JPH051966U - Refrigeration equipment - Google Patents

Refrigeration equipment

Info

Publication number
JPH051966U
JPH051966U JP88191U JP88191U JPH051966U JP H051966 U JPH051966 U JP H051966U JP 88191 U JP88191 U JP 88191U JP 88191 U JP88191 U JP 88191U JP H051966 U JPH051966 U JP H051966U
Authority
JP
Japan
Prior art keywords
pressure side
compressor
heat exchange
suction
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP88191U
Other languages
Japanese (ja)
Inventor
治男 坂野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP88191U priority Critical patent/JPH051966U/en
Publication of JPH051966U publication Critical patent/JPH051966U/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】 【目的】 液冷媒の状態での圧縮機への導入を防止する
と共に冷却運転時の能力低下の防止を図る。 【構成】 圧縮機、凝縮器、絞り装置、蒸発器、および
高圧側と低圧側とにそれぞれ設けられた熱交換路並びに
蓄熱剤を内蔵する蓄熱槽を備え、前記低圧側熱交換路が
吸入バイパス管にて冷凍サイクルに並列回路として接続
されている冷凍装置において、前記蓄熱槽の低圧側熱交
換路の下流の前記吸入バイパス管にサクションアキュム
レータを備えたことを特徴とする。 【効果】 デフロスト時に発生する液戻り現象の際にも
液冷媒状態での圧縮機への導入が防止されて圧縮機が保
護され、且つ冷却運転時の能力低下も防止される。
(57) [Summary] [Purpose] To prevent introduction of a liquid refrigerant into a compressor and to prevent deterioration of capacity during cooling operation. [Composition] A compressor, a condenser, a throttle device, an evaporator, and heat exchange passages respectively provided on the high-pressure side and the low-pressure side and a heat storage tank containing a heat storage agent are provided, and the low-pressure side heat exchange passage is an intake bypass. In the refrigeration apparatus connected to the refrigeration cycle by a pipe as a parallel circuit, a suction accumulator is provided in the suction bypass pipe downstream of the low-pressure side heat exchange passage of the heat storage tank. [Effect] Even in the case of a liquid returning phenomenon that occurs during defrosting, introduction into the compressor in the liquid refrigerant state is prevented, the compressor is protected, and a decrease in capacity during cooling operation is also prevented.

Description

【考案の詳細な説明】[Detailed description of the device]

【0001】[0001]

【産業上の利用分野】[Industrial applications]

本考案は冷凍装置に関し、更に詳細には冷蔵庫または冷凍庫の冷凍装置に関す る。 The present invention relates to a refrigerating device, and more particularly to a refrigerating device for a refrigerator or a freezer.

【0002】[0002]

【従来の技術】[Prior Art]

図2は従来の冷凍サイクルの構成図で、圧縮機1,凝縮器2,絞り装置3,蒸 発器4,サクションアキュムレータ5,及び各々を連絡する吐出管6,液管7, 吸入管8、により冷凍サイクルが構成されている。ホットガス除霜用としての蓄 熱槽9は、内部に蓄熱剤9a,高圧側熱交換路10,低圧側熱交換路11を収納 しており、この高圧側熱交換路10は圧縮機1と凝縮器2を連絡する吐出管6の 途中に設けられる。高圧側熱交換路10の出口側には三方電磁弁12が設けられ 、この三方電磁弁12の第1の出口側は凝縮器2の入口側に接続され、第2の出 口側は液管7の途中に接続される吐出バイパス管6aに接続されている。液管7 の凝縮器2と吐出バイパス管6a接続部の間には逆止弁13が凝縮器2から絞り 装置3への流れ方向に接続されている。 FIG. 2 is a configuration diagram of a conventional refrigeration cycle, which includes a compressor 1, a condenser 2, a throttle device 3, a vaporizer 4, a suction accumulator 5, and a discharge pipe 6, a liquid pipe 7, a suction pipe 8, which connect them to each other. A refrigerating cycle is constituted by. The heat storage tank 9 for defrosting hot gas contains therein a heat storage agent 9a, a high-pressure side heat exchange passage 10, and a low-pressure side heat exchange passage 11, and the high-pressure side heat exchange passage 10 is connected to the compressor 1. It is provided in the middle of the discharge pipe 6 that connects the condenser 2. A three-way solenoid valve 12 is provided on the outlet side of the high-pressure side heat exchange passage 10, a first outlet side of the three-way solenoid valve 12 is connected to the inlet side of the condenser 2, and a second outlet side is a liquid pipe. It is connected to the discharge bypass pipe 6a connected in the middle of 7. A check valve 13 is connected between the condenser 2 of the liquid pipe 7 and the connection portion of the discharge bypass pipe 6a in the flow direction from the condenser 2 to the expansion device 3.

【0003】 次に絞り装置3の上流側には第2の電磁弁14が接続され、その入口側及び絞 り装置3の出口側は液バイパス管7a及び第3の電磁弁15に接続される。また 吸入管8においては、第4の電磁弁16が設けられると共に、この入口側と出口 側に並列回路として吸入圧力調整弁17と低圧側熱交換路11とが吸入バイパス 管8aにて接続されている。なお、14,15,16は第2,第3,第4の電磁 弁、18は凝縮器用送風機、および19は冷却器用送風機をそれぞれ示している 。Next, a second electromagnetic valve 14 is connected to the upstream side of the expansion device 3, and its inlet side and the outlet side of the expansion device 3 are connected to the liquid bypass pipe 7 a and the third electromagnetic valve 15. . A fourth solenoid valve 16 is provided in the suction pipe 8, and a suction pressure regulating valve 17 and a low-pressure side heat exchange passage 11 are connected as a parallel circuit on the inlet side and the outlet side by a suction bypass pipe 8a. ing. In addition, 14, 15, 16 are second, third, and fourth solenoid valves, 18 is a condenser blower, and 19 is a cooler blower, respectively.

【0004】 次に動作について説明する。まず、冷却運転中は、冷媒系路図中、実線矢印の 如く冷媒が流れて冷却運転を行う。すなわち、第2の電磁弁14と第4の電磁弁 16が通電されて開路し、三方電磁弁12は通電されない状態で高圧側熱交換路 10と凝縮器2を連通し、第3の電磁弁15は通電されない状態で閉路している 。Next, the operation will be described. First, during the cooling operation, the refrigerant flows as indicated by the solid arrow in the refrigerant system diagram to perform the cooling operation. That is, the second solenoid valve 14 and the fourth solenoid valve 16 are energized to open the circuit, and the three-way solenoid valve 12 is in the non-energized state to communicate the high pressure side heat exchange passage 10 and the condenser 2 with each other. No. 15 is closed without being energized.

【0005】 一方、蓄熱槽9の蓄熱剤9aは圧縮機1からの吐出冷媒ガスが高圧側熱交換路 10を通電することにより加熱される。蓄熱槽9には低圧側熱交換路が収納され ていて、ホットガスデフロスト時、吸入圧力調整弁17との併用で再蒸発装置と して使用される。On the other hand, the heat storage agent 9 a in the heat storage tank 9 is heated when the refrigerant gas discharged from the compressor 1 is energized through the high pressure side heat exchange passage 10. The heat storage tank 9 stores a low-pressure side heat exchange passage, which is used as a re-evaporator in combination with the suction pressure adjusting valve 17 during hot gas defrosting.

【0006】 次にこの除霜運転について説明する。蒸発器4の着霜を除霜検出器(図示せず )により検出してホットガスデフロストを開始すると、三方電磁弁12および第 3の電磁弁15が通電され、第2及び第4の電磁弁14,16は通電されずに図 2の破線矢印の冷媒流れとなる。すなわち圧縮機1にて吐出された高圧冷媒ガス は高圧側熱交換路10,三方電磁弁12,吐出バイパス管6a,液管7,液バイ パス管7a,および第3の電磁弁15を経て蒸発器4にて除霜を行うと、高圧の まま液化冷媒となる。そして、この液化した高圧液冷媒は、まず吸入圧力調整弁 17にて減圧された後、低圧側熱交換路11で蓄熱剤と熱交換することにより気 化されて圧縮機1へ吸入される。この際、吸入圧力調整弁17は圧縮機1の吸入 圧力が許容圧力値を越えないように使用上限の吸入圧力以下に設定されている。 なお、蒸発器4の除霜を終えると、除霜検出器(図示せず)により冷却運転に切 換えられる。Next, the defrosting operation will be described. When frost formation on the evaporator 4 is detected by a defrost detector (not shown) and hot gas defrosting is started, the three-way solenoid valve 12 and the third solenoid valve 15 are energized, and the second and fourth solenoid valves are energized. 14, 16 are not energized and become the refrigerant flow indicated by the broken line arrow in FIG. That is, the high-pressure refrigerant gas discharged from the compressor 1 evaporates via the high-pressure side heat exchange passage 10, the three-way solenoid valve 12, the discharge bypass pipe 6a, the liquid pipe 7, the liquid bypass pipe 7a, and the third solenoid valve 15. When defrosting is performed in the vessel 4, the liquefied refrigerant remains at high pressure. Then, the liquefied high-pressure liquid refrigerant is first decompressed by the suction pressure adjusting valve 17 and then vaporized by exchanging heat with the heat storage agent in the low-pressure side heat exchange passage 11 and is sucked into the compressor 1. At this time, the suction pressure adjusting valve 17 is set below the upper limit suction pressure so that the suction pressure of the compressor 1 does not exceed the allowable pressure value. When the defrosting of the evaporator 4 is completed, the defrosting detector (not shown) switches to the cooling operation.

【0007】[0007]

【考案が解決しようとする課題】[Problems to be solved by the device]

従来の冷凍装置は以上のように構成されており、デフロスト開始直後は、回路 内の液冷媒が低圧側熱交換路11を介して圧縮機1へもどるが一時的に大量の液 が流れるため、低圧側熱交換路11内では蒸発しきれずに一部は液冷媒のまま圧 縮機1へ導入される。しかし、液冷媒の状態で圧縮機1へ吸入されると液圧縮等 により圧縮機1が損傷する危具があるため圧縮機1直前にサクションアキュムレ ータ5を設けて対処していた。しかし、サクションアキュムレータ5は内部構造 や配管径、形状等により圧力損失が大きく、冷却運転時の能力低下の原因になっ ていた。 The conventional refrigeration system is configured as described above, and immediately after the start of defrost, the liquid refrigerant in the circuit returns to the compressor 1 via the low-pressure side heat exchange passage 11, but a large amount of liquid temporarily flows, In the low-pressure side heat exchange passage 11, the liquid refrigerant cannot be completely evaporated and is partially introduced into the compressor 1 as a liquid refrigerant. However, if sucked into the compressor 1 in the state of liquid refrigerant, there is a danger that the compressor 1 will be damaged by liquid compression and the like, so a suction accumulator 5 was provided immediately before the compressor 1 to deal with it. However, the suction accumulator 5 has a large pressure loss due to the internal structure, the pipe diameter, the shape, etc., which causes a decrease in the capacity during the cooling operation.

【0008】 本考案の目的は、かかる従来の問題点を解決するためになされたもので、液冷 媒の状態での圧縮機への導入を防止すると共に冷却運転時の能力低下を防止した 冷凍装置を提供することにある。The object of the present invention is to solve the above-mentioned conventional problems, and to prevent introduction into a compressor in the state of a liquid cooling medium and to prevent deterioration of capacity during cooling operation. To provide a device.

【0009】[0009]

【課題を解決するための手段】[Means for Solving the Problems]

本考案に係る冷凍装置は、圧縮機、凝縮器、絞り装置、蒸発器、および高圧側 と低圧側とにそれぞれ設けられた熱交換路並びに蓄熱剤を内蔵する蓄熱槽を備え 、前記低圧側熱交換路が吸入バイパス管にて冷凍サイクルに並列回路として接続 されている冷凍装置において、前記蓄熱槽の低圧側熱交換路の下流の前記吸入バ イパス管にサクションアキュムレータを備えたことを特徴とする。 A refrigeration system according to the present invention comprises a compressor, a condenser, a throttle device, an evaporator, and heat exchange paths provided on the high pressure side and the low pressure side, respectively, and a heat storage tank containing a heat storage agent. In a refrigeration system in which an exchange path is connected as a parallel circuit to a refrigeration cycle by a suction bypass pipe, a suction accumulator is provided in the suction bypass pipe downstream of the low-pressure side heat exchange passage of the heat storage tank. .

【0010】[0010]

【作用】[Action]

本考案の冷凍装置では、デフロスト開始直後の低圧側熱交換路で蒸発しきれな い液冷媒は一時安アキュムレータ内に貯溜され、ガス冷媒のみが圧縮機に供給さ れる。 In the refrigerating apparatus of the present invention, the liquid refrigerant that cannot be completely evaporated in the heat exchange passage on the low pressure side immediately after the start of defrost is temporarily stored in the accumulator, and only the gas refrigerant is supplied to the compressor.

【0011】[0011]

【実施例】【Example】

以下、本考案の冷凍装置を図に示された実施例につい更に詳細に説明する。図 1は、本考案の一実施例に係る冷凍装置20を示す構成図である。 本考案の冷凍装置20における冷凍サイクルは、基本的には図2に示された従 来の冷凍サイクルと同様に、圧縮機1,凝縮器2,絞り装置3,蒸発器4,およ び各々を連絡する吐出管6,液管7,吸入管8により構成されている。しかし、 この実施例の冷凍装置20では、従来のようにサクションアキュムレータ5が吸 入管8には設置されておらず、第4の電磁弁16の出口側の吸入管8は直接圧縮 機1の入口側に接続されている。 Hereinafter, the refrigerating apparatus of the present invention will be described in more detail with reference to the embodiments shown in the drawings. FIG. 1 is a block diagram showing a refrigerating apparatus 20 according to an embodiment of the present invention. The refrigerating cycle of the refrigerating apparatus 20 of the present invention is basically the same as the conventional refrigerating cycle shown in FIG. 2, and includes a compressor 1, a condenser 2, a throttle device 3, an evaporator 4, and a refrigerating cycle, respectively. It is composed of a discharge pipe 6, a liquid pipe 7, and a suction pipe 8 which connect the above. However, in the refrigeration system 20 of this embodiment, the suction accumulator 5 is not installed in the suction pipe 8 as in the conventional case, and the suction pipe 8 on the outlet side of the fourth solenoid valve 16 is directly connected to the inlet of the compressor 1. Connected to the side.

【0012】 また、低圧側熱交換路11と第4の電磁弁16の出口側の吸入管8と接続する 吸入バイパス管8aにはサクションアキュムレータ21が設置されている。他の 構成は図2に示された従来の冷凍装置と同様であるため相当する部分に同一の符 号を付してその説明を省略する。A suction accumulator 21 is installed in the suction bypass pipe 8 a that connects the low-pressure side heat exchange passage 11 and the suction pipe 8 on the outlet side of the fourth solenoid valve 16. Since other configurations are similar to those of the conventional refrigerating apparatus shown in FIG. 2, corresponding parts are designated by the same reference numerals and description thereof is omitted.

【0013】 前述した実施例の冷凍装置20では、実線矢印で示す通常の冷却運転時、吸入 管8に圧損の原因となるサクションアキュムレータがないため能力低下が生じな い。そして、デフロスト回路の低圧側熱交換路11の下流部である吸入バイパス 管8aにサクションアキュムレータ21を設けているので、デフロスト開始直後 の低圧側熱交換路11では蒸発しきれない液冷媒は一時アキュムレータ21内に 貯溜され、ガス冷媒のみが圧縮機1に供給される。In the refrigerating apparatus 20 of the above-described embodiment, during the normal cooling operation shown by the solid line arrow, the suction pipe 8 does not have the suction accumulator that causes pressure loss, so that the capacity does not decrease. Further, since the suction accumulator 21 is provided in the suction bypass pipe 8a which is the downstream portion of the low pressure side heat exchange passage 11 of the defrost circuit, the liquid refrigerant which cannot be completely evaporated in the low pressure side heat exchange passage 11 immediately after the defrost start is temporarily stored in the accumulator. It is stored in 21 and only the gas refrigerant is supplied to the compressor 1.

【0014】[0014]

【考案の効果】[Effect of the device]

以上説明したように、本考案の冷凍装置によれば、デフロスト回路にアキュム レータを設け、通常の冷却運転時は圧損の少ない条件で運転できるので能力低下 を極力小さくおさえ、デフロスト時に発生する液戻り現象時はデフロスト回路内 のアキュムレータが液を貯溜し、圧縮機を保護することができる。 As described above, according to the refrigerating apparatus of the present invention, the defrost circuit is provided with an accumulator, and it is possible to operate under conditions with less pressure loss during normal cooling operation, so that the capacity drop is suppressed as much as possible and the liquid return that occurs during defrosting. At the time of the phenomenon, the accumulator in the defrost circuit can store the liquid and protect the compressor.

【提出日】平成3年6月28日[Submission date] June 28, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】[0010]

【作用】[Action]

本考案の冷凍装置では、デフロスト開始直後の低圧側熱交換器で蒸発しきれな い液冷媒は一時アキュムレータ内に貯溜され、ガス冷媒のみが圧縮機に供給され る。In the refrigeration apparatus of the present invention may have liquid refrigerant that fully evaporated in the low-pressure side heat exchanger immediately after defrosting start is stored within one Tokia accumulator, only the gas refrigerant is Ru is supplied to the compressor.

【図面の簡単な説明】[Brief description of drawings]

【図1】本考案の一実施例に係る冷凍装置を示す構成図
である。
FIG. 1 is a block diagram showing a refrigerating apparatus according to an embodiment of the present invention.

【図2】従来の冷凍装置を示す構成図である。FIG. 2 is a configuration diagram showing a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 絞り装置 4 蒸発器 6 吐出管 7 液管 8 吸入管 8a 吸入バイパス管 9 蓄熱槽 9a 蓄熱剤 10 高圧側熱交換路 11 低圧側熱交換路 20 冷凍装置 21 サクションアキュムレータ 1 Compressor 2 Condenser 3 Throttle device 4 Evaporator 6 Discharge pipe 7 Liquid pipe 8 Suction pipe 8a Suction bypass pipe 9 Heat storage tank 9a Heat storage agent 10 High pressure side heat exchange passage 11 Low pressure side heat exchange passage 20 Refrigeration equipment 21 Suction accumulator

Claims (1)

【実用新案登録請求の範囲】 【請求項1】 圧縮機、凝縮器、絞り装置、蒸発器、お
よび高圧側と低圧側とにそれぞれ設けられた熱交換路並
びに蓄熱剤を内蔵する蓄熱槽を備え、前記低圧側熱交換
路が吸入バイパス管にて冷凍サイクルに並列回路として
接続されている冷凍装置において、前記蓄熱槽の低圧側
熱交換路の下流の前記吸入バイパス管にサクションアキ
ュムレータを備えたことを特徴とする冷凍装置。
[Claims for utility model registration] Claims: 1. A compressor, a condenser, a throttle device, an evaporator, a heat exchange path provided on each of a high pressure side and a low pressure side, and a heat storage tank containing a heat storage agent. A refrigeration system in which the low-pressure side heat exchange passage is connected as a parallel circuit to a refrigeration cycle by a suction bypass pipe, wherein a suction accumulator is provided in the suction bypass pipe downstream of the low-pressure side heat exchange passage of the heat storage tank. Refrigerating device characterized by.
JP88191U 1991-01-17 1991-01-17 Refrigeration equipment Pending JPH051966U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP88191U JPH051966U (en) 1991-01-17 1991-01-17 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP88191U JPH051966U (en) 1991-01-17 1991-01-17 Refrigeration equipment

Publications (1)

Publication Number Publication Date
JPH051966U true JPH051966U (en) 1993-01-14

Family

ID=11486021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP88191U Pending JPH051966U (en) 1991-01-17 1991-01-17 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JPH051966U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153736A (en) * 2010-01-26 2011-08-11 Panasonic Corp Refrigerating cycle device
WO2015037057A1 (en) 2013-09-10 2015-03-19 三菱電機株式会社 Refrigerating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011153736A (en) * 2010-01-26 2011-08-11 Panasonic Corp Refrigerating cycle device
WO2015037057A1 (en) 2013-09-10 2015-03-19 三菱電機株式会社 Refrigerating device
JP6072264B2 (en) * 2013-09-10 2017-02-01 三菱電機株式会社 Refrigeration equipment
US10082325B2 (en) 2013-09-10 2018-09-25 Mitsubishi Electric Corporation Refrigerating apparatus

Similar Documents

Publication Publication Date Title
EP1139039B1 (en) Economizer circuit enhancement
JP3882056B2 (en) Refrigeration air conditioner
JP2002310519A (en) Heat pump water heater
JPH051966U (en) Refrigeration equipment
JPH07190515A (en) Freezer
JPH09159288A (en) Refrigerating device
JP3754272B2 (en) Air conditioner
JPH04324075A (en) Air conditioning apparatus
JP3442927B2 (en) Frozen dessert production equipment
JPS59112161A (en) Refrigerator
JPH03170758A (en) Air conditioner
CN210951964U (en) Air-cooled heat pump unit
JPH0820139B2 (en) Heat storage type heat pump device
JPS6243255Y2 (en)
JPH065572Y2 (en) Refrigeration equipment
JPS6130131Y2 (en)
JP2543182B2 (en) Cooling / heating hot water supply system
JPS6243249Y2 (en)
JPH0134063Y2 (en)
JPH01169283A (en) Refrigerating cycle
JPS627462B2 (en)
JPS59217456A (en) Refrigerator
JPS6328385Y2 (en)
JPH0285660A (en) Heat pump type air conditioner
JPS58136951A (en) Refrigerator