JPH0519236A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH0519236A
JPH0519236A JP17154591A JP17154591A JPH0519236A JP H0519236 A JPH0519236 A JP H0519236A JP 17154591 A JP17154591 A JP 17154591A JP 17154591 A JP17154591 A JP 17154591A JP H0519236 A JPH0519236 A JP H0519236A
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
crystal display
voltage
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17154591A
Other languages
Japanese (ja)
Inventor
Yasukatsu Hirai
保功 平井
Kiyoshi Shobara
潔 庄原
Akio Murayama
昭夫 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17154591A priority Critical patent/JPH0519236A/en
Publication of JPH0519236A publication Critical patent/JPH0519236A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow multiplex driving by drastically decreasing the hysteresis of the transmittance-impressed voltage curve of the high-polymer dispersion type liquid crystal display element. CONSTITUTION:This high-polymer dispersion type liquid crystal display element is constituted by crimping a layer formed by allowing a transparent resin 12 and a liquid crystal material having positive dielectric constant anisotropy to coexist and continuously forming the liquid crystal in the form of water drops or the liquid crystal in the resin or circulating the resin like the meshes of a net in the liquid crystal between a pair of electrodes X and Y. The resin has >=25 deg. contact angle with the liquid crystal material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高分子分散型液晶表示素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polymer dispersion type liquid crystal display device.

【0002】[0002]

【従来の技術】光散乱型液晶表示素子は液晶分子の配列
を変化させることで光の透過、散乱を制御する液晶表示
素子であり、その一つに、熱と電圧で液晶分子の配列を
変化させる熱書き込み型液晶表示素子や、電圧で液晶分
子の配列を変化させる高分子分散型液晶表示素子があ
る。高分子分散型液晶表示素子は、高分子物質中に液晶
物質を分散させた構造、或いは液晶物質中に高分子物質
を分散させた構造を持っている。
2. Description of the Related Art A light-scattering type liquid crystal display element is a liquid crystal display element that controls the transmission and scattering of light by changing the arrangement of liquid crystal molecules. One of them is that the arrangement of liquid crystal molecules is changed by heat and voltage. There are a heat-writing type liquid crystal display element that enables the liquid crystal display and a polymer dispersion type liquid crystal display element that changes the alignment of liquid crystal molecules by a voltage. The polymer dispersed liquid crystal display device has a structure in which a liquid crystal substance is dispersed in a polymer substance or a structure in which a polymer substance is dispersed in a liquid crystal substance.

【0003】例えば、ネマティック液晶をマイクロカプ
セル化したNCAP(ソサエティ、フォア、インフォメ
ーション、ディスプレー、インタナショナル、シンポジ
ウム、SID'85 Digest,68(1985))やPDLC(Polymer
Dispersed LCD (ジヤパン、アプライド、フィジック
ス、J.Appl.Phys.60,2142(1986)))が発表されてい
る。これらの素子は、水滴状の液晶を透光性高分子物質
中に分散させた構造を持っており、電圧を印加していな
い状態では水滴状内の液晶分子配列は、液晶分子と高分
子の相互作用により概略不規則な配列をとる。このとき
高分子の屈折率と液晶の屈折率に差が生じているので入
射した光は散乱する。これに電圧を印加すると液晶の分
子配列は液晶分子の長軸が電界の方向に揃う。このとき
の液晶の屈折率(常光の屈折率no )と高分子の屈折率
がほぼ一致していれば光は透過する。
For example, NCAP (Society, Fore, Information, Display, International, Symposium, SID'85 Digest, 68 (1985)) and PDLC (Polymer) in which nematic liquid crystal is microencapsulated.
Dispersed LCD (Japan, Applied, Physics, J.Appl.Phys. 60 , 2142 (1986)) has been announced. These devices have a structure in which liquid crystals in the form of water droplets are dispersed in a translucent polymer substance, and when no voltage is applied, the alignment of liquid crystal molecules in the water droplets is Due to the interaction, it takes a roughly irregular array. At this time, since there is a difference between the refractive index of the polymer and the refractive index of the liquid crystal, the incident light is scattered. When a voltage is applied to this, in the molecular alignment of the liquid crystal, the long axes of the liquid crystal molecules are aligned in the direction of the electric field. Light If substantially coincides with the refractive index of the liquid crystal (refractive index of ordinary light n o) a polymer refractive index of at this time is transmitted.

【0004】他の例として、液晶物質中に高分子を3次
元状の網目のように巡らせた構造の液晶表示素子PN−
LC(Polymer Network LCD 第15回液晶討論会2B1
2,2B13(1989) )があげられる。この動作原理は前述の
ような高分子の屈折率と液晶の屈折率の差に基づく散乱
/透明のスイッチングとは異るとされているが、電圧を
印加していない場合、光の散乱強度は液晶の屈折率異方
性Δn(異常光の屈折率ne − 常光の屈折率no )が
大きいとき、Δnのランダム度が大きいときに高くな
る。また、電圧を印加した場合にはΔnの秩序度を大き
くしたときに光の透過率が高くなる。
As another example, a liquid crystal display device PN- having a structure in which a polymer is circulated in a liquid crystal material like a three-dimensional mesh.
LC (Polymer Network LCD 15th Liquid Crystal Conference 2B1
2,2B13 (1989)). It is said that this operation principle is different from the scattering / transparent switching based on the difference between the refractive index of the polymer and the refractive index of the liquid crystal as described above, but when no voltage is applied, the light scattering intensity is liquid crystal refractive index anisotropy [Delta] n - when (refractive index of extraordinary light n e index of refraction of the ordinary n o) is large, high when a large degree of randomness of the [Delta] n. Further, when a voltage is applied, the light transmittance increases when the order of Δn is increased.

【0005】これらの液晶表示素子では、一般に、光の
散乱度を高くするために、水滴状液晶カプセルの粒径或
いは樹脂の3次元的網目の間隙の大きさを1〜2μm程
度に制御されている。平均空隙が大きすぎると光の散乱
回数が少なく、小さすぎると可視光の波長に近づいてく
るので光の散乱が抑制されるからである。
In these liquid crystal display devices, in general, in order to increase the degree of light scattering, the particle size of the liquid crystal capsules or the size of the three-dimensional mesh of the resin is controlled to about 1 to 2 μm. There is. This is because if the average void is too large, the number of times of light scattering is small, and if it is too small, it approaches the wavelength of visible light, so that light scattering is suppressed.

【0006】一般的に、これらの液晶表示素子の印加電
圧に対する光の透過率の変化(透過率ー印加電圧曲線)
は、電圧を増加していった場合と、減少していった場合
とで異なる、いわゆるヒステリシスを伴う。透過率ー印
加電圧曲線は0ボルトからVボルトまで電圧を増加した
場合と、引き続きVボルトから0ボルトまで電圧を減少
させた場合とでは、同一の軌跡をたどらず、ヒステリシ
ス曲線を描く。
In general, the change of light transmittance with respect to the applied voltage of these liquid crystal display elements (transmittance-applied voltage curve)
Has a so-called hysteresis, which is different when the voltage is increased and when it is decreased. The transmittance-applied voltage curve does not follow the same locus when the voltage is increased from 0 volt to V volt and when the voltage is continuously decreased from V volt to 0 volt, and draws a hysteresis curve.

【0007】一方、液晶表示素子は一般的に、時分割駆
動(マルチプレクス駆動)される。なぜなら、この方式
によれば液晶表示素子の電極と駆動回路とを接続する配
線数が少なくてすみ、生産性に優れるからである。
On the other hand, the liquid crystal display element is generally driven by time division (multiplex drive). This is because according to this method, the number of wires connecting the electrodes of the liquid crystal display element and the drive circuit can be reduced, and the productivity is excellent.

【0008】このような駆動方法を液晶表示素子に適用
する場合には、液晶表示素子の透過率ー印加電圧曲線が
電圧を増加していった場合と、減少していった場合とで
同じ軌跡をたどることが前提である。透過率ー印加電圧
曲線に大きなヒステリシスを持つ液晶表示素子を駆動す
る場合、オン画素を指定する駆動電圧とオフ画素を指定
する駆動電圧の実効値電圧の比がヒステリシスの電圧幅
に吸収されてしまい、オン画素の透過率とオフ画素の透
過率の差が取れない表示となる。したがって、透過率ー
印加電圧曲線に大きなヒステリシスを持つ高分子分散型
液晶表示素子をマルチプレクス駆動する事は困難であっ
た。
When such a driving method is applied to a liquid crystal display element, the same locus is obtained when the transmittance-applied voltage curve of the liquid crystal display element is increased and when it is decreased. The premise is to follow. When driving a liquid crystal display device having a large hysteresis in the transmittance-applied voltage curve, the ratio of the effective voltage of the drive voltage that specifies the ON pixel to the effective value voltage that specifies the OFF pixel is absorbed by the hysteresis voltage width. , A display in which the difference between the transmittance of the ON pixel and the transmittance of the OFF pixel cannot be obtained. Therefore, it is difficult to multiplex drive a polymer dispersed liquid crystal display device having a large hysteresis in the transmittance-applied voltage curve.

【0009】[0009]

【発明が解決しようとする課題】このように高分子分散
型液晶表示素子では、透過率ー印加電圧曲線に大きなヒ
ステリシスが存在すため、マルチプレクス駆動する事が
困難であった。
As described above, in the polymer dispersion type liquid crystal display element, it is difficult to perform multiplex driving because of a large hysteresis in the transmittance-applied voltage curve.

【0010】本発明は以上に鑑みなされたもので、前記
したような透過率ー印加電圧曲線のヒステリシスを大幅
に低減させ、マルチプレクス駆動が可能な高分子分散型
液晶表示素子を提供することを目的としている。
The present invention has been made in view of the above, and it is an object of the present invention to provide a polymer-dispersed liquid crystal display device capable of multiplex driving by significantly reducing the hysteresis of the transmittance-applied voltage curve as described above. Has an aim.

【0011】[0011]

【課題を解決するための手段】本発明は、一対の電極の
間に、透光性の樹脂と正の誘電率異方性を有する液晶物
質とが混在し、前記液晶が前記樹脂中に水滴状または、
前記液晶が前記樹脂中に連続的に形成されて成る層、或
いは前記液晶中に前記樹脂を網の目のように巡らた層が
挟持されてなる液晶表示素子において、前記樹脂は、前
記液晶物質に対して25度以上の接触角を持つ樹脂であ
ることを特徴とする液晶表示素子を提供するものであ
る。
According to the present invention, a translucent resin and a liquid crystal substance having a positive dielectric anisotropy are mixed between a pair of electrodes, and the liquid crystal is water droplets in the resin. Shape or
In a liquid crystal display element comprising a layer formed by continuously forming the liquid crystal in the resin, or a layer formed by sandwiching the resin in the liquid crystal like a mesh, the resin is the liquid crystal substance. The present invention provides a liquid crystal display element characterized by being a resin having a contact angle of 25 degrees or more.

【0012】[0012]

【作用】一対の電極の間に樹脂と液晶物質とを混在させ
た層を挟持させて成る液晶表示素子、例えば、樹脂中に
液晶を水滴状に分散させた構造や、液晶中に樹脂を3次
元的網目状に張り巡らせた構造においては、液晶は樹脂
表面の持つ配向規制能力により配向し、通常、液晶は樹
脂表面で無秩序な配向(例えば、樹脂壁面に対し液晶分
子の長軸が水平で、その向きが様々な配向)となる。
A liquid crystal display device having a layer in which a resin and a liquid crystal substance are mixed is sandwiched between a pair of electrodes, for example, a structure in which the liquid crystal is dispersed in the resin in the form of water droplets, or the resin is mixed in the liquid crystal. In a structure that stretches in a three-dimensional network, the liquid crystal is aligned by the alignment control ability of the resin surface, and normally the liquid crystal is disordered on the resin surface (for example, the long axis of the liquid crystal molecule is horizontal to the resin wall surface). , Its orientation is various).

【0013】図2(a)に、樹脂中に液晶を水滴状に分
散させた構造を示す。2枚のガラス基板11、11に透明電
極X、Yを形成し、これら透明電極が対向するように配
置した隙間に樹脂12とその中に水滴状の液晶カプセル13
が形成される。この時、液晶分子14の配列は図2(b)
に示すように、樹脂壁面12a に対して分子の長軸が水平
でその向きが様々な配列を取る。
FIG. 2A shows a structure in which a liquid crystal is dispersed in a resin in the form of water droplets. Transparent electrodes X and Y are formed on two glass substrates 11, 11 and a resin 12 and a liquid crystal capsule 13 in the form of water droplets are placed in a gap arranged so that these transparent electrodes face each other.
Is formed. At this time, the arrangement of the liquid crystal molecules 14 is shown in FIG.
As shown in, the major axis of the molecule is horizontal with respect to the resin wall surface 12a, and the orientation thereof is various.

【0014】電界などの外部刺激により液晶分子配列を
変化させた後、外部刺激を取り除き液晶を再配向させる
ときを考える。例えば透明電極X、Yに電界を印加する
と水滴状の液晶カプセル13内の液晶分子長軸は透明電極
に対して垂直に配列する。次に電圧を取り除き液晶を初
期の配列に戻そうとすると、液晶分子長軸は樹脂壁面に
対し水平に配列しようとするが、向きが揃わない無秩序
な部分が生じる。これは樹脂壁面の配向規制力が弱いた
めに生じると考えられる。
Consider a case in which after the liquid crystal molecule alignment is changed by an external stimulus such as an electric field, the external stimulus is removed and the liquid crystal is realigned. For example, when an electric field is applied to the transparent electrodes X and Y, the long axes of the liquid crystal molecules inside the liquid crystal capsule 13 in the form of water drops are aligned perpendicular to the transparent electrodes. Next, when the voltage is removed to return the liquid crystal to the initial alignment, the long axes of the liquid crystal molecules try to be aligned horizontally with respect to the resin wall surface, but a disordered portion in which the directions are not aligned occurs. It is considered that this occurs because the alignment regulating force of the resin wall surface is weak.

【0015】そこで、樹脂壁面の配向規制力を増加させ
る手段を取る。例えば、樹脂表面に対して液晶が垂直に
配向するようにする。この場合、図2(c)に示すよう
に、液晶分子14の配列は樹脂壁面12b に対して分子の長
軸が垂直になる。このように樹脂壁面に配向規制力を持
たせれば、容易に液晶を再配向させることができる。こ
れは、樹脂壁面に対し液晶分子の長軸が取る方向が一方
向に定められるからである。
Therefore, means for increasing the alignment regulating force of the resin wall surface is taken. For example, the liquid crystal is vertically aligned with respect to the resin surface. In this case, as shown in FIG. 2C, in the alignment of the liquid crystal molecules 14, the long axes of the molecules are perpendicular to the resin wall surface 12b. Thus, if the resin wall surface is provided with the alignment regulating force, the liquid crystal can be easily realigned. This is because the direction taken by the long axis of the liquid crystal molecules with respect to the resin wall surface is defined as one direction.

【0016】このように、樹脂表面に対してて液晶が垂
直配向するためには、あらかじめ樹脂自体が垂直配向性
を持っていればよい。すなわち、樹脂自体に垂直配向能
力を与えることは、透過率ー印加電圧曲線のヒステリシ
スを減少させる方向に作用する。
As described above, in order for the liquid crystal to be vertically aligned with respect to the resin surface, it is sufficient that the resin itself has a vertical alignment property in advance. That is, providing the resin itself with a vertical alignment function acts to reduce the hysteresis of the transmittance-applied voltage curve.

【0017】このような樹脂の表面状態を表す目安の一
つに接触角がある。この場合、接触角は樹脂と液体との
濡れの尺度であり、液体の樹脂に対する親和力が表面張
力に打ち勝つ度合を表す。図3に、一般的な接触角の測
定法を示す。例えば、樹脂12上に液晶15をたらし接触角
θを求める。接触角が大きいほど濡れにくく、小さいほ
ど濡れ易いことを示す。
A contact angle is one of the criteria for expressing the surface condition of such a resin. In this case, the contact angle is a measure of the wetting between the resin and the liquid, and represents the degree to which the affinity of the liquid for the resin overcomes the surface tension. FIG. 3 shows a general contact angle measuring method. For example, the liquid crystal 15 is dropped on the resin 12 to obtain the contact angle θ. The larger the contact angle, the harder it is to wet, and the smaller the contact angle, the easier it is to wet.

【0018】樹脂の液晶に対する接触角と液晶の配向状
態には関連があり、樹脂の液晶に対する接触角が大きい
ほど液晶分子の長軸は樹脂基板に対し垂直に配列した状
態を取る傾向にある。逆に、樹脂の液晶に対する接触角
が小さい場合には、液晶分子の長軸は樹脂基板に対し水
平配列状態を取る傾向にある。この場合液晶分子の長軸
の方向は樹脂基板面内で無秩序になるが、例えば樹脂基
板をラビング配向処理すれば、ラビング方向に液晶分子
の長軸が揃った水平配列状態が得られる。
The contact angle of the resin with respect to the liquid crystal is related to the alignment state of the liquid crystal. The larger the contact angle of the resin with respect to the liquid crystal, the longer the axis of the liquid crystal molecules tends to be aligned perpendicular to the resin substrate. On the contrary, when the contact angle of the resin with respect to the liquid crystal is small, the long axes of the liquid crystal molecules tend to be aligned horizontally with respect to the resin substrate. In this case, the directions of the long axes of the liquid crystal molecules are disordered in the plane of the resin substrate, but if the resin substrate is subjected to a rubbing orientation treatment, a horizontal alignment state in which the long axes of the liquid crystal molecules are aligned in the rubbing direction can be obtained.

【0019】具体的な例として、樹脂を形成した基板を
ラビング配向処理した場合に得られるプレティルト角が
樹脂基板の接触角により制御されているものがある(第
13回液晶討論会予稿集13ページに記載)。このよう
に、樹脂表面の液晶に対する垂直配向規制力は樹脂面の
液晶に対する接触角で対応付けられている。
As a concrete example, there is one in which the pretilt angle obtained when the resin-formed substrate is subjected to the rubbing orientation treatment is controlled by the contact angle of the resin substrate (Proceedings of the 13th Liquid Crystal Symposium, page 13). Described in). As described above, the vertical alignment regulating force of the resin surface on the liquid crystal is associated with the contact angle of the resin surface on the liquid crystal.

【0020】樹脂の壁面で液晶の初期配向を得ている例
えば、樹脂中に液晶を水滴状に分散させた構造や、液晶
中に樹脂を3次元的に張り巡らせた構造を持ち、水滴状
液晶カプセルの粒径或いは樹脂の3次元的網目の間隙の
大きさが概略1μmから2μmの高分子分散型液晶表示
素子では、樹脂の液晶に与える配向性の観点から、樹脂
の液晶に対する接触角が小さい場合より、液晶が垂直配
向を取り易い、接触角の大きい樹脂の方が良く、樹脂の
液晶に対する接触角が25度以上、180度以下の場合
に、透過率ー印加電圧曲線のヒステリシスが大幅に減少
されることが実験的にわかった。好ましくは、45度以
上、75度以下である。
The initial orientation of the liquid crystal is obtained on the wall surface of the resin. For example, the liquid crystal has a structure in which the liquid crystal is dispersed in the form of water droplets, or a structure in which the resin is three-dimensionally spread in the liquid crystal, In a polymer dispersed liquid crystal display device in which the particle size of the capsules or the size of the three-dimensional mesh of the resin is approximately 1 μm to 2 μm, the contact angle of the resin with respect to the liquid crystal is small from the viewpoint of the orientation of the resin with respect to the liquid crystal. In some cases, a resin having a large contact angle, in which the liquid crystal easily takes a vertical alignment, is better, and when the contact angle of the resin with respect to the liquid crystal is 25 degrees or more and 180 degrees or less, the hysteresis of the transmittance-applied voltage curve is significantly increased. It was experimentally found to be reduced. Preferably, it is 45 degrees or more and 75 degrees or less.

【0021】接触角が45度以上では、配向規制力がよ
り大きく働くため、例えば水滴状の液晶カプセルの粒径
が概略1μmから2μmの範囲よりばらついた場合にお
いても効果が得られ、液晶素子を製造する場合に有益で
ある。また、接触角が75度を越える範囲では配向規制
力が強く、閾値電圧が増加する傾向があるので、接触角
は45度以上、75度以下が好ましい。
When the contact angle is 45 degrees or more, the alignment regulating force is more exerted, so that the effect can be obtained even when the particle size of the liquid crystal capsules in the form of water drops varies from approximately 1 μm to 2 μm, and the liquid crystal element can be obtained. It is useful when manufacturing. Further, in the range where the contact angle exceeds 75 degrees, the alignment regulating force is strong and the threshold voltage tends to increase, so the contact angle is preferably 45 degrees or more and 75 degrees or less.

【0022】[0022]

【実施例】以下に本発明の実施例を示す。EXAMPLES Examples of the present invention will be shown below.

【0023】[実施例1]本実施例は本発明をマルチプ
レクス駆動液晶表示素子に適用したものであって、図1
に示すように液晶表示パネル10は、複数本の走査線Y
(Y1 Y2 Y3 …YN )と複数本信号線X(X1 X2 X
3 …XM )とがマトリクス状に対向するように配設さ
れ、そして、走査線Yと信号線Xはそれぞれ走査線電極
駆動部20と信号線電極駆動部30に接続されている。走査
線電極駆動部20と信号線電極駆動部30は駆動電圧発生回
路50から供給される電圧を制御部40からの信号に基づき
液晶表示パネル10に出力する。 液晶表示パネル10は、
図2(a)に示すように、樹脂中に液晶を水滴状に分散
させた構造であり、2枚のガラス基板11、11にそれぞれ
透明電極X、Yを形成し、これら一対の透明電極X、Y
が対向するように配置した隙間に、透光性の樹脂12とそ
の中に水滴状の液晶カプセル13が分散形成される。
[Embodiment 1] In this embodiment, the present invention is applied to a multiplex driving liquid crystal display device.
As shown in FIG. 3, the liquid crystal display panel 10 has a plurality of scanning lines Y.
(Y1 Y2 Y3 ... YN) and plural signal lines X (X1 X2 X
3 ... XM) are arranged so as to face each other in a matrix, and the scanning lines Y and the signal lines X are connected to the scanning line electrode driving section 20 and the signal line electrode driving section 30, respectively. The scanning line electrode drive unit 20 and the signal line electrode drive unit 30 output the voltage supplied from the drive voltage generation circuit 50 to the liquid crystal display panel 10 based on the signal from the control unit 40. The liquid crystal display panel 10
As shown in FIG. 2 (a), a liquid crystal is dispersed in a resin in the form of water droplets. Transparent electrodes X and Y are formed on two glass substrates 11 and 11, respectively. , Y
A transparent resin 12 and liquid crystal capsules 13 in the form of water droplets are dispersed and formed in a gap arranged so as to face each other.

【0024】すなわち、得られる高分子分散型液晶表示
素子は2枚の電極の間に、樹脂と液晶物質とを混合させ
た層16を持っている。混合物を構成する樹脂は、透明で
屈折率が1.524のアクリル系紫外線硬化型樹脂(ノ
ーランド社製NOA65)に垂直配向剤として、一塩基
性クロム錯体(3M社製FC−805)を0.3重量パ
ーセント添加した物を用いた。この樹脂に、シアノビフ
ェニル系液晶(BDH社製E8)を重量比1:1で室温
にて5分間スタラー混合した。これに直径が約20μm
のガラスファイバーを混ぜ2枚の電極付き基板の間に挟
み均一なセル厚を得て、ここへ紫外線を30分間照射し
紫外線硬化型樹脂を硬化させて液晶表示素子を得た。液
晶表示素子は樹脂中に液晶が水滴状に分散した構造で、
この直径が概略1μmから2μmであった。
That is, the obtained polymer dispersed liquid crystal display element has a layer 16 in which a resin and a liquid crystal substance are mixed between two electrodes. The resin constituting the mixture is a transparent, acrylic ultraviolet curable resin (NOA65 manufactured by Noland Co.) having a refractive index of 1.524 and a monobasic chromium complex (FC-805 manufactured by 3M Co.) as a vertical aligning agent. The thing added 3 weight percent was used. A cyanobiphenyl liquid crystal (E8 manufactured by BDH) was stirred at a weight ratio of 1: 1 at room temperature for 5 minutes with this resin. This has a diameter of about 20 μm
The glass fiber of was mixed and sandwiched between two substrates with electrodes to obtain a uniform cell thickness, which was irradiated with ultraviolet rays for 30 minutes to cure the ultraviolet curable resin to obtain a liquid crystal display element. The liquid crystal display element has a structure in which liquid crystals are dispersed in the resin in the form of water droplets.
This diameter was approximately 1 μm to 2 μm.

【0025】透過率ー印加電圧曲線を求めるために、こ
の液晶表示素子にHe-Ne レーザー光を入射させ、透過率
を測定した。光のスポット径は2mmで、透過したレー
ザー光は液晶表示素子から距離20cmのところにある
フォトダイオードにより検出した。この素子は電圧を印
加しない状態では透過率約0.5%と良好な散乱状態を
示していた。
In order to obtain a transmittance-applied voltage curve, He-Ne laser light was made incident on this liquid crystal display element, and the transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display element. This element showed a favorable scattering state with a transmittance of about 0.5% when no voltage was applied.

【0026】図4に、0Vから徐々に印加電圧(交流7
0Hz)を50Vまで増加、50Vから徐々に0Vまで
減少させていったときの透過率ー印加電圧曲線を示す。
50Vの電圧を印加した状態では透過率約80%(最大
透過率)を示した。ここで、最大透過率の半分の透過率
となる電圧をVup50(上昇時)とVdown50(下降時)と
し、Vup50とVdown50の差をヒステリシスの大きさΔV
と定義する。本実施例の場合Vup50=22V、Vdown50
=21.1Vで、ヒステリシスの大きさは、ΔV=0.
9Vと小さい値を示した。このときの樹脂の液晶に対す
る接触角θは25度であった。
In FIG. 4, the applied voltage (AC 7
0Hz) is increased to 50V and gradually decreased from 50V to 0V, showing a transmittance-applied voltage curve.
The transmittance was about 80% (maximum transmittance) when a voltage of 50 V was applied. Here, the voltage at which the transmittance is half the maximum transmittance is Vup50 (when rising) and Vdown50 (when falling), and the difference between Vup50 and Vdown50 is the hysteresis magnitude ΔV.
It is defined as. In the case of this embodiment, Vup50 = 22V, Vdown50
= 21.1 V, the magnitude of hysteresis is ΔV = 0.
It showed a small value of 9V. At this time, the contact angle θ of the resin with the liquid crystal was 25 degrees.

【0027】ここでフレーム反転法によるマルチプレク
ス駆動波形する場合、図1(a)に示すように、液晶駆
動電圧は駆動電圧発生回路50で発生され、6つの電位で
構成される。例えば、図1(b) に示すような回路50によ
り、電源電圧Vcをもとにして電位の高い順にV0からV5ま
での駆動電圧を得る。走査線と信号線の駆動電圧波形は
これらの電位の組み合わせによって得ている。図5に、
オン画素を指定するときの液晶駆動電圧波形例を示す。
In the case of the multiplex driving waveform by the frame inversion method, the liquid crystal driving voltage is generated by the driving voltage generating circuit 50 and is composed of six potentials, as shown in FIG. 1 (a). For example, a circuit 50 as shown in FIG. 1B obtains drive voltages V0 to V5 in descending order of potential based on the power supply voltage Vc. The drive voltage waveforms of the scanning lines and the signal lines are obtained by combining these potentials. In Figure 5,
An example of a liquid crystal drive voltage waveform when designating an ON pixel is shown.

【0028】(a) は走査線の駆動波形で V0は選択電位、V5は極性反転時の選択電位、V4は非選択
電位、V1は極性反転時の非電位選択電位である。
(A) is a drive waveform of the scanning line, V0 is a selection potential, V5 is a selection potential at the time of polarity reversal, V4 is a non-selection potential, and V1 is a non-potential selection potential at the time of polarity reversal.

【0029】(b) は信号線の駆動波形で V5はオン画素を指定する電位、V0は極性反転時のオン画
素を指定する電位、V3はオフ画素を指定する電位、V2は
極性反転時のオフ画素を指定する電位である。
(B) is a drive waveform of a signal line, V5 is a potential for designating an ON pixel, V0 is a potential for designating an ON pixel at the time of polarity inversion, V3 is a potential for designating an OFF pixel, and V2 is for a potential inversion. This is a potential that specifies an off pixel.

【0030】したがって、オン画素を指定するとき液晶
に印加される電圧波形は(c) となる。同様に図6に、
(a)(b)の選択、非選択電位によりオフ画素を指定
するときに液晶に印加される電圧波形(c)を示す。
Therefore, the voltage waveform applied to the liquid crystal when the ON pixel is designated is (c). Similarly, in FIG.
7A and 7B show voltage waveforms (c) applied to the liquid crystal when the off pixel is designated by the selection and non-selection potentials of (a) and (b).

【0031】マルチプレクス駆動において、図5(c)
のオン電圧波形の最大振幅(V0-V5の大きさ) を一般的
に液晶駆動電圧Vop といい、それ以外のV3-V4,V4-V5,V1
-V2,V0-V1 の大きさをバイアス電圧Vpといい、通常これ
らV3-V4,V4-V5,V1-V2,V0-V1は等しく設定される。ここ
で、液晶駆動電圧Vopとバイアス電圧Vbの比をバイアス
比(Vop /Vb)といい、Bで表す。
In multiplex drive, FIG. 5 (c)
The maximum amplitude of the ON voltage waveform of (the magnitude of V0-V5) is generally called the liquid crystal drive voltage Vop, and other than V3-V4, V4-V5, V1
The magnitude of -V2, V0-V1 is called the bias voltage Vp, and these V3-V4, V4-V5, V1-V2, V0-V1 are usually set equal. Here, the ratio between the liquid crystal drive voltage Vop and the bias voltage Vb is called the bias ratio (Vop / Vb) and is represented by B.

【0032】液晶は印加電圧の実効値に対して応答する
性質を持っているので、図5(c)、図6(c)の電圧
波形は一般に実効値電圧の比に換算して表す。すなわ
ち、図5(c)のオン電圧波形の実効値電圧と図6
(c)のオフ電圧波形の実効値電圧の比をMとすると、
Mが大きいほど高いコントラスト比が得られやすいこと
を示す。一般的な計算によれば、バイアス比Bが駆動す
る走査線数をNとし、BがN1/2 +1の時に、Mの大き
さは最大値をとり、Mは((N1/2 +1)/(N1/2
1))1/2 という大きさをとる。例えば走査線の数が8
本ではMは1.45であり、オン画素に印加される電圧はオ
フ画素に印加される印加電圧の1.45倍であることを表す
さて、このような駆動方法を実際に用いる場合、前記し
た電圧比Mの範囲で、液晶表示素子は応答しなければな
らない。透過率−印加電圧曲線に大きなヒステリシスを
もつ液晶表示素子を駆動する場合、電圧の比Mがヒステ
リシスの電圧幅ΔVに吸収されないことが必要である。
具体的に、走査線数が8本の場合を説明すると、オフに
対する電圧を例えば20ボルトに設定したとき、オンに
対する電圧は1.45倍の29ボルトになっているので、ヒ
ステリシスの大きさΔVは少なくとも9ボルト未満でな
くてはならない。この様にコントラスト比を考慮するな
らばヒステリシスの電圧幅は0ボルトに近い方が望まし
い。
Since the liquid crystal has a property of responding to the effective value of the applied voltage, the voltage waveforms in FIGS. 5C and 6C are generally expressed in terms of the ratio of the effective value voltage. That is, the effective voltage of the ON voltage waveform of FIG.
Assuming that the ratio of the effective voltage of the off-voltage waveform in (c) is M,
It is indicated that the larger M is, the higher the contrast ratio is likely to be obtained. According to a general calculation, the number of scanning lines driven by the bias ratio B is N, and when B is N 1/2 +1, the magnitude of M has a maximum value, and M is ((N 1/2 +1 ) / (N 1/2
1)) Take a size of 1/2 . For example, the number of scan lines is 8
In the book, M is 1.45, which means that the voltage applied to the ON pixel is 1.45 times the applied voltage applied to the OFF pixel. When actually using such a driving method, the voltage ratio M In the range of, the liquid crystal display element must respond. When driving a liquid crystal display device having a large hysteresis in the transmittance-applied voltage curve, it is necessary that the voltage ratio M is not absorbed by the hysteresis voltage width ΔV.
Specifically, the case where the number of scanning lines is 8 will be described. When the voltage for OFF is set to 20 V, for example, the voltage for ON is 1.45 times 29 V, so that the magnitude ΔV of the hysteresis is at least. Must be less than 9 volts. If the contrast ratio is taken into consideration in this way, it is desirable that the voltage width of the hysteresis be close to 0 volt.

【0033】本実施例のマルチプレクス駆動において、
液晶セルは、図2(a)図示のガラス基板11上の走査線
Yの電極数が8本、信号線Xの電極数が64本であり、
これらの電極群はマトリクス状に対向するように配設さ
れた構成をとっている。
In the multiplex drive of this embodiment,
The liquid crystal cell has eight electrodes for the scanning lines Y and 64 electrodes for the signal lines X on the glass substrate 11 shown in FIG.
These electrode groups are arranged so as to face each other in a matrix.

【0034】この素子をバイアス比B=4で、液晶駆動
電圧Vop =60ボルト(オフ画素に印加される実効値電
圧17ボルト、オン画素に印加される実効値電圧25ボ
ルト)でマルチプレクス駆動し、スクリーンに投射した
ところ、どのような表示パターンに対しても、コントラ
スト比8の良好な表示が得られた。すなわち、本実施例
の高分子分散型液晶表示素子においてはヒステリシスが
ほとんど生じず、マルチプレクス可能で高いコントラス
ト比が得られる。
This device is multiplexed driven with a bias ratio B = 4 and a liquid crystal driving voltage Vop = 60 V (effective voltage 17 V applied to off pixels, effective voltage 25 V applied to on pixels). When projected onto a screen, a good display with a contrast ratio of 8 was obtained for any display pattern. That is, in the polymer-dispersed liquid crystal display device of this embodiment, hysteresis hardly occurs, multiplexing is possible, and a high contrast ratio is obtained.

【0035】[実施例2]実施例1と同様の液晶表示素
子の製作方法で、紫外線硬化型樹脂に対する一塩基性ク
ロム錯体の添加量を0.3重量パーセントより増加し、
0.4、0.6、0.8、1、2、5重量パーセントと
した場合について各液晶表示素子を製作した。いずれの
液晶表示素子も、樹脂中に液晶が水滴状に分散した構造
で、この直径が概略1μmから2μmであった。
[Embodiment 2] A liquid crystal display device was manufactured in the same manner as in Embodiment 1, except that the amount of the monobasic chromium complex added to the ultraviolet curable resin was increased to more than 0.3% by weight.
Each liquid crystal display element was manufactured in the case of 0.4, 0.6, 0.8, 1, 2, 5 weight percent. Each of the liquid crystal display elements had a structure in which liquid crystals were dispersed in the resin in the form of water droplets, and the diameter was approximately 1 μm to 2 μm.

【0036】樹脂の接触角は、一塩基性クロム錯体の添
加量を0.4重量パーセントから0.6、0.8、1、
2、5重量パーセントと増加するに従い、35、50、
55、60、65、75度と増加した。この時、ヒステ
リシスの大きさΔVは0.8、0.65V、0.6、
0.55、0.5、0.4と減少した。
The contact angle of the resin is such that the addition amount of the monobasic chromium complex is 0.4 weight percent to 0.6, 0.8, 1,
35, 50, as it increases to 2, 5 weight percent
It increased to 55, 60, 65 and 75 degrees. At this time, the magnitude of hysteresis ΔV is 0.8, 0.65V, 0.6,
It decreased to 0.55, 0.5, 0.4.

【0037】次に、基板をパターンニングされた電極付
きガラス板にし、これらの液晶表示素子を製作した。電
極数は、走査線が8本、信号線が64本であり、これら
の電極群はマトリクス状に対向するように配設されてい
る。
Next, the glass substrate with a patterned electrode was used as the substrate to manufacture these liquid crystal display elements. The number of electrodes is 8 for scanning lines and 64 for signal lines, and these electrode groups are arranged so as to face each other in a matrix.

【0038】これらの素子を実施例1と同様に、バイア
ス比B=4でマルチプレクス駆動し、スクリーンに投写
したところ一塩基性クロム錯体の添加量を0.4重量パ
ーセントから0.6、0.8、1、2、5重量パーセン
トと増加するに従い、コントラスト比9、11、13、
15,17、19の良好な表示がどの様な表示パターン
においても得られた。
These elements were multiplexed driven with a bias ratio B = 4 in the same manner as in Example 1 and projected on a screen. The addition amount of the monobasic chromium complex was changed from 0.4 weight percent to 0.6,0. .8, 1, 2, 5 weight percent increasing contrast ratios 9, 11, 13,
Good display of 15, 17, and 19 was obtained in any display pattern.

【0039】[比較例1]液晶表示素子の製作方法を実
施例1と同様とし、ただし、紫外線硬化型樹脂(ノーラ
ンド社製NOA65)に垂直配向剤(FC−805)を
添加しないで液晶表示素子を製作した。得られた液晶表
示素子は樹脂中に液晶が水滴状に分散した構造でこの直
径が概略1μmから2μmであった。この透過率ー印加
電圧曲線を測定したところ、Vup50=26.5V、Vdo
wn50=21.5Vで、ヒステリシスの大きさは、ΔV=
4.5Vと大きい値を示した。このときできた樹脂の液
晶に対する接触角は15度であった。
[Comparative Example 1] The liquid crystal display device was manufactured in the same manner as in Example 1, except that the vertical alignment agent (FC-805) was not added to the UV curable resin (NOA65 manufactured by Norland). Was produced. The obtained liquid crystal display element had a structure in which liquid crystals were dispersed in the resin in the form of water droplets, and the diameter was approximately 1 μm to 2 μm. When this transmittance-applied voltage curve was measured, Vup50 = 26.5V, Vdo
wn50 = 21.5V, the magnitude of hysteresis is ΔV =
It showed a large value of 4.5V. The contact angle of the resin formed at this time with the liquid crystal was 15 degrees.

【0040】次に、同様の制作方法で、走査線が8本、
信号線が64本の液晶表示素子を製作し実施例1と同様
にマルチプレクス駆動し、スクリーンに投写したところ
駆動電圧によってはコントラスト比2.5 が得られるもの
の、表示画面の更新ができず、良好な表示が得られなか
った。
Next, using the same production method, eight scanning lines
When a liquid crystal display element having 64 signal lines was manufactured and was multiplexed driven in the same manner as in Example 1 and projected on a screen, a contrast ratio of 2.5 could be obtained depending on the driving voltage, but the display screen could not be updated, which was excellent. No indication was obtained.

【0041】[比較例2]次に、液晶表示素子の製作方
法を実施例1と同様とし、ただし、紫外線硬化型樹脂
(ノーランド社製NOA65)に添加する垂直配向剤
(FC−805)の濃度を減少させ、できる樹脂の液晶
に対する接触角を25度未満とした。ここでは、一塩基
性クロム錯体の添加量を0.2重量パーセントとし、接
触角が22.5度を得た。液晶表示素子は樹脂が3次元
的網目状で、間隙の大きさが概略1μmから2μmであ
り、この隙間に液晶がはいった構造を持っていた。透過
率ー印加電圧曲線のヒステリシスの大きさは比較例1と
ほぼ変わらず、Vup50=25.3V、Vdown50=21.
2Vで、ヒステリシスの大きさは、ΔV=4.1Vと大
きい値を示した。
[Comparative Example 2] Next, the manufacturing method of the liquid crystal display element was the same as in Example 1, except that the concentration of the vertical alignment agent (FC-805) added to the ultraviolet curable resin (NOA65 manufactured by Norland). And the contact angle of the resulting resin to the liquid crystal was set to less than 25 degrees. Here, the addition amount of the monobasic chromium complex was 0.2% by weight, and the contact angle was 22.5 degrees. The liquid crystal display element had a three-dimensional mesh of resin and the size of the gap was approximately 1 μm to 2 μm, and the liquid crystal was inserted into the gap. The magnitude of the hysteresis of the transmittance-applied voltage curve is almost the same as that of Comparative Example 1, and Vup50 = 25.3V and Vdown50 = 21.V.
At 2V, the magnitude of hysteresis was as large as ΔV = 4.1V.

【0042】次に、同様の製作方法で、走査線が8本、
信号線が64本の液晶表示素子を製作し実施例1と同様
にマルチプレクス駆動し、スクリーンに投写したところ
駆動電圧によってはコントラスト比2.8が得られるも
のの、表示画面の更新ができず、良好な表示が得られな
かった。
Next, using the same manufacturing method, eight scanning lines
When a liquid crystal display element having 64 signal lines was manufactured and subjected to multiplex driving in the same manner as in Example 1 and projected on a screen, a contrast ratio of 2.8 was obtained depending on the driving voltage, but the display screen could not be updated. Good display was not obtained.

【0043】[実施例3]混合物を構成する樹脂は、透
明で屈折率が1.5のアクリレート系紫外線硬化型樹脂
(スリーボンド社製3052)に垂直配向剤として、一
塩基性クロム錯体(3M社製FC−805)を0.5重
量パーセント添加した物を用いた。この樹脂に、シアノ
ビフェニル系液晶(BDH社製E8)を重量比1:1で
室温にて5分間スタラー混合した。この混合物に直径が
約20μmのガラスファイバーを混ぜ2枚の電極付き基
板の間に挟み均一なセル厚を得た。ここへ紫外線を30
分間照射し紫外線硬化型樹脂を硬化させた。
[Example 3] The resin constituting the mixture was a transparent, acrylate-based UV-curable resin having a refractive index of 1.5 (3052 manufactured by ThreeBond Co., Ltd.) as a vertical alignment agent, and a monobasic chromium complex (3M Co.). FC-805) manufactured by 0.5% by weight was used. A cyanobiphenyl liquid crystal (E8 manufactured by BDH) was stirred at a weight ratio of 1: 1 at room temperature for 5 minutes with this resin. A glass fiber having a diameter of about 20 μm was mixed with this mixture and sandwiched between two substrates with electrodes to obtain a uniform cell thickness. 30 UV rays here
It was irradiated for minutes to cure the ultraviolet curable resin.

【0044】得られた高分子分散型液晶表示素子は液晶
が間隙が1μm以下の網目状の樹脂中に分散している状
態と、粒径が1〜10μmの水滴状の液晶カプセルが樹
脂の中に分散されている状態とが混在した構造を持って
いた。このときできた樹脂の液晶に対する接触角は45
度であった。
The obtained polymer-dispersed liquid crystal display device has a state in which liquid crystals are dispersed in a mesh-like resin having a gap of 1 μm or less and a water-drop-like liquid crystal capsule having a particle size of 1 to 10 μm in the resin. It had a mixed structure of dispersed states. The contact angle of the resin thus formed with the liquid crystal is 45.
It was degree.

【0045】この素子は電圧を印加しない状態では透過
率約0.9%と良好な散乱状態を示していた。電圧(交
流70Hz)150Vを印加した状態では透過率約65
%を示した。電圧を徐々に150Vまで増加させて行
き、その後電圧を徐々に0Vまで低下させてヒステリシ
スの大きさを見た。
This element showed a good scattering state with a transmittance of about 0.9% when no voltage was applied. With a voltage (AC 70 Hz) of 150 V applied, a transmittance of about 65
%showed that. The voltage was gradually increased to 150 V, and then the voltage was gradually decreased to 0 V to check the magnitude of hysteresis.

【0046】本実施例の場合Vup50=68.8V、Vdo
wn50=66.9Vで、ヒステリシスの大きさは、ΔV=
1.9Vと小さい値を示した。
In the case of this embodiment, Vup50 = 68.8V, Vdo
wn50 = 66.9V, the magnitude of hysteresis is ΔV =
The value was as small as 1.9V.

【0047】次に、紫外線硬化型樹脂に対する一塩基性
クロム錯体の添加量を増加した液晶表示素子を製作し
た。樹脂の接触角は、一塩基性クロム錯体の添加量を
0.5重量パーセントから1、2、5重量パーセントと
増加するに従い、45、60、75、78度と増加し
た。この時、ヒステリシスの大きさΔVは1.9V、
1.5V、1.1V、0.9Vと減少した。また、Vup
50はそれぞれ68.8V、69V、69V、75Vであ
り接触角が75度を越えると動作電圧が高くなる傾向が
あった。
Next, a liquid crystal display device was manufactured in which the amount of the monobasic chromium complex added to the ultraviolet curable resin was increased. The contact angle of the resin increased to 45, 60, 75, 78 degrees as the amount of the monobasic chromium complex added increased from 0.5 weight percent to 1, 2, 5 weight percent. At this time, the magnitude of hysteresis ΔV is 1.9V,
It decreased to 1.5V, 1.1V and 0.9V. Also, Vup
50 are 68.8V, 69V, 69V and 75V, respectively, and the operating voltage tends to increase when the contact angle exceeds 75 degrees.

【0048】[比較例3]次に、液晶表示素子の製作方
法を実施例3と同様とし、ただし、紫外線硬化型樹脂
(スリーボンド社製3052)に添加する垂直配向剤
(FC−805)の濃度を減少させ、できる樹脂の液晶
に対する接触角を45度未満とした。ここでは、一塩基
性クロム錯体の添加量を0.4重量パーセントとし、接
触角40度を得た。液晶表示素子は液晶が間隙が1μm
以下の網目状の樹脂中に分散している状態と、粒径が1
〜10μmの水滴状の液晶カプセルが樹脂の中に分散さ
れている状態とが混在した構造を持っていた。透過率ー
印加電圧曲線のヒステリシスの大きさはΔV=11Vで
あり、実施例3に比べ大幅に大きい値を示した。
Comparative Example 3 Next, the manufacturing method of the liquid crystal display element was the same as that of Example 3, except that the concentration of the vertical alignment agent (FC-805) added to the ultraviolet curable resin (3052 manufactured by ThreeBond Co., Ltd.). And the contact angle of the resulting resin with respect to the liquid crystal was set to less than 45 degrees. Here, the addition amount of the monobasic chromium complex was 0.4% by weight, and a contact angle of 40 degrees was obtained. The liquid crystal display element has a liquid crystal with a gap of 1 μm.
The state of being dispersed in the following network resin and the particle size is 1
It had a structure in which liquid crystal capsules in the form of water droplets of 10 μm were dispersed in a resin. The magnitude of the hysteresis of the transmittance-applied voltage curve was ΔV = 11V, which was significantly larger than that in Example 3.

【0049】[0049]

【発明の効果】本発明によれば、高分子分散型液晶表示
素子の透過率ー印加電圧曲線のヒステリシスを大幅に低
減させ、マルチプレクス駆動が可能な電圧制御型光散乱
液晶表示素子を提供することができる。
According to the present invention, there is provided a voltage-controlled light-scattering liquid crystal display device in which the hysteresis of the transmittance-applied voltage curve of a polymer-dispersed liquid crystal display device is significantly reduced and multiplex driving is possible. be able to.

【0050】[0050]

【図面の詳細な説明】[Detailed Description of Drawings]

【0051】[0051]

【図1】(a)は本発明をマルチプレクス駆動液晶表示
素子に適用した実施例を示す平面図、(b)は駆動電源
回路を示す回路図である。
1A is a plan view showing an embodiment in which the present invention is applied to a multiplex drive liquid crystal display device, and FIG. 1B is a circuit diagram showing a drive power supply circuit.

【0052】[0052]

【図2】(a)は図1の表示パネルの一部を概念的に示
す断面図、(b)、(c)は樹脂面での液晶分子の配向
状態を示す線図である。
2A is a sectional view conceptually showing a part of the display panel in FIG. 1, and FIGS. 2B and 2C are diagrams showing an alignment state of liquid crystal molecules on a resin surface.

【0053】[0053]

【図3】樹脂の液晶に対する接触角θを説明する略図で
ある。
FIG. 3 is a schematic diagram illustrating a contact angle θ of resin with liquid crystal.

【0054】[0054]

【図4】液晶表示素子の透過率ー印加電圧曲線を示した
図である。
FIG. 4 is a diagram showing a transmittance-applied voltage curve of a liquid crystal display element.

【0055】[0055]

【図5】マルチプレクス駆動のための各駆動電位
(a)、(b)と、オン画素を指定するとき液晶に印加
される電圧波形(c)を示す図である。
FIG. 5 is a diagram showing drive potentials (a) and (b) for multiplex drive, and a voltage waveform (c) applied to a liquid crystal when an ON pixel is designated.

【0056】[0056]

【図6】マルチプレクス駆動のための各駆動電位
(a)、(b)と、オフ画素を指定するとき液晶に印加
される電圧波形図である。
FIG. 6 is a waveform diagram of driving potentials (a) and (b) for multiplex driving and a voltage applied to a liquid crystal when an off pixel is designated.

Claims (1)

【特許請求の範囲】 【請求項1】一対の電極の間に、透光性の樹脂と正の誘
電率異方性を有する液晶物質とが混在し、前記液晶が前
記樹脂中に水滴状または、前記液晶が前記樹脂中に連続
的に形成されて成る層、或いは前記液晶中に前記樹脂を
網の目のように巡らせてなる層が挟持されてなる液晶表
示素子において、 前記樹脂は、前記液晶物質に対して25度以上の接触角
を持つ樹脂であることを特徴とする液晶表示素子。
Claim: What is claimed is: 1. A transparent resin and a liquid crystal substance having a positive dielectric anisotropy are mixed between a pair of electrodes, and the liquid crystal is in the form of water droplets or A liquid crystal display element in which the layer in which the liquid crystal is continuously formed in the resin, or the layer in which the resin is wound like a mesh is sandwiched in the liquid crystal, wherein the resin is A liquid crystal display element, which is a resin having a contact angle of 25 degrees or more with a liquid crystal substance.
JP17154591A 1991-07-12 1991-07-12 Liquid crystal display element Pending JPH0519236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17154591A JPH0519236A (en) 1991-07-12 1991-07-12 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17154591A JPH0519236A (en) 1991-07-12 1991-07-12 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH0519236A true JPH0519236A (en) 1993-01-29

Family

ID=15925116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17154591A Pending JPH0519236A (en) 1991-07-12 1991-07-12 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH0519236A (en)

Similar Documents

Publication Publication Date Title
TW386169B (en) Liquid crystal display apparatus
US5251048A (en) Method and apparatus for electronic switching of a reflective color display
KR20080007203A (en) Liquid crystal display device and driving method thereof
US20030128305A1 (en) Liquid crystal display apparatus
US6320571B1 (en) Bistable liquid crystal display device
JP2006003840A (en) Display element and device
WO2011102892A1 (en) Fast-switching surface-stabilized liquid crystal cells
US7264851B2 (en) Bistable nematic liquid crystal display device
US7791706B2 (en) Bistable nematic liquid crystal display device
JPH0829812A (en) Liquid crystal display device
US7362406B2 (en) Electrophoretic liquid crystal display device
JP7180589B2 (en) Light control film, light control system, light control component
JPH0519236A (en) Liquid crystal display element
JPH05100213A (en) Liquid crystal display element
JPH05107524A (en) Liquid crystal display element
JPH0553151A (en) Liquid crystal display element
JP2925279B2 (en) Polarization-independent liquid crystal light modulator
JPH08136941A (en) Liquid crystal display element
US5576866A (en) Liquid crystal display having polymer walls with a chiral pitch and method for producing the same
JP2009510512A (en) Image display device
JPH07199205A (en) Liquid crystal display element
EP1296311A2 (en) Method for driving a liquid crystal display device
JP4048889B2 (en) Driving method of liquid crystal display device
Wyatt et al. P‐206: Late‐news poster: a grating‐aligned ferroelectric liquid crystal electro‐optic shutter for fast‐switching and shock‐resistant applications
Yu et al. 22.1: Bistable Bend‐Splay LCD