JPH05195124A - Shape memory alloy - Google Patents

Shape memory alloy

Info

Publication number
JPH05195124A
JPH05195124A JP4296451A JP29645192A JPH05195124A JP H05195124 A JPH05195124 A JP H05195124A JP 4296451 A JP4296451 A JP 4296451A JP 29645192 A JP29645192 A JP 29645192A JP H05195124 A JPH05195124 A JP H05195124A
Authority
JP
Japan
Prior art keywords
temperature
transformation
shape memory
memory alloy
transformation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4296451A
Other languages
Japanese (ja)
Other versions
JP3271329B2 (en
Inventor
Takasumi Shimizu
孝純 清水
Yoshiaki Shiyugo
嘉朗 守護
Koichi Morii
浩一 森井
Kiyoshi Sakurai
清志 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP29645192A priority Critical patent/JP3271329B2/en
Publication of JPH05195124A publication Critical patent/JPH05195124A/en
Application granted granted Critical
Publication of JP3271329B2 publication Critical patent/JP3271329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To increase the transformation temp. of an Ni-Ti shape memory alloy and to enable transformation at >=100 deg.C. CONSTITUTION:The compsn. of this shape memory allay is composed of, by atom, 45-51%, in total of 36-48% Mi and 9-10% Cu, 3-16% Hf and the balance Ti.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は形状記憶合金に関し、
詳しくは変態温度の高い形状記憶合金に関する。
This invention relates to shape memory alloys,
Specifically, it relates to a shape memory alloy having a high transformation temperature.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】形状記
憶合金は、低温状態(マルテンサイト相状態)で変形を
加えてもこれを所定温度まで加温すると予め記憶させて
ある形状に復元するもので、その特異な性質を利用して
様々な分野で用いられている。
2. Description of the Related Art Shape memory alloys are those which, even if they are deformed in a low temperature state (martensite phase state), are restored to a previously stored shape when heated to a predetermined temperature. It is used in various fields due to its unique properties.

【0003】かかる形状記憶合金としては,CuZnA
l系合金,CuAlNi系合金及びNiTi系合金が知
られているが、疲労特性等の点から実際にはNiとTi
との原子比が1:1に近い組成のNiTi系合金が広く
使用されている。
CuZnA is one of such shape memory alloys.
L-based alloys, CuAlNi-based alloys, and NiTi-based alloys are known, but Ni and Ti are actually used in terms of fatigue characteristics.
NiTi-based alloys having a composition in which the atomic ratio of and are close to 1: 1 are widely used.

【0004】このNiTi系合金は、変態温度がNi濃
度に依存し、Ni:49.6〜51.5原子%の組成範
囲ではNi濃度の増加とともに変態温度が直線的に低下
する。
In this NiTi-based alloy, the transformation temperature depends on the Ni concentration, and the transformation temperature linearly decreases as the Ni concentration increases in the composition range of Ni: 49.6 to 51.5 atomic%.

【0005】尤も焼なまし温度を低温化すると変態温度
が上昇するなど、熱処理条件等によっても変態温度は変
動する。
The transformation temperature also changes depending on the heat treatment conditions such as the transformation temperature rising when the annealing temperature is lowered.

【0006】しかしながらNi濃度,熱処理条件を変え
て変態温度の上昇を図っても、せいぜいAs=約100
℃(As:加熱時のマルテンサイト相→母相の変態開始
温度)どまりである。
However, even if the Ni concentration and the heat treatment conditions are changed to raise the transformation temperature, As = at most 100
C. (As: temperature at which transformation starts from the martensite phase to the parent phase during heating).

【0007】NiTi系合金の変態温度をコントロ−ル
する方法として、V,Cr,Mn,Fe,Co等の3d
遷移金属或いはAl,Si等の第三元素を添加する方法
がある。しかしながらこれら成分の添加は変態温度を低
下させる方向である。
As a method for controlling the transformation temperature of a NiTi alloy, 3d of V, Cr, Mn, Fe, Co, etc. is used.
There is a method of adding a transition metal or a third element such as Al or Si. However, the addition of these components tends to lower the transformation temperature.

【0008】但しNiTi系合金のNiの一部をCuで
置換した場合は例外的で、Cu添加によっても変態温度
は低下せず、むしろ若干上昇する傾向を示すが、Cuの
置換のみでは変態温度100℃以上にはならないのが現
状である。
However, it is exceptional when a part of Ni of the NiTi-based alloy is replaced by Cu, and the transformation temperature does not decrease even when Cu is added, but rather tends to slightly rise, but only by the substitution of Cu, the transformation temperature tends to increase. At present, the temperature does not exceed 100 ° C.

【0009】上記のように従来のNiTi系合金の場
合、作動温度(変態温度)が100℃以下であるため、
その応用範囲が自ずと限定されてしまう問題があった。
そこで種々の分野において100℃以上の変態温度を有
する材料の開発が待たれているのが実情である。
As described above, in the case of the conventional NiTi-based alloy, the operating temperature (transformation temperature) is 100 ° C. or lower,
There was a problem that its application range was naturally limited.
Therefore, the fact is that development of materials having a transformation temperature of 100 ° C. or higher is awaited in various fields.

【0010】現在のところ、変態温度(Af)が100
℃以上のNiTi系合金としてNiTiPd合金が報告
されている。
At present, the transformation temperature (Af) is 100.
A NiTiPd alloy has been reported as a NiTi-based alloy having a temperature of ℃ or higher.

【0011】しかしながらこの合金の場合、12原子%
Pdまでは変態温度が低下し、変態温度の高温化を図る
ためには18原子%以上のPdの添加が必要である。
However, in the case of this alloy, 12 atomic%
The transformation temperature lowers up to Pd, and in order to raise the transformation temperature, it is necessary to add 18 atomic% or more of Pd.

【0012】Pdは高価な元素であって、このように多
量に添加が必要であるとなるとコストが大幅に高くなっ
てしまう問題がある。
Pd is an expensive element, and if it is necessary to add Pd in such a large amount, there is a problem that the cost will increase significantly.

【0013】[0013]

【課題を解決するための手段】本発明はこのような課題
を解決するためになされたものであり、その要旨は、形
状記憶合金の組成をNi:36〜48原子%,Cu:9
〜10原子%,Hf:3〜16原子%,残部Tiから成
る組成とすることにある。
The present invention has been made in order to solve such a problem, and the gist thereof is that the composition of a shape memory alloy is Ni: 36 to 48 atomic%, Cu: 9
10 to 10 atomic%, Hf: 3 to 16 atomic%, and the balance Ti.

【0014】本発明に従い、NiTi系合金においてN
iをCuで一部置換し且つTiを一部置換する形で第三
元素としてのHfを所定量添加することにより、それら
CuとHfとの相乗効果により変態温度が効果的に上昇
することが確認された。
In accordance with the present invention, N in NiTi based alloys
By adding a predetermined amount of Hf as the third element such that i is partially replaced by Cu and Ti is partially replaced, the transformation temperature can be effectively increased by the synergistic effect of Cu and Hf. confirmed.

【0015】かかる本発明によればNiTi系合金にお
いて変態温度をAfで100℃以上とすることも容易で
あり、形状記憶合金の応用範囲を従来より飛躍的に広げ
ることが可能となる。
According to the present invention, it is easy to set the transformation temperature of the NiTi alloy to 100 ° C. or higher in Af, and the range of application of the shape memory alloy can be dramatically expanded as compared with the conventional one.

【0016】また形状記憶合金をアクチュエータとして
用いたとき、その応答性を高めることができる。変態温
度を高くすることによって高温相(母相)から低温相
(マルテンサイト相)に速やかに戻すことが可能となる
からである。
When a shape memory alloy is used as an actuator, its responsiveness can be improved. This is because by increasing the transformation temperature, it becomes possible to quickly return from the high temperature phase (mother phase) to the low temperature phase (martensite phase).

【0017】本発明においてCuの添加量を9〜10原
子%に限定したのは、9%より少ないと変態温度Afの
上昇効果が少なく、また10%を超えて添加すると変態
温度Afは低下する傾向を示すことによる。またHfの
添加量を3〜16原子%と限定しているのは、3%より
少ない場合には変態温度Afの上昇効果が少なく、逆に
16%を超えて添加するとコストが高くなる他、加工性
が低下するためである。
In the present invention, the amount of Cu added is limited to 9 to 10 atom%. If it is less than 9%, the effect of raising the transformation temperature Af is small, and if it is added in excess of 10%, the transformation temperature Af is lowered. By showing a trend. Further, the amount of Hf added is limited to 3 to 16 atom%, when the amount is less than 3%, the effect of increasing the transformation temperature Af is small. This is because the workability is reduced.

【0018】本発明においては、Ni原子とCu原子と
の和が45〜51原子%となるように組成を調整した場
合において、特に優れた効果が得られることが確認され
ている。
In the present invention, it has been confirmed that particularly excellent effects can be obtained when the composition is adjusted so that the sum of Ni atoms and Cu atoms is 45 to 51 atom%.

【0019】[0019]

【実施例】次に本発明の特徴を更に明確にすべく、以下
にその実施例を詳述する。ペレット状Ni,スポンジT
i及び板状Hfの各原料を、表1の各組成となるように
アルゴン雰囲気の高周波誘導溶解炉で溶解した後、鋳造
し、次いで熱間鍛造→サンプル切断の各工程を経た後、
500℃×30分水焼入れの条件で熱処理を施し、形状
記憶させた。
EXAMPLES In order to further clarify the characteristics of the present invention, examples thereof will be described in detail below. Pellet Ni, sponge T
After melting each raw material of i and the plate-like Hf in a high frequency induction melting furnace in an argon atmosphere so as to have the respective compositions shown in Table 1, casting, and then through each step of hot forging → sample cutting,
A heat treatment was performed under the conditions of water quenching at 500 ° C. for 30 minutes, and the shape was memorized.

【0020】次にこれら試料について示差走査熱量計に
より変態温度測定を行った。結果が表1に併せて示して
ある。但し表中のAs温度(昇温時の変態開始温度)と
Af温度(昇温時の変態終了温度)は変態に伴う吸熱ピ
ークから求め、またMs温度(降温時の変態開始温度)
とMf温度(降温時の変態終了温度)とは変態に伴う発
熱ピークからそれぞれ求めた。
Next, the transformation temperature of these samples was measured by a differential scanning calorimeter. The results are also shown in Table 1. However, the As temperature (transformation start temperature at the time of temperature rise) and the Af temperature (transformation end temperature at the time of temperature rise) in the table are obtained from the endothermic peak associated with the transformation, and the Ms temperature (transformation start temperature at the time of temperature decrease)
And Mf temperature (transformation end temperature at the time of temperature decrease) were obtained from the exothermic peaks associated with the transformation.

【0021】[0021]

【表1】 [Table 1]

【0022】表の結果から、Hfの添加によって、また
その添加量が増大するにつれて変態温度が上昇するこ
と、変態温度の上昇はNi原子とCu原子の総和によっ
て異なることがわかる。
From the results in the table, it is understood that the transformation temperature rises with the addition of Hf and as the amount of Hf added increases, and that the transformation temperature rises depend on the total amount of Ni atoms and Cu atoms.

【0023】以上本発明の実施例を詳述したがこれはあ
くまで一例示であり、本発明はその主旨を逸脱しない範
囲において、当業者の知識に基づき種々変更を加えるこ
とが可能である。
Although the embodiment of the present invention has been described in detail above, this is merely an example, and the present invention can be variously modified based on the knowledge of those skilled in the art without departing from the spirit of the invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Ni:36〜48原子%,Cu:9〜1
0原子%,Hf:3〜16原子%,残部Tiから成るこ
とを特徴とする形状記憶合金。
1. Ni: 36 to 48 atomic%, Cu: 9 to 1
A shape memory alloy comprising 0 atomic%, Hf: 3 to 16 atomic% and the balance Ti.
【請求項2】 Ni原子とCu原子との和が45〜51
原子%であることを特徴とする請求項1に記載の形状記
憶合金。
2. The sum of Ni atoms and Cu atoms is 45 to 51.
The shape memory alloy according to claim 1, wherein the shape memory alloy is atomic%.
JP29645192A 1991-10-09 1992-10-08 Shape memory alloy Expired - Fee Related JP3271329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29645192A JP3271329B2 (en) 1991-10-09 1992-10-08 Shape memory alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29067691 1991-10-09
JP3-290676 1991-10-09
JP29645192A JP3271329B2 (en) 1991-10-09 1992-10-08 Shape memory alloy

Publications (2)

Publication Number Publication Date
JPH05195124A true JPH05195124A (en) 1993-08-03
JP3271329B2 JP3271329B2 (en) 2002-04-02

Family

ID=26558175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29645192A Expired - Fee Related JP3271329B2 (en) 1991-10-09 1992-10-08 Shape memory alloy

Country Status (1)

Country Link
JP (1) JP3271329B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416573B2 (en) 2010-08-10 2013-04-09 Empire Technology Development Llc. Fluid cooling
WO2019073754A1 (en) 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8416573B2 (en) 2010-08-10 2013-04-09 Empire Technology Development Llc. Fluid cooling
WO2019073754A1 (en) 2017-10-10 2019-04-18 株式会社古河テクノマテリアル Ti-Ni ALLOY, WIRE, ELECTRIFICATION ACTUATOR AND TEMPERATURE SENSOR USING SAME, AND METHOD FOR MANUFACTURING Ti-Ni ALLOY MATERIAL
KR20200019112A (en) 2017-10-10 2020-02-21 후루카와 테크노 메탈리알 컴퍼니., 리미티드. Ti-Ni alloy, wire rod, energizing actuator and temperature sensor using the same, and manufacturing method of Ti-Ni alloy material
JPWO2019073754A1 (en) * 2017-10-10 2020-09-17 株式会社古河テクノマテリアル Ti-Ni alloy, wire rod using it, energizing actuator and temperature sensor, and manufacturing method of Ti-Ni alloy
US11313732B2 (en) 2017-10-10 2022-04-26 Furukawa Techno Material Co., Ltd. Ti—Ni-based alloy; wire, electrically conductive actuator, and temperature sensor, each using this alloy; and method of producing a Ti—Ni-based alloy

Also Published As

Publication number Publication date
JP3271329B2 (en) 2002-04-02

Similar Documents

Publication Publication Date Title
JPH0543969A (en) Shape-memory alloy of high critical temperature
TWI295692B (en) Methods of processing nickel-titanium alloys
JP2003253363A (en) Ni-BASE ALLOY FOR HEAT-RESISTANT SPRING, HEAT-RESISTANT SPRING USING THE ALLOY, AND ITS PRODUCTION METHOD
JPH0665742B2 (en) Shape memory TiNiV alloy manufacturing method
WO2007066555A1 (en) Co BASED ALLOY AND PROCESS FOR PRODUCING THE SAME
JPS6237353A (en) Manufacture of shape memory alloy
JP2014152355A (en) High temperature shape memory alloy, superelastic alloy and methods of producing them
JPH05195124A (en) Shape memory alloy
JPH07233432A (en) Shape memory alloy and its production
JPH02270938A (en) Iron-based shape memorizing alloy and preparation thereof
JPS63235444A (en) Ti-ni-al based shape memory alloy and its production
JP2541802B2 (en) Shape memory TiNiV alloy and manufacturing method thereof
JP3379767B2 (en) Method for producing NiTi-based superelastic material
JPH108168A (en) Nickel-titanium-zirconium(hafnium) shape memory alloy improved in workability
JPS62211339A (en) Ni-ti-cr shape memory alloy
JPH09118967A (en) Manufacture of nickel-titanium shape memory alloy for coil spring
JP2706273B2 (en) Superelastic Ni-Ti-Cu alloy and method for producing the same
JP2603463B2 (en) Low temperature reversible shape memory alloy
JPH059686A (en) Production of shape memory niti alloy
JP2732525B2 (en) Manufacturing method of shape memory alloy
JP2573507B2 (en) Shape memory alloy and manufacturing method thereof
JP2002105565A (en) Electric resistance element, stock therefor and its production method
JP3413609B2 (en) Fe-Cr-Co magnet alloy and method for producing the same
JPS60162759A (en) Manufacture of shape memory element
JPH0344136B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees