neutron flux Φ and the fission cross section Σ,
As shown in FIG. 5, the nuclear fission cross section Σ of the fuel assembly 2 is set to be low at the outer periphery of the assembly and high at the center, so that the output P at each part of the fuel assembly is approximately constant. In this way, the power distribution during operation can be adjusted by the fission cross section Σ, but the fission cross section Σ f also changes depending on the uranium enrichment level. Therefore, by appropriately setting the distribution of uranium enrichment, the output during operation of each part of the fuel polymer can be made approximately constant.

一方、運転停止時にあつては、無限増倍率K∽
の低下に伴ない過減速となるように設計されてい
る。第6図は冷温時の無限増倍率K∽の変化を
水/ウラン比をパラメータとして示したものであ
る。このように設計されているため、運転停止時
は温度低下に伴ない蒸気が減少し、その分冷却水
が増量するので水/ウラン比が高くなり、無限増
倍率K∽が減少して過減速となるのである。
On the other hand, when the operation is stopped, the infinite multiplication factor K∽
It is designed so that excessive deceleration occurs as the speed decreases. FIG. 6 shows the change in the infinite multiplication factor K∽ at cold temperatures using the water/uranium ratio as a parameter. Because of this design, when the operation is stopped, steam decreases as the temperature decreases, and the amount of cooling water increases accordingly, increasing the water/uranium ratio, decreasing the infinite multiplication factor K∽, and preventing over-deceleration. It becomes.

ところで、燃料集合体2は多数の燃料棒10中
に1〜2本のウオータ・ロツド17……を混在さ
せている。このようなウオータ・ロツド17をた
とえば4本用意し、それらを燃料集合体2の各所
に配置して、ウオータ・ロツド17……の位置と
無限増倍率K∽との関係を調べたところ第7図の
結果を得た。すなわちウオータ・ロツド17……
を集合体の中央部に配置したとき(第7図A)無
限増倍率K∽は最も高く、B,Cと順次外周部へ
近づけていくにしたがつて低下し、最外周部のD
で最も低下する。しかも外周部に寄せるしたがつ
てその低下の度合が顕著になることが判明した。
このことから同一本数のウオータ・ロツド17…
…を使用して無限増倍率K∽をできる限り低く押
えるためには集合体外周部、特に四隅部に配置す
るのが最も効果的であることが分る。
Incidentally, in the fuel assembly 2, one or two water rods 17 are mixed among a large number of fuel rods 10. For example, four such water rods 17 were prepared, and they were placed at various locations in the fuel assembly 2, and the relationship between the position of the water rods 17 and the infinite multiplication factor K∽ was investigated. We obtained the results shown in the figure. In other words, Water Rod 17...
When placed at the center of the aggregate (Fig. 7A), the infinite multiplication factor K∽ is the highest, and decreases as it approaches the outer periphery in order of B and C.
It decreases the most. Furthermore, it has been found that the degree of decrease becomes more remarkable as the distance is moved closer to the outer periphery.
From this, the same number of water rods 17...
In order to keep the infinite multiplication factor K∽ as low as possible by using ..., it is found that it is most effective to arrange them at the outer periphery of the aggregate, especially at the four corners.

〔発明の目的〕[Purpose of the invention]

本発明は以上の検討結果にもとづきなされたも
ので、運転停止時の反応度を従来より低く抑える
ことができる沸騰水形原子炉用燃料集合体を提供
することを目的とする。
The present invention was made based on the above study results, and an object of the present invention is to provide a fuel assembly for a boiling water reactor that can suppress the reactivity during shutdown to a level lower than that of the conventional fuel assembly.

〔発明の概要〕[Summary of the invention]

本発明に係る燃料集合体は、集合体四隅部上部
における燃料棒収容領域のウラン収容量を、全燃
料棒収容領域のウラン収容平均値より少量とした
ことを特徴とする。
The fuel assembly according to the present invention is characterized in that the amount of uranium accommodated in the fuel rod accommodating areas at the upper portions of the four corners of the assembly is smaller than the average uranium accommodating value of all the fuel rod accommodating areas.

なお、ここで燃料棒収容領域とは、 S×L/N ただし、Sはチヤンネル内部の横断面積 Lは燃料棒内のペレツト収容部の長さ Nはチヤンネル内に収容可能な燃料棒の本数 をいうものとする。 Note that the fuel rod accommodation area here is S×L/N However, S is the cross-sectional area inside the channel. L is the length of the pellet storage part in the fuel rod N is the number of fuel rods that can be accommodated in the channel shall mean.

以上のような構成にすると、集合体外周部のウ
ラン量の減少により、第7図の結果から明らかな
ように、最も効果的に無限増倍率K∽を低下させ
ることができる。
With the above configuration, the infinite multiplication factor K∽ can be most effectively lowered by reducing the amount of uranium at the outer periphery of the aggregate, as is clear from the results shown in FIG.

〔発明の実施例〕[Embodiments of the invention]

まず第8図に示す第1実施例について説明す
る。
First, a first embodiment shown in FIG. 8 will be described.

第8図Aは燃料集合体の横断面を示すもので、
角筒状のチヤンネル101内に多数の燃料棒10
2……がマトリツクス状(8×8本)に配列され
ており、最外周部、特に四隅部に位置する4本の
燃料棒105……の上部を他の燃料棒12……よ
りも小径としている。
Figure 8A shows a cross section of the fuel assembly.
A large number of fuel rods 10 in a rectangular cylindrical channel 101
2... are arranged in a matrix (8 x 8 rods), and the upper portions of the four fuel rods 105 located at the outermost periphery, especially at the four corners, are made smaller in diameter than the other fuel rods 12... There is.

このようにすると、燃料棒105……に封入さ
れるウラン量は他の燃料棒102……より少量で
あり、しかも集合体上部における水対ウラン比が
高くなる。よつて運転停止時の無限増倍率K∽が
低下し、特に四隅部のウラン量を低下させたこと
により、無限増倍率のK∽の低下の度合は顕著と
なる。
In this way, the amount of uranium sealed in the fuel rods 105 is smaller than in the other fuel rods 102, and the water-to-uranium ratio in the upper part of the assembly is increased. Therefore, the infinite multiplication factor K∽ when the operation is stopped decreases, and in particular, by reducing the amount of uranium at the four corners, the degree of decrease in the infinite multiplication factor K∽ becomes remarkable.

したがつて、原子炉の運転停止時の反応度を低
く抑えることができる。
Therefore, the reactivity during shutdown of the nuclear reactor can be kept low.

沸騰水形原子炉では、通常炉心上部にプルトニ
ウム(Pu)が多く蓄積されており、運転停止時
には炉心上部の反応度が炉心下部より高い傾向に
ある。そこで集合体四隅部の燃料棒105につい
て、特に上部のみ小径としてその部分のウラン量
を減少させると、わずかなウランの減量により効
果的に運転停止時の無限増倍率K∽を低下させる
ことができる。
In boiling water reactors, a large amount of plutonium (Pu) is usually accumulated in the upper part of the reactor core, and when the reactor is shut down, the reactivity in the upper part of the core tends to be higher than in the lower part. Therefore, if the fuel rods 105 at the four corners of the assembly are made smaller in diameter, especially in the upper part, to reduce the amount of uranium in that part, the infinite multiplication factor K∽ at the time of shutdown can be effectively reduced by a small amount of uranium. .

同様の考え方にもとづき、第9図に示す第2実
施例のように集合体四隅部の燃料棒106の上部
のみを欠如し(すなわち燃料棒106を短かく
し)、あるいは図示しないが集合体四隅部の燃料
棒の上部にはウランの代りに減速材を封入した
り、ウラン燃料を中空ペレツトや低密度ペレツト
として封入し、ウラン量の減少を図ることによつ
ても所期の効果を得ることができる。
Based on the same idea, as in the second embodiment shown in FIG. The desired effect can also be obtained by filling the upper part of the fuel rod with a moderator instead of uranium, or by filling uranium fuel in the form of hollow pellets or low-density pellets to reduce the amount of uranium. can.

なお本発明は以上の実施例に必ずしも限定され
るものではない。たとえば従来の燃料重合体では
通常、集合体中央部に1〜2本のウオータ・ロツ
ドを配置しているがこのようなウオータ・ロツド
は従来通り用いてもよい。
Note that the present invention is not necessarily limited to the above embodiments. For example, conventional fuel polymers typically have one or two water rods located in the center of the assembly, and such water rods may be used in a conventional manner.

〔発明の効果〕〔Effect of the invention〕

以上、種々実施例にもとづいて説明したよう
に、本発明の燃料集合体は、集合体四隅部上部に
おける燃料棒収容領域のウラン収容量を、全燃料
棒収容領域のウラン収容量平均値より少量とした
ものである。
As described above based on various embodiments, the fuel assembly of the present invention has a fuel rod accommodation area with a uranium capacity smaller than the average value of the uranium capacity of all fuel rod accommodation areas at the upper part of the four corners of the assembly. That is.

したがつて、本発明では運転停止時の無限増倍
率K∽が効果的に低下し、運転停止時の反応度を
低く抑えることができ、原子炉の安全性を向上さ
せることができる。
Therefore, in the present invention, the infinite multiplication factor K∽ at the time of shutdown is effectively reduced, the reactivity at the time of shutdown can be kept low, and the safety of the nuclear reactor can be improved.

また、ボイド係数を小さくし、原子炉の急激な
圧力上昇などの過渡現象を緩和することができる
ので、この点においても安全性の向上が図られ
る。
Furthermore, since the void coefficient can be reduced and transient phenomena such as sudden pressure increases in the reactor can be alleviated, safety can be improved in this respect as well.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は沸騰水形原子炉の概略図、第2図は燃
料集合体の横断面図、第3図は燃料集合体の斜視
図、第4図は燃料棒を一部切欠して示す側面図、
第5図は各燃料集合体の出力分布図、第6図は
水/ウラン比と無限増倍率との関係を示す図、第
7図はウオータ・ロツド位置と無限増倍率との関
係を示す図、第8図は本発明の第1実施例を示す
もので、Aは燃料集合体の横断面図、BはAのB
−B断面図、第9図は第2実施例を示す燃料集合
体の横断面図である。 101……チヤンネル、102,105,10
6……燃料棒。
Figure 1 is a schematic diagram of a boiling water reactor, Figure 2 is a cross-sectional view of a fuel assembly, Figure 3 is a perspective view of a fuel assembly, and Figure 4 is a partially cutaway side view of a fuel rod. figure,
Figure 5 is a diagram showing the power distribution of each fuel assembly, Figure 6 is a diagram showing the relationship between the water/uranium ratio and the infinite multiplication factor, and Figure 7 is a diagram showing the relationship between the water rod position and the infinite multiplication factor. , FIG. 8 shows a first embodiment of the present invention, where A is a cross-sectional view of a fuel assembly, and B is a cross-sectional view of A and B.
-B sectional view and FIG. 9 are cross-sectional views of a fuel assembly showing the second embodiment. 101... Channel, 102, 105, 10
6...Fuel rod.

Claims (1)

【特許請求の範囲】 1 集合体四隅部上部における燃料棒収容領域の
ウラン収容量を、全燃料棒収容領域のウラン収容
平均値より少量としたことを特徴とする沸騰水形
原子炉用燃料集合体。 2 集合体四隅部に位置する燃料棒の上部を他の
燃料棒より小径としたことを特徴とする特許請求
の範囲第1項記載の沸騰水形原子炉用燃料集合
体。 3 集合体四隅部に位置する燃料棒の上部を欠如
したことを特徴とする特許請求の範囲第1項記載
の沸騰水形原子炉用燃料集合体。 4 集合体四隅部に位置する燃料棒の上部に封入
されるウランを中空ペレツト又は低密度ペレツト
としたことを特徴とする特許請求の範囲第1項記
載の沸騰水形原子炉用燃料集合体。
[Claims] 1. A fuel assembly for a boiling water reactor, characterized in that the amount of uranium accommodated in the fuel rod accommodating areas at the upper portions of the four corners of the assembly is smaller than the average uranium accommodating value of all fuel rod accommodating areas. body. 2. The fuel assembly for a boiling water nuclear reactor according to claim 1, wherein the upper portions of the fuel rods located at the four corners of the assembly are made smaller in diameter than the other fuel rods. 3. The fuel assembly for a boiling water nuclear reactor according to claim 1, characterized in that the upper portions of the fuel rods located at the four corners of the assembly are missing. 4. The fuel assembly for a boiling water nuclear reactor according to claim 1, wherein the uranium sealed in the upper part of the fuel rods located at the four corners of the assembly is a hollow pellet or a low-density pellet.
JP57012821A 1982-01-29 1982-01-29 Fuel assembly for bwr type reactor Granted JPS58129385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57012821A JPS58129385A (en) 1982-01-29 1982-01-29 Fuel assembly for bwr type reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57012821A JPS58129385A (en) 1982-01-29 1982-01-29 Fuel assembly for bwr type reactor

Publications (2)

Publication Number Publication Date
JPS58129385A JPS58129385A (en) 1983-08-02
JPH0376434B2 true JPH0376434B2 (en) 1991-12-05

Family

ID=11816044

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57012821A Granted JPS58129385A (en) 1982-01-29 1982-01-29 Fuel assembly for bwr type reactor

Country Status (1)

Country Link
JP (1) JPS58129385A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59147295A (en) * 1983-02-10 1984-08-23 株式会社東芝 Fuel assembly
JPH0827366B2 (en) * 1986-05-24 1996-03-21 株式会社日立製作所 Nuclear fuel assembly
DE3824082A1 (en) * 1987-07-18 1989-01-26 Toshiba Kawasaki Kk FUEL ARRANGEMENT FOR CORE REACTORS
US5383229A (en) * 1992-01-08 1995-01-17 Hitachi, Ltd. Fuel assembly and reactor core

Also Published As

Publication number Publication date
JPS58129385A (en) 1983-08-02

Similar Documents

Publication Publication Date Title
US6925138B2 (en) Reactor core and method for operating nuclear reactor
JP3531011B2 (en) Fuel assemblies and reactors
JPH07101237B2 (en) Fuel assembly and nuclear reactor
JPS5829877B2 (en) Boiling water reactor core
US5844957A (en) Reactor core
US3475272A (en) Gas-cooled fast reactor
EP0086427B1 (en) Fuel assembly for boiling water reactor
JPH0376434B2 (en)
JPH0452911B2 (en)
US6665366B2 (en) Monobloc fuel element and boiling water and fast spectrum nuclear reactor using such elements
JPH04303799A (en) Fuel assembly
JPH0437391B2 (en)
JPH06174874A (en) Fuel assembly and reactor core
US3703437A (en) Means for supporting fissile material in a nuclear reactor
JPH0519671B2 (en)
JP3339768B2 (en) Light water reactor core
JPH04301591A (en) Fuel assembly
JPH07113672B2 (en) Fuel assembly for nuclear reactor
JP2966877B2 (en) Fuel assembly
JPH1194972A (en) Boiling water reactor
JP2507408B2 (en) Fuel assembly
JPH0833465B2 (en) Boiling water reactor and its operating method
JP2731599B2 (en) Boiling water reactor and its fuel loading method
JP3063247B2 (en) Fuel assembly
JPS6367870B2 (en)