JPH05195027A - Method for operating blast furnace - Google Patents

Method for operating blast furnace

Info

Publication number
JPH05195027A
JPH05195027A JP2329392A JP2329392A JPH05195027A JP H05195027 A JPH05195027 A JP H05195027A JP 2329392 A JP2329392 A JP 2329392A JP 2329392 A JP2329392 A JP 2329392A JP H05195027 A JPH05195027 A JP H05195027A
Authority
JP
Japan
Prior art keywords
probe
plasma arc
arc heater
blast furnace
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2329392A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Yamaguchi
一良 山口
Kenji Tamura
健二 田村
Tsuyoshi Shinoda
強志 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2329392A priority Critical patent/JPH05195027A/en
Publication of JPH05195027A publication Critical patent/JPH05195027A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve the productivity of a blast furnace and to reduce the fuel ratio by preventing the development of bad ventilation and the lowering of reduction efficiency caused by the stagnation of charging material descent or the development of stuck material growing from the above stagnation at the lower part of a shaft part or a belly part because of the heating reduction shortage in the peripheral part when the O/C matio at the peripheral part becomes high. CONSTITUTION:A probe mounting a plasma arc heater is inserted from at least one side of the lower part of the shaft part or the belly part and high temp. reduction gas is blown into the blast furnace. Further, the plasma arc heater is advanced/retreated in the probe to execute temp. adjustment of the reduction gas. The plasma arc heater is further advanced/retreated in the probe and cooling gas is flowed at the front surface of the plasma arc heater in the probe to execute the temp. adjustment of the reduction gas.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高炉のシャフト下部な
いしは炉腹部から高温の還元性ガスを高炉内に吹込むこ
とにより、生産性を向上させ、燃料比を低下させる高炉
操業法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a blast furnace operating method for improving productivity and lowering a fuel ratio by injecting high-temperature reducing gas into the blast furnace from the lower part or the belly part of the shaft of the blast furnace.

【0002】[0002]

【従来の技術】高炉操業にあっては、炉頂から装入する
鉱石とコークスの比率(O/Cと略す)の半径方向分布
を調整することにより、高炉の通気性を確保して生産性
を向上させ、かつガス還元効率の向上をはかって燃料比
を低下させている。
2. Description of the Related Art In blast furnace operation, by adjusting the radial distribution of the ratio of ore and coke (abbreviated as O / C) charged from the top of the furnace, air permeability of the blast furnace is secured and productivity is improved. The fuel ratio is reduced by improving the gas reduction efficiency and improving the gas reduction efficiency.

【0003】この装入物分布の調整にあたり、炉内装入
物の降下が安定することは非常に重要であり、特に周辺
部における装入物降下の安定は高炉の通気性、還元効率
をほぼ決定するので、従来から注目されており、周辺部
の装入物降下速度検出方法が開発され実用化に至ってい
る。例えば、特公昭57−31104号公報では、鉄鉱
石とコークスの電気抵抗の差を利用した2本のゾンデに
よる装入物降下速度検出方法が開示されている。このよ
うな周辺部装入物降下速度検出をベースとした装入物分
布調整方法(周辺部O/C調整方法)はすでに実用化さ
れ、高炉安定操業に寄与している。
When adjusting the distribution of the charge, it is very important that the fall of the charge inside the furnace is stable. Especially, the stability of the drop of the charge in the peripheral area determines the air permeability and reduction efficiency of the blast furnace. Therefore, attention has been paid to the prior art, and a method for detecting the falling rate of the charged material in the periphery has been developed and put into practical use. For example, Japanese Examined Patent Publication (Kokoku) No. 57-31104 discloses a charging descent rate detecting method using two sondes utilizing the difference in electric resistance between iron ore and coke. Such a charge distribution adjusting method (peripheral O / C adjusting method) based on the detection of the peripheral charge falling speed has already been put into practical use, and has contributed to stable operation of the blast furnace.

【0004】また高炉のコークス比を低下させて、溶銑
コストの低減、省エネルギーを達成するために、シャフ
ト部から還元性ガスを吹込む方法も実施されており、特
公昭47−33407号公報に開示されている。このよ
うにして吹込まれた還元性ガスは高炉シャフト部での還
元効率を向上させ、コークス比を低下させるのに寄与す
る。
Further, in order to reduce the coke ratio of the blast furnace, reduce the hot metal cost, and save energy, a method of blowing a reducing gas from the shaft portion is also practiced, which is disclosed in Japanese Examined Patent Publication No. 47-33407. Has been done. The reducing gas blown in this way improves the reduction efficiency in the shaft portion of the blast furnace and contributes to lowering the coke ratio.

【0005】[0005]

【発明が解決しようとする課題】ところで従来の高炉操
業において、特公昭57−31104号公報に開示され
ている装入物降下速度検出方法をはじめ、すでに開発さ
れ実用化に至っている検出方法の測定精度があまり良く
ないこと、並びに炉頂における装入物分布調整方法の調
整範囲がそれほど広くないことの2つの理由により、周
辺部O/Cが高くなったときに周辺部の加熱還元不足が
生じて、シャフト下部ないしは炉腹部に装入物降下停滞
あるいはそれが長じて付着物生成を引き起こし、通気不
良、還元効率低下が起こる。このときは、周辺部O/C
を低下させる装入物分布調整方法を実施するが、この調
整は中心部のO/C上昇をもたらすため、その低下幅に
は限界がある。その結果、全体のO/Cを低下せざるを
得ず、生産量が低下し、燃料比が上昇してしまう。
By the way, in the conventional operation of a blast furnace, measurement of a detection method already developed and put into practical use is started, including a method for detecting a descending rate of a charged material disclosed in Japanese Patent Publication No. 57-31104. Due to two reasons: the accuracy is not so good and the adjustment range of the charge distribution adjustment method at the furnace top is not so wide, insufficient heating and reduction of the peripheral part occurs when the peripheral part O / C becomes high. The lowering of the shaft or the abdomen of the furnace causes stagnation of the charged material or it causes long-term deposit formation, resulting in poor ventilation and reduced reduction efficiency. In this case, the peripheral part O / C
The charging distribution adjusting method for reducing the above is carried out, but this adjustment brings about an increase in O / C in the central portion, and therefore there is a limit to the range of decrease. As a result, the total O / C must be decreased, the production amount is decreased, and the fuel ratio is increased.

【0006】また周辺部O/Cを低下させる装入物分布
調整方法の限界を補うために、シャフト部から還元性ガ
スを吹込む技術は、別途プロセスを設置してガス加熱を
行う必要があり、設備規模が大きく投資額もかさむの
で、広く実用化はされておらず、その結果、全体のO/
Cを低下させるアクションに頼らざるを得なくなり、生
産性向上、燃料比低減には限界があった。そこで本発明
では、周辺部O/Cが高くなったときの周辺部の加熱還
元不足をより安価な設備により解消して生産性向上、燃
料比低減を達成することを目的とする。
Further, in order to supplement the limit of the charge distribution adjusting method for lowering the peripheral portion O / C, the technique of blowing the reducing gas from the shaft portion requires a separate process for heating the gas. Since the equipment scale is large and the investment amount is large, it has not been widely put into practical use, and as a result, the overall O /
There was a limit to the improvement of productivity and reduction of fuel ratio, because it had to rely on the action of lowering C. Therefore, an object of the present invention is to solve the shortage of heat reduction in the peripheral portion when the peripheral portion O / C becomes high by using less expensive equipment to improve productivity and reduce the fuel ratio.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、炉頂から鉄鉱石とコークスを交互に装入
する高炉操業法において、シャフト下部または炉腹部の
少なくとも一方からプラズマアークヒーターを搭載した
プローブを挿入し、高温の還元性ガスを高炉内に吹込む
ことを特徴とする。またプローブ内でプラズマアークヒ
ーターを前後進させて、還元性ガスの温度調節を行うこ
とを特徴とする。さらにプローブ内でプラズマアークヒ
ーターを前後進させ、かつプローブ内プラズマアークヒ
ーター前面に冷却ガスを流して、還元性ガスの温度調節
を行うことを特徴とする。
In order to achieve the above object, the present invention provides a plasma arc from at least one of a shaft lower part and a furnace belly in a blast furnace operating method in which iron ore and coke are alternately charged from the furnace top. A probe equipped with a heater is inserted, and high-temperature reducing gas is blown into the blast furnace. Further, the plasma arc heater is moved forward and backward in the probe to control the temperature of the reducing gas. Further, the plasma arc heater is moved forward and backward in the probe, and a cooling gas is caused to flow in front of the plasma arc heater in the probe to adjust the temperature of the reducing gas.

【0008】[0008]

【作用】本発明における、プラズマアークヒーターを搭
載したプローブの挿入位置は、シャフト下部から炉腹部
にかけての位置であるが、図1の高炉炉体の概念図に示
すように、シャフト下部または炉腹部のいずれか片方ま
たは両方から挿入する。また円周方向の設置本数は多い
ほど効果が大きいが、設置スペースと投資額を勘案して
少なくとも1本以上設置する。図1において、1が高炉
で、a部がシャフト下部における挿入位置、b部が炉腹
部における挿入位置を示す。
The insertion position of the probe equipped with the plasma arc heater in the present invention is the position from the lower part of the shaft to the furnace belly. As shown in the conceptual diagram of the blast furnace furnace body in FIG. Insert either one or both. Also, the greater the number of installations in the circumferential direction, the greater the effect, but at least one or more will be installed in consideration of the installation space and investment amount. In FIG. 1, reference numeral 1 denotes a blast furnace, part a shows an insertion position in the lower part of the shaft, and part b shows an insertion position in the furnace belly.

【0009】図2は本発明で使用するプラズマアークヒ
ーターを搭載したプローブの構造を示す断面図である。
すなわち、図2において、2は水冷プローブ、3はプラ
ズマアークヒーターを示し、プラズマアークヒーター3
は4の連結機構を介して、5の駆動装置に接続されてい
る。また水冷プローブ2は5とは別の駆動装置6に接続
されていて、プラズマアークヒーター3とは独立して動
く。プラズマアークヒーター3を水冷プローブ2の先端
付近に前進させ、プラズマパワーとプラズマガス量を調
整すれば、指定のガス量とガス温度が得られる。もし、
この方法による調整範囲を超える場合には、プラズマア
ークヒーター3を水冷プローブ2内で後退させることに
より、プローブ内での冷却損失を利用してガス温度を低
下させることができる。
FIG. 2 is a sectional view showing the structure of a probe equipped with a plasma arc heater used in the present invention.
That is, in FIG. 2, 2 is a water cooling probe, 3 is a plasma arc heater,
Are connected to the drive device 5 through the connecting mechanism 4. Further, the water-cooled probe 2 is connected to a driving device 6 different from 5 and moves independently of the plasma arc heater 3. If the plasma arc heater 3 is advanced to the vicinity of the tip of the water cooling probe 2 and the plasma power and the plasma gas amount are adjusted, the specified gas amount and gas temperature can be obtained. if,
If the adjustment range by this method is exceeded, the gas temperature can be lowered by retracting the plasma arc heater 3 in the water cooling probe 2 and utilizing the cooling loss in the probe.

【0010】さらに以上の方法による調整範囲を越える
場合には、図3に示すような構造のプローブとし、プラ
ズマアークヒーター3を水冷プローブ2内で後退させ、
プローブ内プラズマアークヒーター前面に冷却ガスを流
し、その量を調整することにより、ガス温度を低下させ
ることができる。図3において、7は冷却ガス導入口を
示す。
If the range of adjustment by the above method is exceeded, the probe having the structure shown in FIG. 3 is used, and the plasma arc heater 3 is retracted in the water cooling probe 2,
The gas temperature can be lowered by causing a cooling gas to flow in front of the plasma arc heater in the probe and adjusting the amount thereof. In FIG. 3, 7 indicates a cooling gas inlet.

【0011】ガス温度としては、シャフト下部から炉腹
部にかけての位置からの吹込みであるため、装入鉱石の
融着を引き起こさない最高温度を上限とし、還元が起こ
る最低温度を下限として700℃から1200℃の範囲
がよい。ガスの種類としては、還元性ガスなら何でもよ
いが、CO、H2 、CO+H2 、あるいはこれらのガス
にN2 、CO2 が混合されたガスを用いることができ
る。
Since the gas temperature is blown from the position from the lower part of the shaft to the furnace belly, the maximum temperature that does not cause the fusion of the charged ore is the upper limit, and the minimum temperature at which the reduction occurs is the lower limit from 700 ° C. The range of 1200 ° C is preferable. Any kind of reducing gas may be used as the gas, but CO, H 2 , CO + H 2 , or a gas obtained by mixing N 2 and CO 2 with these gases can be used.

【0012】プローブの挿入深度は、水平方向に炉壁稼
動面より2mまでの範囲内で選択できる。還元ガスは、
常時吹込む必要はなく、周辺部の加熱還元不足が起こっ
たときに吹込めばよい。このとき、すでに開発され実用
化に至っている前述の装入物降下速度検出方法からの情
報に基づき、降下速度が遅くなったときに還元ガスを吹
込み、降下速度が回復したら、吹込みを中止する方法が
採用できる。また、シャフト下部から炉腹部にかけての
位置におけるレンガ温度、ステーブクーラー温度を監視
し、この温度が低下したときに還元ガスを吹込み、温度
が回復したら吹込みを中止する方法を採用してもよい。
還元ガス吹込み開始および吹込み中止を判断するための
装入物降下速度、あるいはレンガ温度、ステーブクーラ
ー温度の下限値は、操業解析、操業実験の結果から求め
ることができる。
The insertion depth of the probe can be selected within the range of 2 m from the working surface of the furnace wall in the horizontal direction. The reducing gas is
It is not necessary to always blow, but it may be blown when insufficient heat reduction in the peripheral portion occurs. At this time, based on the information from the above-mentioned charging material descent rate detection method that has already been developed and put into practical use, the reducing gas is blown when the descent rate becomes slow, and when the descent rate recovers, the blowing is stopped. The method of doing can be adopted. Further, a method may be adopted in which the brick temperature and the stave cooler temperature at the position from the lower part of the shaft to the furnace belly part are monitored, and the reducing gas is blown when the temperature decreases, and the blowing is stopped when the temperature recovers. ..
The charge descent rate for determining the start and stop of the reducing gas injection, or the lower limit values of the brick temperature and the stave cooler temperature can be obtained from the results of operation analysis and operation experiment.

【0013】本設備は、プラズマアークヒーターを水冷
プローブに内装しているため、コンパクトでかつ安価で
あり、プラズマアークヒーターにより高温の還元性ガス
を迅速にかつ広い温度範囲で得られる。
This equipment is compact and inexpensive because the plasma arc heater is incorporated in the water-cooled probe, and high-temperature reducing gas can be obtained quickly and in a wide temperature range by the plasma arc heater.

【0014】[0014]

【実施例】以下実施例により本発明の特徴を具体的に説
明する。表1には各実施例の操業結果を示す。
EXAMPLES The features of the present invention will be specifically described with reference to the following examples. Table 1 shows the operation results of each example.

【0015】[0015]

【表1】 [Table 1]

【0016】実施例1 シャフト下部の円周方向2箇所に、プラズマアークヒー
ター搭載の水冷プローブを設置し、特公昭57−311
04号公報に開示されている方法に基づく装入物降下速
度計(検出装置)を用いて高炉操業を行った。該検出装
置による装入物降下速度が、あらかじめ操業解析結果か
ら設定した下限値30.0mm/分より低下したため、
プラズマアークヒーターを水冷プローブ先端まで前進さ
せ、1100〜1200℃のH2 30%+N2 70%の
混合ガスを100Nm3 /分で吹込んだ。プローブの挿
入深度としては、水平方向に炉壁稼動面より0.5mの
位置とした。8時間経過後、装入物降下速度が下限値3
0.0mm/分を越えたので、吹込みを中止した。
Example 1 A water-cooled probe equipped with a plasma arc heater was installed at two locations in the circumferential direction at the bottom of the shaft.
Blast furnace operation was carried out by using a charging descent rate meter (detection device) based on the method disclosed in Japanese Patent Laid-Open No. 04-04. Since the dropping rate of the charged material by the detecting device is lower than the lower limit value of 30.0 mm / min set in advance from the operation analysis result,
The plasma arc heater was advanced to the tip of the water-cooled probe, and a mixed gas of 1100 to 1200 ° C. H 2 30% + N 2 70% was blown at 100 Nm 3 / min. The probe insertion depth was set to a position 0.5 m from the working surface of the furnace wall in the horizontal direction. After 8 hours, the lowering speed of the charge is 3
Since it exceeded 0.0 mm / min, the blowing was stopped.

【0017】実施例2 炉腹部の円周方向1箇所に、プラズマアークヒーター搭
載の水冷プローブを設置し、炉腹部レンガ温度を測定し
ながら高炉操業を行った。該レンガ温度が、あらかじめ
操業実験結果から設定した下限値60℃より低下したた
め、プラズマアークヒーターを水冷プローブ内先端位置
よりも後退させた位置に設定し、1000〜1100℃
のH2 10%+CO 20%+N2 70%の混合ガスを
150Nm3 /分で吹込んだ。プローブの挿入深度とし
ては、水平方向に炉壁稼動面より1.0mの位置とし
た。6時間経過後、レンガ温度が下限値60℃を越えた
ので、吹込みを中止した。
Example 2 A water cooling probe equipped with a plasma arc heater was installed at one location in the circumferential direction of the furnace belly, and the blast furnace was operated while measuring the brick temperature of the furnace belly. Since the brick temperature fell below the lower limit value of 60 ° C. set in advance from the operation experiment result, the plasma arc heater was set at a position retracted from the tip position in the water cooling probe, and 1000 to 1100 ° C.
Of H 2 10% + CO 20% + N 2 70% was blown at 150 Nm 3 / min. The insertion depth of the probe was 1.0 m from the working surface of the furnace wall in the horizontal direction. After 6 hours, the brick temperature exceeded the lower limit of 60 ° C., so blowing was stopped.

【0018】実施例3 炉腹部の円周方向3箇所に、プラズマアークヒーター搭
載の水冷プローブを設置し、炉腹部ステーブクーラー温
度を測定しながら高炉操業を行った。該ステーブクーラ
ー温度が、あらかじめ操業実験結果から設定した下限値
50℃より低下したため、プラズマアークヒーターを水
冷プローブ内でその先端位置よりも後退させた位置に設
定し、かつプラズマアークヒーター前面に冷却ガスを吹
込みながら、900〜1000℃のH2 10%+CO
20%+CO2 10%+N2 60%の混合ガスを還元性
ガスとして200Nm3 /分で吹込んだ。プローブの挿
入深度としては、水平方向に炉壁稼動面より1.5mの
位置とした。10時間経過後、ステーブクーラー温度が
下限値50℃を越えたので、吹込みを中止した。
Example 3 Water-cooling probes equipped with plasma arc heaters were installed at three locations in the circumferential direction of the furnace belly, and the blast furnace was operated while measuring the furnace belly stave cooler temperature. Since the stave cooler temperature fell below the lower limit value of 50 ° C., which was set in advance from the operation test results, the plasma arc heater was set at a position retracted from its tip position in the water cooling probe, and a cooling gas was provided in front of the plasma arc heater. while watching blowing the, 900~1000 ℃ of H 2 10% + CO
A mixed gas of 20% + CO 2 10% + N 2 60% was blown as a reducing gas at 200 Nm 3 / min. The insertion depth of the probe was set at a position 1.5 m from the working surface of the furnace wall in the horizontal direction. After 10 hours, the stave cooler temperature exceeded the lower limit value of 50 ° C., so blowing was stopped.

【0019】実施例4 シャフト下部の円周方向4箇所に、プラズマアークヒー
ター搭載の水冷プローブを設置し、シャフト下部レンガ
温度を測定しながら高炉操業を行った。該レンガ温度
が、あらかじめ操業解析結果から設定した下限値75℃
より低下したため、プラズマアークヒーターを水冷プロ
ーブ内でその先端位置よりも後退させた位置に設定し、
かつプラズマアークヒーター前面に冷却ガスを吹込みな
がら、800〜900℃のCO 30%+CO2 5%+
2 65%の混合ガスを還元性ガスとして250Nm3
/分で吹込んだ。プローブの挿入深度としては、水平方
向に炉壁稼動面より2.0mの位置とした。12時間経
過後、レンガ温度が下限値75℃を越えたので、吹込み
を中止した。
Example 4 A water-cooled probe equipped with a plasma arc heater was installed at four locations in the lower portion of the shaft in the circumferential direction, and blast furnace operation was carried out while measuring the brick temperature at the lower portion of the shaft. The brick temperature is a lower limit value of 75 ° C set in advance from the operation analysis result.
Since it has decreased further, set the plasma arc heater to a position retracted from the tip position in the water cooling probe,
And, while blowing the cooling gas to the front of the plasma arc heater, CO 30% + CO 2 5% + at 800-900 ° C.
250 Nm 3 using a mixed gas of N 2 65% as a reducing gas
I blew it in / min. The insertion depth of the probe was 2.0 m from the working surface of the furnace wall in the horizontal direction. After 12 hours, the brick temperature exceeded the lower limit value of 75 ° C., so blowing was stopped.

【0020】実施例5 シャフト下部および炉腹部の円周方向各2箇所に、プラ
ズマアークヒーター搭載の水冷プローブを設置し、シャ
フト下部および炉腹部のステーブクーラー温度を測定し
ながら高炉操業を行った。該ステーブクーラー温度が、
あらかじめ操業解析結果から設定した下限値55℃(シ
ャフト下部)および45℃(炉腹部)よりもシャフト部
が低下したため、低下した方であるシャフト下部のプラ
ズマアークヒーターを水冷プローブ内でその先端位置よ
りも後退させた位置に設定し、かつプラズマアークヒー
ター前面に冷却ガスを吹込みながら700〜800℃の
CO40%+N2 60%の混合ガスを還元性ガスとして
80Nm3 /分で吹込んだ。プローブの挿入深度として
は、水平方向に炉壁稼動面より1.0mの位置とした。
15時間経過後、ステーブクーラー温度が下限値55℃
および45℃のいずれをも越えたので、吹込みを中止し
た。
Example 5 A water cooling probe equipped with a plasma arc heater was installed at each of two locations in the lower part of the shaft and the furnace belly in the circumferential direction, and the blast furnace was operated while measuring the stave cooler temperatures of the lower part of the shaft and the furnace belly. The stave cooler temperature is
The lower part of the plasma arc heater was lower than the lower limit values of 55 ° C (lower part of the shaft) and 45 ° C (lower part of the furnace) set in advance from the operation analysis results. Was also set to the retracted position, and while the cooling gas was being blown into the front surface of the plasma arc heater, a mixed gas of CO 40% + N 2 60% at 700 to 800 ° C. was blown as a reducing gas at 80 Nm 3 / min. The insertion depth of the probe was 1.0 m from the working surface of the furnace wall in the horizontal direction.
After 15 hours, the stave cooler temperature is lower than 55 ° C.
And both 45 ° C. were exceeded, so blowing was stopped.

【0021】比較例 特公昭57−31104号公報に開示されている方法に
基づく装入物降下速度計(検出装置)をシャフト下部に
設置して、該検出装置による装入物降下速度が、あらか
じめ操業解析結果から設定した下限値30.0mm/分
より低下したときに周辺部O/C低減および全体のO/
C低減の調整を行った操業例である。前記の実施例1〜
5に比べると、出銑量が少なく、燃料比が高い。
Comparative Example A charging descent rate meter (detecting device) based on the method disclosed in Japanese Examined Patent Publication No. 57-31104 is installed at the lower part of the shaft, and the charging descent rate by the detecting device is set in advance. When the lower limit of 30.0 mm / min set from the operation analysis result is exceeded, the peripheral O / C is reduced and the total O / C is reduced.
It is an example of an operation in which C reduction is adjusted. Examples 1 to 1 above
Compared with 5, the amount of tapped iron is small and the fuel ratio is high.

【0022】[0022]

【発明の効果】以上説明してきたように、本発明におい
ては、高温の還元性ガスをシャフト下部ないしは炉腹部
から吹込み、周辺部の加熱還元不足を解消できるため、
高炉が安定に稼動して、生産性向上、燃料比低減をはか
ることができ、その結果、安定した溶銑供給が可能とな
る。
As described above, in the present invention, high-temperature reducing gas can be blown from the lower part of the shaft or the furnace belly to eliminate the insufficient heat reduction in the peripheral part.
The blast furnace operates stably, the productivity can be improved and the fuel ratio can be reduced, and as a result, a stable hot metal supply can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明におけるプラズマアークヒーターを搭載
したプローブの挿入位置を示す高炉炉体の概念図
FIG. 1 is a conceptual diagram of a blast furnace body showing an insertion position of a probe equipped with a plasma arc heater according to the present invention.

【図2】本発明で使用するプラズマアークヒーターを搭
載したプローブの構造を示す断面図
FIG. 2 is a sectional view showing the structure of a probe equipped with a plasma arc heater used in the present invention.

【図3】本発明で使用するプラズマアークヒーターを搭
載したプローブの構造を示す断面図
FIG. 3 is a sectional view showing a structure of a probe equipped with a plasma arc heater used in the present invention.

【符号の説明】[Explanation of symbols]

2 水冷プローブ 3 プラズマアークヒーター 5、6 駆動装置 7 冷却ガス導入口 2 Water-cooled probe 3 Plasma arc heater 5, 6 Driving device 7 Cooling gas inlet

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉頂から鉄鉱石とコークスを交互に装入
する高炉操業法において、シャフト下部または炉腹部の
少なくとも一方からプラズアークヒーターを搭載したプ
ローブを挿入し、高温の還元性ガスを高炉内に吹込むこ
とを特徴とする高炉操業法。
1. In a blast furnace operating method in which iron ore and coke are charged alternately from the furnace top, a probe equipped with a plasm arc heater is inserted from at least one of the lower part of the shaft and the furnace belly, and high-temperature reducing gas is fed into the blast furnace. Blast furnace operating method characterized by blowing inside.
【請求項2】 プローブ内でプラズマアークヒーターを
前後進させて、還元性ガスの温度調節を行うことを特徴
とする請求項1記載の高炉操業法。
2. The method of operating a blast furnace according to claim 1, wherein the temperature of the reducing gas is adjusted by moving the plasma arc heater forward and backward within the probe.
【請求項3】 プローブ内でプラズマアークヒーターを
前後進させ、かつプローブ内プラズマアークヒーター前
面に冷却ガスを流して、還元性ガスの温度調節を行うこ
とを特徴とする請求項1記載の高炉操業法。
3. The blast furnace operation according to claim 1, wherein the temperature of the reducing gas is adjusted by moving the plasma arc heater forward and backward in the probe and flowing a cooling gas in front of the plasma arc heater in the probe. Law.
JP2329392A 1992-01-14 1992-01-14 Method for operating blast furnace Withdrawn JPH05195027A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2329392A JPH05195027A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2329392A JPH05195027A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Publications (1)

Publication Number Publication Date
JPH05195027A true JPH05195027A (en) 1993-08-03

Family

ID=12106566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2329392A Withdrawn JPH05195027A (en) 1992-01-14 1992-01-14 Method for operating blast furnace

Country Status (1)

Country Link
JP (1) JPH05195027A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033280A (en) * 2009-08-03 2011-02-17 Sharp Corp Heater unit and inkjet coating equipment including the heater unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033280A (en) * 2009-08-03 2011-02-17 Sharp Corp Heater unit and inkjet coating equipment including the heater unit

Similar Documents

Publication Publication Date Title
WO2014101785A1 (en) Method and system for controlling air quantity of air box of sintering trolley
JPH05195027A (en) Method for operating blast furnace
US4304597A (en) System for control of sinter formation in iron oxide reducing kilns
CN107630120A (en) A kind of adjusting method of two literary aditus laryngis of converter
Yamaguchi et al. Test on high-rate pulverized coal injection operation at Kimitsu No. 3 blast furnace
SE434650B (en) SEE USE OF PLASM MAGAZINE TO RAISE THE BLESTER TEMPERATURE IN A SHAKT OVEN
US3601381A (en) Gas sampling device
KR100241854B1 (en) How to operate vertically
WO1998038130A1 (en) Operation management method of iron carbide production process
CN206952164U (en) A kind of powder metallurgy sintering furnace
CN206014996U (en) Hydrogen plasma fused reduction iron-smelting system
JPH0841511A (en) Control of blast furnace and device therefor
JP3536753B2 (en) Cooling tower internal monitoring device for coke dry fire extinguishing equipment and coke reforming method in coke dry fire extinguishing equipment using the same
JP3752051B2 (en) Scrap melting method and scrap melting lance
JP3298942B2 (en) Operation method of two-stage tuyere type smelting reduction furnace
JP3016948B2 (en) Blast furnace operation method
CN214640882U (en) Flame perforating cutting machine for water-cooling pipe hole at furnace bottom of furnace shell
CN220977102U (en) Iron ore low-carbon agglomeration test system
CN220265936U (en) Lateral charging single crystal furnace
JP4328001B2 (en) Blast furnace operation method
CN206986214U (en) A kind of cooling gas system for shaft furnace cooling section
JPH04354810A (en) Method for blowing fine coal into blast furnace and device therefor
JPH05186811A (en) Method for operating blast furnace
JP2875376B2 (en) Method and apparatus for producing hot metal containing chromium
KR0146794B1 (en) Furnace coke diameter managing method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408