JPH0134063Y2 - - Google Patents

Info

Publication number
JPH0134063Y2
JPH0134063Y2 JP4746681U JP4746681U JPH0134063Y2 JP H0134063 Y2 JPH0134063 Y2 JP H0134063Y2 JP 4746681 U JP4746681 U JP 4746681U JP 4746681 U JP4746681 U JP 4746681U JP H0134063 Y2 JPH0134063 Y2 JP H0134063Y2
Authority
JP
Japan
Prior art keywords
heat exchange
pressure
suction
exchange path
pressure side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4746681U
Other languages
Japanese (ja)
Other versions
JPS57157858U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP4746681U priority Critical patent/JPH0134063Y2/ja
Publication of JPS57157858U publication Critical patent/JPS57157858U/ja
Application granted granted Critical
Publication of JPH0134063Y2 publication Critical patent/JPH0134063Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は冷凍装置の改良に関するものであ
る。蓄熱槽を利用した冷凍装置のホツトガス除霜
は、圧縮機の吐出冷媒ガスを蒸発器に供給して吐
出冷媒ガスを液化させることにより、前記蒸発器
の除霜を行ない、液化冷媒を前記蓄熱槽にて再蒸
発させ圧縮機に気化冷媒を吸入させるようにする
ものである。
[Detailed description of the invention] This invention relates to improvement of a refrigeration system. Hot gas defrosting of a refrigeration system using a heat storage tank involves defrosting the evaporator by supplying the refrigerant gas discharged from the compressor to the evaporator and liquefying the discharged refrigerant gas, and then transferring the liquefied refrigerant to the heat storage tank. The vaporized refrigerant is then re-evaporated and sucked into the compressor.

従来、この蓄熱槽に内蔵した低圧側熱交換路は
除霜中のみに利用する為に、前記低圧側熱交換路
に並列に吸入管電磁弁を設けて、冷却運転中にお
いては前記吸入管電磁弁を開放して吸入ガスを通
していたが、吸入ガスの一部は前記吸入管電磁弁
のみでなく、前記低圧側熱交換路側にも流れるこ
とがあり、この低圧側熱交換路側に流れた冷媒ガ
スは、前記蓄熱槽内の蓄熱材と熱交換して加熱さ
れ、再び前記低圧側熱交換路の出口側にて前記吸
入管電磁弁を通過した吸入冷媒ガスと合流して吸
入ガス温度が上昇する結果となつていた。この
為、圧縮機の吸入する冷媒ガスの温度が上昇し、
前記圧縮機の吐出ガス温度上昇、圧縮要素及び潤
滑油の温度上昇及び吸入ガスの比容積増加による
冷媒循環量が低下するという問題点があつた。ま
た冷却運転中に蓄熱槽内の蓄熱材の温度が低圧側
熱交換路側に流れた冷媒ガスとの熱交換によつて
低下し、高圧側熱交換路を流れる冷媒より加熱さ
れても、蓄熱材の温度上昇が遅いという問題点が
あつた。
Conventionally, in order to use the low-pressure side heat exchange path built in this heat storage tank only during defrosting, a suction pipe solenoid valve was provided in parallel with the low-pressure side heat exchange path, and the suction pipe solenoid valve was installed in parallel with the low-pressure side heat exchange path. Although the valve was opened and the suction gas was passed through, some of the suction gas may flow not only to the suction pipe solenoid valve but also to the low pressure heat exchange path, and the refrigerant gas that has flowed to the low pressure heat exchange path. is heated by exchanging heat with the heat storage material in the heat storage tank, and joins with the suction refrigerant gas that has passed through the suction pipe electromagnetic valve again at the outlet side of the low-pressure side heat exchange path, so that the suction gas temperature rises. It was a result. For this reason, the temperature of the refrigerant gas sucked into the compressor increases,
There is a problem in that the refrigerant circulation amount decreases due to an increase in the temperature of the discharge gas of the compressor, an increase in the temperature of the compression element and lubricating oil, and an increase in the specific volume of the suction gas. In addition, even if the temperature of the heat storage material in the heat storage tank decreases during cooling operation due to heat exchange with the refrigerant gas flowing to the low-pressure side heat exchange path, and is heated by the refrigerant flowing through the high-pressure side heat exchange path, the heat storage material There was a problem that the temperature rise was slow.

本考案は、前述した2つの問題点を解消するた
めになされたもので、低圧側熱交換路の入口側に
設けた吸入圧力調整弁の入口側に差圧逆止弁を設
けることにより、低圧側熱交換路と並列に設けた
吸入管電磁弁が開放された冷却運転時には、前記
差圧逆止弁によつて低圧側熱交換路に冷媒が圧力
調整弁および低圧側熱交換路を通ることを確実に
阻止し、冷媒循環量の低下を防止できると共に、
蓄熱材を速やかに温度上昇させることができる冷
凍装置を提供することを目的としている。
This invention was made to solve the two problems mentioned above, and by providing a differential pressure check valve on the inlet side of the suction pressure regulating valve provided on the inlet side of the low pressure side heat exchange path, the low pressure During cooling operation when the suction pipe solenoid valve provided in parallel with the side heat exchange path is opened, the differential pressure check valve allows the refrigerant to pass through the pressure regulating valve and the low pressure side heat exchange path to the low pressure side heat exchange path. It is possible to reliably prevent this and prevent a decrease in the amount of refrigerant circulation, as well as
It is an object of the present invention to provide a refrigeration device that can quickly raise the temperature of a heat storage material.

以下、この考案の一実施例を図について説明す
る。
An embodiment of this invention will be described below with reference to the drawings.

図はこの考案の一実施例を示す冷凍装置の冷媒
配管系統図で、図において、圧縮機1、凝縮器
2、絞り装置3、蒸発器4及び各々を連結する吐
出管5、液管6、吸入管7により冷凍サイクルが
構成されている。ホツトガス除霜用としての蓄熱
槽8は内部に蓄熱材9、高圧側熱交換路10、低
圧側熱交換路11を収納しており、前記高圧側熱
交換路10は前記圧縮機1と凝縮器2とを連結す
る吐出管5の途中に設けられる。高圧側熱交換路
10の出口側には三方電磁弁12が設けられ、こ
の電磁弁12の第1の出口側は凝縮器2の入口側
に接続し、第2の出口側は液管6の途中に接続さ
れる吐出バイパス管5aに接続されている。この
液管6の凝縮器2と吐出バイパス管5a接続部の
間には逆止弁13が凝縮器2から絞り装置3への
流れ方向に接続されている。
The figure is a refrigerant piping system diagram of a refrigeration system showing an embodiment of this invention. The suction pipe 7 constitutes a refrigeration cycle. A heat storage tank 8 for hot gas defrosting stores therein a heat storage material 9, a high pressure side heat exchange path 10, and a low pressure side heat exchange path 11, and the high pressure side heat exchange path 10 is connected to the compressor 1 and the condenser. It is provided in the middle of the discharge pipe 5 that connects the two. A three-way solenoid valve 12 is provided on the outlet side of the high-pressure side heat exchange path 10, the first outlet side of this solenoid valve 12 is connected to the inlet side of the condenser 2, and the second outlet side is connected to the inlet side of the liquid pipe 6. It is connected to a discharge bypass pipe 5a connected in the middle. A check valve 13 is connected between the condenser 2 and the discharge bypass pipe 5a connecting portion of the liquid pipe 6 in the flow direction from the condenser 2 to the throttle device 3.

絞り装置3の上流側には第2の電磁弁14が接
続され、この入口側及び絞り装置3の出口側は液
バイパス管6a及び第3の電磁弁15に接続され
る。
A second solenoid valve 14 is connected to the upstream side of the throttle device 3, and the inlet side and the outlet side of the throttle device 3 are connected to the liquid bypass pipe 6a and the third solenoid valve 15.

また、吸入管7においては第4の電磁弁16が
設けられると共に、この入口側と出口側に並列回
路として差圧逆止弁17と吸入圧力調整弁18と
低圧側熱交換路11が吸入バイパス管7aにて接
続されている。
In addition, a fourth solenoid valve 16 is provided in the suction pipe 7, and a differential pressure check valve 17, a suction pressure regulating valve 18, and a low-pressure side heat exchange path 11 are connected as a parallel circuit on the inlet side and outlet side of the suction pipe 7, and a suction bypass They are connected through a pipe 7a.

次にこの動作について説明する。まず、冷却運
転中は冷媒系路図中、実線矢印の如く冷媒が流れ
て冷却運転を行なう。即ち、第2の電磁弁14と
第4の電磁弁16が通電されて開路し、三方電磁
弁12は通電されない状態で、高圧側熱交換路1
0と凝縮器2を連通し、第3の電磁弁15は通電
されない状態で閉路している。一方、蓄熱槽8の
蓄熱材9は圧縮機1からの吐出冷媒ガスが高圧側
熱交換路10を通過することにより加熱される。
一方、蒸発器4にて蒸発した冷媒ガスは吸入管7
及び第4の電磁弁16を経て圧縮機1に再び吸入
されるが、吸入ガスの一部は吸入バイパス管7a
の回路、即ち吸入圧力調整弁18及び低圧側熱交
換路11を流れることにより、第4の電磁弁16
を通過した冷媒ガスと混合して吸入ガス温度を上
昇させることとなる。この為に本考案では吸入バ
イパス管7aの回路内に差圧逆止弁17を設け
て、前記第4の電磁弁16を通過する際の圧力損
失よりも大きい差圧力で、該差圧逆止弁17を開
路させることにより通常の冷却運転中においては
吸入ガスの一部は吸入バイパス管7aの回路へは
流れなくなるものである。これにより吸入ガスの
温度上昇も防止できる。
Next, this operation will be explained. First, during the cooling operation, the refrigerant flows as shown by the solid arrow in the refrigerant system diagram to perform the cooling operation. That is, the second solenoid valve 14 and the fourth solenoid valve 16 are energized and open, and the three-way solenoid valve 12 is not energized and the high-pressure side heat exchange path 1 is opened.
0 and the condenser 2, and the third solenoid valve 15 is closed without being energized. On the other hand, the heat storage material 9 of the heat storage tank 8 is heated by the refrigerant gas discharged from the compressor 1 passing through the high-pressure side heat exchange path 10 .
On the other hand, the refrigerant gas evaporated in the evaporator 4 is transferred to the suction pipe 7
The suction gas is sucked into the compressor 1 again through the fourth electromagnetic valve 16, but a portion of the suction gas is passed through the suction bypass pipe 7a.
circuit, that is, the suction pressure regulating valve 18 and the low pressure side heat exchange path 11, the fourth electromagnetic valve 16
It mixes with the refrigerant gas that has passed through and increases the temperature of the suction gas. For this reason, in the present invention, a differential pressure check valve 17 is provided in the circuit of the suction bypass pipe 7a, and the pressure difference is greater than the pressure loss when passing through the fourth electromagnetic valve 16. By opening the valve 17, a part of the intake gas no longer flows into the circuit of the intake bypass pipe 7a during normal cooling operation. This also prevents the temperature of the intake gas from rising.

なお、除霜時においては、前記蒸発器4の着霜
を除霜検出器(図示せず)により検出してホツト
ガス除霜を開始すると、三方電磁弁12と第3の
電磁弁15が通電され、第2及び第4の電磁弁1
4,16は通電されずに、図中破線矢印の冷媒流
れとなる。即ち、圧縮機1にて吐出された冷媒ガ
スは高圧側熱交換路10、三方電磁弁12、吐出
バイパス管5a、液管6、液バイパス管6a、第
3の電磁弁15を経て、蒸発器4の除霜を行な
う。こうして液化した冷媒は高圧圧力にて差圧逆
止弁17、吸入圧力調整弁18を経て、低圧圧力
に減圧され、低圧側熱交換路11にて上述したよ
うに加熱された蓄熱材9と熱交換し再蒸発される
ことにより、吸入管7を経て圧縮機1へと気化冷
媒が吸入される。こうして除霜が終了すると除霜
検出器(図示せず)にて冷却運転に切換えられ
る。
In addition, during defrosting, when frost formation on the evaporator 4 is detected by a defrost detector (not shown) and hot gas defrosting is started, the three-way solenoid valve 12 and the third solenoid valve 15 are energized. , second and fourth solenoid valves 1
4 and 16 are not energized, and the refrigerant flows as indicated by the broken line arrow in the figure. That is, the refrigerant gas discharged from the compressor 1 passes through the high-pressure side heat exchange path 10, the three-way solenoid valve 12, the discharge bypass pipe 5a, the liquid pipe 6, the liquid bypass pipe 6a, and the third solenoid valve 15, and then reaches the evaporator. Perform step 4 of defrosting. The liquefied refrigerant passes through the differential pressure check valve 17 and the suction pressure regulating valve 18 at a high pressure, is reduced to a low pressure, and passes through the low pressure side heat exchange path 11 to the heated heat storage material 9 and heat. By exchanging and re-evaporating the refrigerant, the vaporized refrigerant is sucked into the compressor 1 through the suction pipe 7. When defrosting is completed in this way, a defrost detector (not shown) switches to cooling operation.

以上説明したように、この考案によれば、低圧
側熱交換路の入口側に、吸入圧力調整弁を設け、
この圧力調整弁の入口側に吸入管電磁弁の開放時
の圧力損失より大きな圧力で作動開放する差圧逆
止弁を設けたことにより、冷却運転中で吸入管電
磁弁が開放している時に、差圧逆止弁17によつ
て冷媒ガスの一部が低圧側熱交換路に流れるのを
防止することができ、吸入ガスの温度上昇による
圧縮機の温度上昇を防止できる。また蓄熱材と吸
入ガスとの熱交換も防止することができ、蓄熱材
と冷媒ガスとの熱交換も防止でき、したがつて、
蓄熱材を、高圧側熱交換路を通過する冷媒によつ
て速やかに温度上昇させることができ、除霜運転
の頻度を高くすることができるという効果が得ら
れる。
As explained above, according to this invention, a suction pressure regulating valve is provided on the inlet side of the low pressure side heat exchange path,
By installing a differential pressure check valve on the inlet side of this pressure regulating valve that operates and opens at a pressure greater than the pressure loss when the suction pipe solenoid valve opens, it is possible to prevent the suction pipe solenoid valve from opening during cooling operation. The differential pressure check valve 17 can prevent part of the refrigerant gas from flowing into the low-pressure side heat exchange path, and can prevent the temperature of the compressor from increasing due to the temperature of the suction gas. It is also possible to prevent heat exchange between the heat storage material and the suction gas, and also prevent heat exchange between the heat storage material and the refrigerant gas.
The temperature of the heat storage material can be quickly raised by the refrigerant passing through the high-pressure side heat exchange path, resulting in the effect that the frequency of defrosting operation can be increased.

【図面の簡単な説明】[Brief explanation of the drawing]

図はこの考案の一実施例を示す冷凍装置の冷媒
系統図である。 図中、1は圧縮機、2は凝縮器、3は絞り装
置、4は蒸発器、5は吐出管、6は液管、7は吸
入管、5a,6a,7aはバイパス管、8は蓄熱
槽、10は高圧側熱交換路、11は低圧側熱交換
路、16は電磁弁、17は差圧逆止弁、18は吸
入圧力調整弁である。
The figure is a refrigerant system diagram of a refrigeration system showing an embodiment of this invention. In the figure, 1 is a compressor, 2 is a condenser, 3 is a throttle device, 4 is an evaporator, 5 is a discharge pipe, 6 is a liquid pipe, 7 is a suction pipe, 5a, 6a, 7a are bypass pipes, 8 is a heat storage 10 is a high pressure side heat exchange path, 11 is a low pressure side heat exchange path, 16 is a solenoid valve, 17 is a differential pressure check valve, and 18 is a suction pressure regulating valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、凝縮器、絞り装置及び蒸発器を順次接
続して形成した冷媒回路と、冷媒回路の高圧側及
び低圧側に設けられた夫々の熱交換路と蓄熱材と
を内蔵した蓄熱槽と、低圧側熱交換路と並列に設
けた吸入管電磁弁とを備えた冷凍装置において、
前記低圧側熱交換路の入口側に吸入圧力調整弁を
設けると共に、前記吸入管電磁弁の開放時の圧力
損失よりも大なる圧力で作動開放する差圧逆止弁
を低圧側熱交換路の前記吸入圧力調整弁入口側に
設けたことを特徴とする冷凍装置。
A refrigerant circuit formed by sequentially connecting a compressor, a condenser, a throttle device, and an evaporator, and a heat storage tank incorporating heat exchange paths and heat storage materials provided on the high-pressure side and low-pressure side of the refrigerant circuit, respectively; In a refrigeration system equipped with a suction pipe solenoid valve installed in parallel with a low-pressure side heat exchange path,
A suction pressure regulating valve is provided on the inlet side of the low pressure side heat exchange path, and a differential pressure check valve that operates and opens at a pressure greater than the pressure loss when the suction pipe solenoid valve is opened is provided in the low pressure side heat exchange path. A refrigeration system characterized in that the suction pressure regulating valve is provided on the inlet side.
JP4746681U 1981-03-31 1981-03-31 Expired JPH0134063Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4746681U JPH0134063Y2 (en) 1981-03-31 1981-03-31

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4746681U JPH0134063Y2 (en) 1981-03-31 1981-03-31

Publications (2)

Publication Number Publication Date
JPS57157858U JPS57157858U (en) 1982-10-04
JPH0134063Y2 true JPH0134063Y2 (en) 1989-10-17

Family

ID=29844272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4746681U Expired JPH0134063Y2 (en) 1981-03-31 1981-03-31

Country Status (1)

Country Link
JP (1) JPH0134063Y2 (en)

Also Published As

Publication number Publication date
JPS57157858U (en) 1982-10-04

Similar Documents

Publication Publication Date Title
JPH0232546B2 (en)
JPH04187954A (en) Air conditioning system
CN208332736U (en) A kind of direct condensation by contact refrigeration system with hot gas defrosting
JPH0134063Y2 (en)
JPH0452469A (en) Air conditioner
JPS6139258Y2 (en)
JPS6243255Y2 (en)
JPS6136135Y2 (en)
JPS592454Y2 (en) Heat pump refrigeration equipment
CN220818148U (en) Refrigerant quantity adjusting device for refrigeration cycle system, gas-liquid separator and air conditioning system
JPH0213905Y2 (en)
JPS632859Y2 (en)
JPS58136951A (en) Refrigerator
JPH0410527Y2 (en)
JPS6038846Y2 (en) air conditioner
JPS59112161A (en) Refrigerator
JPH07293975A (en) Air conditioner
JPH0212539Y2 (en)
JPH051966U (en) Refrigeration equipment
JPH06337172A (en) Heat pump type air-conditioning machine
JPS6115978B2 (en)
JPH0410526Y2 (en)
JPS6230702Y2 (en)
JPS6243248Y2 (en)
JPH0428955A (en) Air conditioner