JPH05100213A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH05100213A
JPH05100213A JP25953791A JP25953791A JPH05100213A JP H05100213 A JPH05100213 A JP H05100213A JP 25953791 A JP25953791 A JP 25953791A JP 25953791 A JP25953791 A JP 25953791A JP H05100213 A JPH05100213 A JP H05100213A
Authority
JP
Japan
Prior art keywords
liquid crystal
resin
crystal display
voltage
display element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25953791A
Other languages
Japanese (ja)
Inventor
Kiyoshi Shobara
潔 庄原
Yasukatsu Hirai
保功 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25953791A priority Critical patent/JPH05100213A/en
Publication of JPH05100213A publication Critical patent/JPH05100213A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow multiplex driving by drastically decreasing the hysteresis of the transmittance-impressed voltage curve of the high-polymer dispersed liquid crystal display element. CONSTITUTION:This high-polymer dispersed liquid crystal display element is constituted by crimping a layer which is formed by allowing a light transparent resin 12 and a liquid crystal compsn. 13 having positive dielectric constant anisotropy to coexist and forming the liquid crystal 13 like water drops in the resin 12 or continuously forming the liquid crystal in the resin or a layer which is formed by circulating above-mentioned resin like wire meshes in the liquid crystal between a pair of electrodes X and Y. This display element is so constituted that the ratio d/p attains 0.003<=d/p<=0.1 when the diameter of the water drop-like spaces formed by the resin 12 or the spaces formed by the wire meshes of the resin is designated as d and the spiral pitch of the liquid crystal compsn. 13 as p.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電圧制御型光散乱液晶表
示素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a voltage controlled light scattering liquid crystal display device.

【0002】[0002]

【従来の技術】光散乱型液晶表示素子は液晶分子の配列
を変化させることで光の透過、散乱を制御する液晶表示
素子である。これらの素子には、熱と電圧で液晶分子の
配列を変化させる熱書き込み型液晶表示素子や、電圧で
液晶分子の配列を変化させる高分子分散型液晶表示素子
がある。高分子分散型液晶表示素子は、高分子物質中に
液晶物質を分散させた構造、或いは液晶物質中に高分子
物質を分散させた構造を持っている。
2. Description of the Related Art A light-scattering type liquid crystal display device is a liquid crystal display device which controls transmission and scattering of light by changing the arrangement of liquid crystal molecules. These elements include a heat writing type liquid crystal display element in which the alignment of liquid crystal molecules is changed by heat and voltage, and a polymer dispersion type liquid crystal display element in which the alignment of liquid crystal molecules is changed by voltage. The polymer dispersed liquid crystal display device has a structure in which a liquid crystal substance is dispersed in a polymer substance or a structure in which a polymer substance is dispersed in a liquid crystal substance.

【0003】例えば、ネマティック液晶をマイクロカプ
セル化したNCAP(ソサエティ、フォア、インフォメーシ
ョン、ディスプレー、インタナショナル、シンポジウ
ム、SID'85 Digest,68(1985))やPDLC(Polymer Di
spersed LCD (ジヤーナル、オブ、アプライド、フィジ
ックス、J.Appl.Phys.60,2142(1986) ))が発表されて
いる。これらの素子は、水滴状の液晶を透光性高分子物
質中に分散させた構造を持っており、電圧を印加してい
ない状態では水滴状内の液晶分子配列は、液晶分子と高
分子の相互作用により概略不規則な配列をとる。このと
き高分子の屈折率と液晶の屈折率に差が生じているので
入射した光は散乱する。これに電圧を印加すると液晶の
分子配列は液晶分子の長軸が電界の方向に揃う。このと
きの液晶の屈折率(常光の屈折率no )と高分子の屈折
率がほぼ一致していれば光は透過する。
For example, NCAP (Society, Fore, Information, Display, International, Symposium, SID'85 Digest, 68 (1985)) and PDLC (Polymer Dimer) in which nematic liquid crystal is microencapsulated.
A spersed LCD (Journal, Of, Applied, Physics, J.Appl.Phys. 60 , 2142 (1986)) has been announced. These devices have a structure in which liquid crystals in the form of water droplets are dispersed in a translucent polymer substance, and when no voltage is applied, the alignment of liquid crystal molecules in the water droplets is Due to the interaction, it takes a roughly irregular array. At this time, since there is a difference between the refractive index of the polymer and the refractive index of the liquid crystal, the incident light is scattered. When a voltage is applied to this, in the molecular alignment of the liquid crystal, the long axes of the liquid crystal molecules are aligned in the direction of the electric field. Light If substantially coincides with the refractive index of the liquid crystal (refractive index of ordinary light n o) a polymer refractive index of at this time is transmitted.

【0004】他の例として、液晶物質中に高分子を3次
元状の網目のように巡らせた構造の液晶表示素子PN−
LCD(Polymer Network LCD 第15回液晶討論会2B
12,2B13(1989) )があげられる。この動作原理は前述の
ような高分子の屈折率と液晶の屈折率の差に基づく散乱
/透明のスイッチングとは異るとされているが、電圧を
印加していない場合、光の散乱強度は液晶の屈折率異方
性Δn(異常光の屈折率ne − 常光の屈折率no )が
大きいとき、Δnのランダム度が大きいときに高くな
る。また、電圧を印加した場合にはΔnの秩序度を大き
くしたときに光の透過率が高くなる。
As another example, a liquid crystal display device PN- having a structure in which a polymer is circulated in a liquid crystal material like a three-dimensional mesh.
LCD (Polymer Network LCD 15th LCD Symposium 2B
12,2B13 (1989)). It is said that this operation principle is different from the scattering / transparent switching based on the difference between the refractive index of the polymer and the refractive index of the liquid crystal as described above, but when no voltage is applied, the light scattering intensity is liquid crystal refractive index anisotropy [Delta] n - when (refractive index of extraordinary light n e index of refraction of the ordinary n o) is large, high when a large degree of randomness of the [Delta] n. Further, when a voltage is applied, the light transmittance increases when the order of Δn is increased.

【0005】これらの液晶表示素子では、一般的に、光
の散乱度を高くするために、水滴状液晶カプセルの粒径
或いは樹脂の3次元的網目の間隙の大きさを1〜2μm
程度に制御されている。平均空隙が大きすぎると光の散
乱回数が少なく、小さすぎると可視光の波長に近づいて
くるので光の散乱が抑制されるからである。
In these liquid crystal display devices, in general, in order to increase the degree of light scattering, the particle size of the liquid crystal capsules in water droplets or the size of the three-dimensional mesh of the resin is 1 to 2 μm.
It is controlled to a certain degree. This is because if the average void is too large, the number of times of light scattering is small, and if it is too small, it approaches the wavelength of visible light, so that light scattering is suppressed.

【0006】一般的に、これらの液晶表示素子の印加電
圧に対する光の透過率の変化(透過率ー印加電圧曲線)
は、電圧を増加していった場合と、減少していった場合
とで異なる、いわゆるヒステリシスを伴う。透過率ー印
加電圧曲線は0ボルトからVボルトまで電圧を増加した
場合と、引き続きVボルトから0ボルトまで電圧を減少
させた場合とでは、同一の軌跡をたどらず、ヒステリシ
ス曲線を描く。
In general, the change of light transmittance with respect to the applied voltage of these liquid crystal display elements (transmittance-applied voltage curve)
Has a so-called hysteresis, which is different when the voltage is increased and when it is decreased. The transmittance-applied voltage curve does not follow the same locus when the voltage is increased from 0 volt to V volt and when the voltage is continuously decreased from V volt to 0 volt, and draws a hysteresis curve.

【0007】液晶表示素子を時分割駆動(マルチプレク
ス駆動)する場合、所期の動作をさせるためには、透過
率ー印加電圧曲線が電圧を増加していった場合と、減少
していった場合とで同じ軌跡をたどることが前提にな
る。透過率ー印加電圧曲線に大きなヒステリシスを持つ
液晶表示素子を駆動する場合、オン画素を指定する駆動
電圧とオフ画素を指定する駆動電圧の実効値電圧の比が
ヒステリシスの電圧幅に吸収されてしまい、オン画素の
透過率とオフ画素の透過率の差が取れない表示となる。
したがって、透過率ー印加電圧曲線に大きなヒステリシ
スを持つ高分子分散型液晶表示素子をマルチプレクス駆
動する事は困難であった。
When the liquid crystal display device is driven in a time-division manner (multiplex drive), the transmittance-applied voltage curve decreases when the voltage increases in order to operate as expected. It is premised that the same trajectory is followed in each case. When driving a liquid crystal display device that has a large hysteresis in the transmittance-applied voltage curve, the ratio of the effective voltage of the drive voltage that specifies the ON pixel to the effective value voltage that specifies the OFF pixel is absorbed by the hysteresis voltage width. , A display in which the difference between the transmittance of the ON pixel and the transmittance of the OFF pixel cannot be obtained.
Therefore, it is difficult to multiplex drive a polymer dispersed liquid crystal display device having a large hysteresis in the transmittance-applied voltage curve.

【0008】[0008]

【発明が解決しようとする課題】このように高分子分散
型液晶表示素子では、透過率ー印加電圧曲線に大きなヒ
ステリシスが存在すため、マルチプレクス駆動すること
が難かしい。
As described above, in the polymer-dispersed liquid crystal display device, since the transmittance-applied voltage curve has a large hysteresis, it is difficult to perform multiplex driving.

【0009】本発明は以上を考慮してなされたもので、
前記したような透過率ー印加電圧曲線のヒステリシスを
大幅に低減させ、マルチプレクス駆動が可能な高分子分
散型液晶表示素子を提供することを目的とする。
The present invention has been made in consideration of the above,
An object of the present invention is to provide a polymer-dispersed liquid crystal display device capable of multiplex driving by significantly reducing the hysteresis of the transmittance-applied voltage curve as described above.

【0010】[0010]

【課題を解決するための手段】本発明の液晶表示素子
は、一対の電極の間に、透光性の樹脂と正の誘電率異方
性を有する液晶組成物とが混在し、前記液晶が前記樹脂
中に水滴状または、前記液晶が前記樹脂中に連続的に形
成されて成る層、或いは前記液晶中に前記樹脂を網の目
のように巡らせてなる層が挟持されてなる液晶表示素子
において、前記樹脂がつくる水滴状空隙の直径あるいは
樹脂を網の目がつくる空隙の間隔をdとして、前記液晶
組成物の螺旋ピッチをpとした場合、その比d/pが
0.003≦d/p≦0.1であることを特徴とする。
In the liquid crystal display device of the present invention, a transparent resin and a liquid crystal composition having a positive dielectric anisotropy are mixed between a pair of electrodes, and the liquid crystal is A liquid crystal display element in which the resin is in the form of water droplets, or the liquid crystal is continuously formed in the resin, or the liquid crystal is sandwiched between layers of the resin. In the above, when the diameter of the water droplet-like voids formed by the resin or the interval between the voids formed by the mesh of the resin is d and the spiral pitch of the liquid crystal composition is p, the ratio d / p is 0.003 ≦ d. It is characterized in that /p≦0.1.

【0011】この場合、液晶組成物が10μm乃至30
0μmの螺旋ピッチを有すること、また樹脂が液晶組成
物に対して25度以上の接触角をもつ樹脂であること
が、さらに望ましい。
In this case, the liquid crystal composition has a thickness of 10 μm to 30 μm.
It is more desirable that the resin has a spiral pitch of 0 μm and that the resin has a contact angle with the liquid crystal composition of 25 degrees or more.

【0012】[0012]

【作用】一対の電極の間に樹脂と液晶物質とを混在させ
た層を挟持させて成る液晶表示素子、例えば、樹脂中に
液晶を水滴状に分散させた構造や、液晶中に樹脂を3次
元的網目状に張り巡らせた構造においては、液晶は樹脂
表面の持つ配向規制能力により配向し、通常、液晶は樹
脂表面で無秩序な配向(例えば、樹脂壁面に対し液晶分
子の長軸が水平で、その向きが様々な配向)となる。
A liquid crystal display device having a layer in which a resin and a liquid crystal substance are mixed is sandwiched between a pair of electrodes, for example, a structure in which the liquid crystal is dispersed in the resin in the form of water droplets, or the resin is mixed in the liquid crystal. In a structure that stretches in a three-dimensional network, the liquid crystal is aligned by the alignment control ability of the resin surface, and normally the liquid crystal is disordered on the resin surface (for example, the long axis of the liquid crystal molecule is horizontal to the resin wall surface). , Its orientation is various).

【0013】図2に、樹脂中に液晶を水滴状に分散させ
た構造を示す。2枚のガラス基板11、11に透明電極X、
Yを形成し、これら透明電極が対向するように配置した
隙間に樹脂12とその中にできる水滴状液晶カプセルに液
晶組成物13が形成される。この時、液晶カプセル中の液
晶分子14の配列は図3(a)に示すように、樹脂壁面12
a に対して分子の長軸が水平でその向きが様々な配列を
取る。また、樹脂と液晶組成物の組合わせによっては、
例えば図3(b)に示すように、樹脂壁面12aに対して
分子の長軸が概略垂直な配列を取らせることができる。
FIG. 2 shows a structure in which a liquid crystal is dispersed in a resin in the form of water droplets. Transparent electrodes X on the two glass substrates 11 and 11,
Y is formed, and the liquid crystal composition 13 is formed in the resin 12 and the water-drop-shaped liquid crystal capsule formed therein in the gap arranged so that these transparent electrodes face each other. At this time, the alignment of the liquid crystal molecules 14 in the liquid crystal capsule is as shown in FIG.
The long axis of the molecule is horizontal to a and the orientations are various. Also, depending on the combination of resin and liquid crystal composition,
For example, as shown in FIG. 3 (b), the long axis of the molecules can be arranged substantially perpendicular to the resin wall surface 12a.

【0014】電界などの外部刺激により液晶分子配列を
変化させた後、外部刺激を取り除き液晶を再配向させる
ときを考える。例えば透明電極X、Yに電界を印加する
と水滴状の液晶カプセル13内の液晶分子長軸は透明電極
に対して図3(e)に示すように垂直に配列する。次に
電圧を取り除き液晶を初期の配列に戻そうとすると、液
晶分子長軸は樹脂壁面に対し初期配列に近い配列に戻ろ
うとするが、向きが揃わない無秩序な部分や配列に欠陥
が生じる。これは水滴状の液晶カプセル内の液晶の均一
配向規制力が弱いことや、樹脂壁面の均一配向規制力が
弱いために生じると考えられる。
Consider a case in which after the liquid crystal molecule alignment is changed by an external stimulus such as an electric field, the external stimulus is removed and the liquid crystal is realigned. For example, when an electric field is applied to the transparent electrodes X and Y, the long axes of the liquid crystal molecules in the liquid crystal capsule 13 in the form of water drops are aligned perpendicular to the transparent electrodes as shown in FIG. Next, when the voltage is removed and the liquid crystal is returned to the initial alignment, the long axes of the liquid crystal molecules try to return to an alignment close to the initial alignment with respect to the resin wall surface, but defects occur in the disordered portions and alignment in which the directions are not aligned. It is considered that this is because the uniform alignment control force of the liquid crystal in the water droplet-shaped liquid crystal capsule is weak and the uniform alignment control force of the resin wall surface is weak.

【0015】そこで、液晶の均一配向規制力を増加させ
る手段として、液晶材料に旋光性物質を添加するなどし
て液晶に螺旋ピッチをもたせるようにする。この場合、
図3(c)に示すように、容易に再配向させることが可
能となる。これは、液晶材料に螺旋ピッチをもたせ、ね
じれ力を付与することにより、従来のように無秩序な配
列に再配列するのに比べ、もとのある程度秩序ある配列
に戻り易いからである。液晶に螺旋ピッチを与えること
は、透過率−印加電圧曲線のヒステリシスを減少させる
方向に作用する。
Therefore, as a means for increasing the uniform alignment control force of the liquid crystal, a liquid crystal material is added with an optical rotatory substance so that the liquid crystal has a helical pitch. in this case,
As shown in FIG. 3C, it is possible to easily re-orient. This is because by giving the liquid crystal material a helical pitch and imparting a twisting force, the liquid crystal material is more likely to return to the original orderly arrangement as compared with the conventional rearrangement of the disordered arrangement. Giving the liquid crystal a helical pitch acts to reduce the hysteresis of the transmittance-applied voltage curve.

【0016】また、樹脂表面にあらかじめ垂直配向規制
力をもたせておいた場合には、図3(d)に示すよう
に、樹脂表面の配向規制力と液晶に与えたねじれ力の相
乗効果により、前記ヒステリシスはさらに減少する方向
に作用する。
When the resin surface is preliminarily provided with the vertical alignment regulating force, the synergistic effect of the alignment regulating force of the resin surface and the twisting force applied to the liquid crystal, as shown in FIG. The hysteresis acts in the direction of further decreasing.

【0017】このようにヒステリシスを減少させるため
には、液晶と接する樹脂自体が垂直配向性をもっていれ
ば、より効果的である。
As described above, in order to reduce the hysteresis, it is more effective if the resin itself in contact with the liquid crystal has a vertical alignment property.

【0018】このような樹脂の表面状態を表す目安の一
つに接触角がある。この場合、接触角は樹脂と液体との
濡れの尺度であり、液体の樹脂に対する親和力が表面張
力に打ち勝つ度合を表す。接触角が大きいほど濡れにく
く、小さいほど濡れ易いことを示す。
The contact angle is one of the criteria for expressing the surface condition of such a resin. In this case, the contact angle is a measure of the wetting between the resin and the liquid, and represents the degree to which the affinity of the liquid for the resin overcomes the surface tension. The larger the contact angle, the harder it is to wet, and the smaller the contact angle, the easier it is to wet.

【0019】樹脂の液晶に対する接触角と液晶の配向状
態には関連があり、樹脂の液晶に対する接触角が大きい
ほど液晶分子の長軸は樹脂基板に対し垂直に配列した状
態を取る傾向にある。逆に、樹脂の液晶に対する接触角
が小さい場合には、液晶分子の長軸は樹脂基板に対し水
平配列状態を取る傾向にある。この場合液晶分子の長軸
の方向は樹脂基板面内で無秩序になるが、例えば樹脂基
板をラビング配向処理すれば、ラビング方向に液晶分子
の長軸が揃った水平配列状態が得られる。
The contact angle of the resin with respect to the liquid crystal is related to the alignment state of the liquid crystal, and the longer the contact angle of the resin with respect to the liquid crystal, the longer the major axis of the liquid crystal molecules tends to be aligned perpendicular to the resin substrate. On the contrary, when the contact angle of the resin with respect to the liquid crystal is small, the long axes of the liquid crystal molecules tend to be aligned horizontally with respect to the resin substrate. In this case, the directions of the long axes of the liquid crystal molecules are disordered in the plane of the resin substrate, but if the resin substrate is subjected to a rubbing orientation treatment, a horizontal alignment state in which the long axes of the liquid crystal molecules are aligned in the rubbing direction can be obtained.

【0020】具体的な例として、樹脂を形成した基板を
ラビング配向処理した場合に得られるプレティルト角が
樹脂基板の接触角により制御されているものがある(第
13回液晶討論会予稿集13ページに記載)。このよう
に、樹脂表面の液晶に対する垂直配向規制力は樹脂面の
液晶に対する接触角で対応付けられている。
As a concrete example, there is one in which the pretilt angle obtained when the resin-formed substrate is subjected to the rubbing orientation treatment is controlled by the contact angle of the resin substrate (Proceedings of the 13th Liquid Crystal Symposium, page 13). Described in). As described above, the vertical alignment regulating force of the resin surface on the liquid crystal is associated with the contact angle of the resin surface on the liquid crystal.

【0021】樹脂の壁面で液晶の初期配向を得ている高
分子分散型液晶表示素子では、前記した樹脂の液晶に与
える配向性の観点から、樹脂の液晶に対する接触角が小
さい場合より、液晶が垂直配向を取りやすい、接触角の
大きい樹脂の方がよく、樹脂の液晶に対する接触角が2
5度以上の場合に、透過率−印加電圧曲線のヒステリシ
スがさらに減少することが実験的に判明した。
In the polymer dispersion type liquid crystal display device in which the liquid crystal has an initial orientation of the liquid crystal, the liquid crystal is more likely to be formed than in the case where the resin has a small contact angle with respect to the liquid crystal in view of the orientation of the resin to the liquid crystal. A resin with a large contact angle that facilitates vertical alignment is better, and the contact angle of the resin with the liquid crystal is 2
It was experimentally found that the hysteresis of the transmittance-applied voltage curve is further reduced when the angle is 5 degrees or more.

【0022】液晶に螺旋ピッチをもたせる試みは、例え
ば日本学術振興会情報科学用有機材料第142回合同研
究会資料(2.11.29〜30)11頁で報告されて
いる。これらによれば螺旋ピッチの条件として、コント
ラスト比増加と応答速度減少の観点から、選択反射によ
る着色を回避し、かつフォーカルコニック組織を形成す
るために、1μm乃至3μmとすることが言われてい
る。しかし、この場合、前記のヒステリシスが大幅に増
大する。
An attempt to give the liquid crystal a helical pitch has been reported, for example, on page 11 of the 142nd Joint Research Committee Material (2.11.29-30) of the Japan Society for the Promotion of Science, Organic Materials for Information Science. According to these, from the viewpoint of increasing the contrast ratio and decreasing the response speed, it is said that the spiral pitch is set to 1 μm to 3 μm in order to avoid coloring due to selective reflection and to form a focal conic structure. .. However, in this case, the hysteresis is significantly increased.

【0023】本発明者らは、種々の実験により、d/p
が0.003乃至0.1のとき、ヒステリシス幅を大幅
に減少させることを見出した。螺旋ピッチは10μm乃
至300μmであることが好ましい。d/pが0.00
3未満では、液晶のねじれ配向力は弱すぎ、無秩序な配
列に再配列することを制御できず、ヒステリシス幅はピ
ッチをまったくもたない場合とほぼ同程度発生する。ま
た、d/pが0.1よりも大きくなると、前記したよう
にフォーカルコニック組織などを形成し、PC(Phase-
Change) 相転移型モード型液晶表示素子のようにヒステ
リシス幅は大幅に増大する。
The present inventors have conducted various experiments to find that d / p
It was found that the hysteresis width is significantly reduced when is 0.003 to 0.1. The spiral pitch is preferably 10 μm to 300 μm. d / p is 0.00
If it is less than 3, the twisting alignment force of the liquid crystal is too weak to control rearrangement in a disordered arrangement, and the hysteresis width is almost the same as in the case where there is no pitch. When d / p is larger than 0.1, a focal conic structure or the like is formed as described above, and PC (Phase-
Change) The hysteresis width is significantly increased as in the phase transition mode liquid crystal display device.

【0024】なお、樹脂の液晶に対する接触角θは、初
期の配向規制力を十部にもたせるため、25度乃至18
0度のあ範囲に設定するのが望ましい。
The contact angle θ of the resin with respect to the liquid crystal is 25 degrees to 18 degrees so that the initial alignment regulating force can reach 10 parts.
It is desirable to set it in the 0 degree range.

【0025】[0025]

【実施例】以下本発明の実施例を説明する。EXAMPLES Examples of the present invention will be described below.

【0026】[実施例1]図1は本実施例は本発明をマ
ルチプレクス駆動液晶表示素子に適用したものであっ
て、液晶表示パネル10は、複数本の走査線Y(Y1 Y2
Y3 …YN )と複数本信号線X(X1 X2 X3 …XM )
とがマトリクス状に対向するように配設され、そして、
走査線Yと信号線Xはそれぞれ走査線電極駆動部20と信
号線電極駆動部30に接続されている。走査線電極駆動部
20と信号線電極駆動部30は駆動電圧発生回路50から供給
される電圧を制御部40からの信号に基づき液晶表示パネ
ル10に出力する。
[Embodiment 1] FIG. 1 is a view showing that the present invention is applied to a multiplex driving liquid crystal display element, and a liquid crystal display panel 10 has a plurality of scanning lines Y (Y1 Y2).
Y3 ... YN) and plural signal lines X (X1 X2 X3 ... XM)
And are arranged to face each other in a matrix, and
The scanning line Y and the signal line X are connected to the scanning line electrode driving unit 20 and the signal line electrode driving unit 30, respectively. Scan line electrode driver
The signal line electrode drive unit 20 and the signal line electrode drive unit 30 output the voltage supplied from the drive voltage generation circuit 50 to the liquid crystal display panel 10 based on the signal from the control unit 40.

【0027】液晶表示パネル10は、図2に示すように、
樹脂中に液晶を水滴状に分散させた構造であり、2枚の
ガラス基板11、11にそれぞれ透明電極X、Yを形成し、
これら一対の透明電極X、Yが対向するように配置した
隙間に、透光性の樹脂12とその中に水滴状すなわち液晶
カプセルの形の液晶組成物13が分散形成される。
The liquid crystal display panel 10 is, as shown in FIG.
A structure in which liquid crystal is dispersed in a resin in the form of water droplets, and transparent electrodes X and Y are formed on two glass substrates 11 and 11, respectively,
A transparent resin 12 and a liquid crystal composition 13 in the form of water droplets, that is, in the form of a liquid crystal capsule, are dispersed and formed in a gap arranged so that the pair of transparent electrodes X and Y are opposed to each other.

【0028】すなわち、得られる高分子分散型液晶表示
素子は2枚の電極付基板11、11の間に、樹脂と液晶物質
とを混合させた層を持っている。混合物を構成する樹脂
は紫外線硬化型樹脂(ノーランド社製NOA65)を用
いた。液晶物質はシアノビフェニル系液晶(メルク・リ
ミテッド社製E8)に旋光性物質(E.メルク社製S−
811)を0.1重量%添加したものを用いた。液晶の
螺旋ピッチは100μmである。樹脂と液晶を重量比
1:1で室温にて5分間スタラー混合した。これに直径
が約20μmのガラスファイバーを混ぜ2枚の電極付き
基板の間に挟み均一なセル厚を得て、ここへ紫外線を照
射強度5mW/cm2 で30分間照射し紫外線硬化型樹
脂を硬化させて液晶表示素子を得た。液晶表示素子は樹
脂中に液晶が水滴状に分散した構造で、この直径が概略
1μmであり、d/pは0.01である。
That is, the obtained polymer dispersion type liquid crystal display element has a layer in which a resin and a liquid crystal substance are mixed between two substrates 11 with electrodes. An ultraviolet curable resin (NOA65 manufactured by Norland Co.) was used as a resin constituting the mixture. The liquid crystal material is a cyanobiphenyl liquid crystal (E8 manufactured by Merck Limited) and an optical rotatory material (S- manufactured by E. Merck).
811) was used in an amount of 0.1% by weight. The helical pitch of the liquid crystal is 100 μm. The resin and liquid crystal were stirred at a weight ratio of 1: 1 at room temperature for 5 minutes. This is mixed with glass fiber with a diameter of about 20 μm and sandwiched between two substrates with electrodes to obtain a uniform cell thickness, which is then irradiated with UV light for 30 minutes at an irradiation intensity of 5 mW / cm 2 to cure the UV curable resin. Thus, a liquid crystal display device was obtained. The liquid crystal display element has a structure in which liquid crystals are dispersed in a resin in the form of water droplets, the diameter is approximately 1 μm, and d / p is 0.01.

【0029】透過率ー印加電圧曲線を求めるために、こ
の液晶表示素子にHe-Ne レーザー光を入射させ、透過率
を測定した。光のスポット径は2mmで、透過したレー
ザー光は液晶表示素子から距離20cmのところにある
フォトダイオードにより検出した。この素子は電圧を印
加しない状態では透過率約0.5%と良好な散乱状態を
示していた。
In order to obtain a transmittance-applied voltage curve, He-Ne laser light was made incident on this liquid crystal display element, and the transmittance was measured. The spot diameter of the light was 2 mm, and the transmitted laser light was detected by a photodiode located at a distance of 20 cm from the liquid crystal display element. This element showed a favorable scattering state with a transmittance of about 0.5% when no voltage was applied.

【0030】図4に、0Vから徐々に印加電圧(交流7
0Hz)を50Vまで増加、50Vから徐々に0Vまで
減少させていったときの透過率ー印加電圧曲線を示す。
50Vの電圧を印加した状態では透過率約80%(最大
透過率)を示した。ここで、最大透過率の半分の透過率
となる電圧をVup50(上昇時)とVdown50(下降時)と
し、Vup50とVdown50の差をヒステリシスの大きさΔV
と定義する。本実施例の場合Vup50=22V、Vdown50
=21.2Vで、ヒステリシスの大きさは、ΔV=0.
8Vと小さい値を示した。
In FIG. 4, the applied voltage (AC 7
0Hz) is increased to 50V and gradually decreased from 50V to 0V, showing a transmittance-applied voltage curve.
The transmittance was about 80% (maximum transmittance) when a voltage of 50 V was applied. Here, the voltage at which the transmittance is half the maximum transmittance is Vup50 (when rising) and Vdown50 (when falling), and the difference between Vup50 and Vdown50 is the hysteresis magnitude ΔV.
It is defined as. In the case of this embodiment, Vup50 = 22V, Vdown50
= 21.2 V, the magnitude of hysteresis is ΔV = 0.
It showed a small value of 8V.

【0031】このときの樹脂の液晶に対する接触角θは
15度であった。
At this time, the contact angle θ of the resin with the liquid crystal was 15 degrees.

【0032】ここでフレーム反転法によるマルチプレク
ス駆動波形する場合、図1(a)に示すように、液晶駆
動電圧は駆動電圧発生回路50で発生され、6つの電位で
構成される。例えば、図1(b) に示すような回路50によ
り、電源電圧Vcをもとにして電位の高い順にV0からV5ま
での駆動電圧を得る。走査線と信号線の駆動電圧波形は
これらの電位の組み合わせによって得ている。図5に、
オン画素を指定するときの液晶駆動電圧波形例を示す。
In the case of the multiplex drive waveform by the frame inversion method, the liquid crystal drive voltage is generated by the drive voltage generation circuit 50 and is composed of six potentials, as shown in FIG. 1 (a). For example, a circuit 50 as shown in FIG. 1B obtains drive voltages V0 to V5 in descending order of potential based on the power supply voltage Vc. The drive voltage waveforms of the scanning lines and the signal lines are obtained by combining these potentials. In Figure 5,
An example of a liquid crystal drive voltage waveform when designating an ON pixel is shown.

【0033】(a) は走査線の駆動波形で V0は選択電位、V5は極性反転時の選択電位、V4は非選択
電位、V1は極性反転時の非電位選択電位である。
(A) is a drive waveform of the scanning line, V0 is a selection potential, V5 is a selection potential at the time of polarity reversal, V4 is a non-selection potential, and V1 is a non-potential selection potential at the time of polarity reversal.

【0034】(b) は信号線の駆動波形で V5はオン画素を指定する電位、V0は極性反転時のオン画
素を指定する電位、V3はオフ画素を指定する電位、V2は
極性反転時のオフ画素を指定する電位である。
(B) is a drive waveform of a signal line, V5 is a potential for designating an ON pixel, V0 is a potential for designating an ON pixel at the time of polarity inversion, V3 is a potential for designating an OFF pixel, and V2 is for a potential inversion. This is a potential that specifies an off pixel.

【0035】したがって、オン画素を指定するとき液晶
に印加される電圧波形は(c) となる。同様に図6に、
(a)(b)の選択、非選択電位によりオフ画素を指定
するときに液晶に印加される電圧波形(c)を示す。
Therefore, the voltage waveform applied to the liquid crystal when designating the ON pixel is (c). Similarly, in FIG.
7A and 7B show voltage waveforms (c) applied to the liquid crystal when the off pixel is designated by the selection and non-selection potentials of (a) and (b).

【0036】マルチプレクス駆動において、図5(c)
のオン電圧波形の最大振幅(V0-V5の大きさ) を一般的
に液晶駆動電圧Vop といい、それ以外のV3-V4,V4-V5,V1
-V2,V0-V1 の大きさをバイアス電圧Vpといい、通常これ
らV3-V4,V4-V5,V1-V2,V0-V1は等しく設定される。ここ
で、も液晶駆動電圧Vop とバイアス電圧Vbの比をバイア
ス比(Vop /Vb)といい、Bで表す。
In multiplex drive, FIG. 5 (c)
The maximum amplitude of the ON voltage waveform of (the magnitude of V0-V5) is generally called the liquid crystal drive voltage Vop, and other than V3-V4, V4-V5, V1
The magnitude of -V2, V0-V1 is called the bias voltage Vp, and these V3-V4, V4-V5, V1-V2, V0-V1 are usually set equal. Here, the ratio between the liquid crystal drive voltage Vop and the bias voltage Vb is also referred to as the bias ratio (Vop / Vb) and is represented by B.

【0037】液晶は印加電圧の実効値に対して応答する
性質を持っているので、図5(c)、図6(c)の電圧
波形は一般的に実効値電圧の比に換算して表す。すなわ
ち、図5(c)のオン電圧波形の実効値電圧と図6
(c)のオフ電圧波形の実効値電圧の比をMとすると、
Mが大きいほど高いコントラスト比が得られやすいこと
を示す。一般的な計算によれば、バイアス比Bが駆動す
る走査線数をNとし、BがN1/2 +1の時に、Mの大き
さは最大値をとり、Mは((N1/2 +1)/(N1/ 2
1))1/2 という大きさをとる。例えば走査線の数が8
本ではMは1.45であり、オン画素に印加される電圧はオ
フ画素に印加される印加電圧の1.45倍であることを表す
さて、このような駆動方法を実際に用いる場合、前記し
た電圧比Mの範囲で、液晶表示素子は応答しなければな
らない。透過率−印加電圧曲線に大きなヒステリシスを
もつ液晶表示素子を駆動する場合、電圧の比Mがヒステ
リシスの電圧幅ΔVに吸収されないことが必要である。
具体的に、走査線数が8本の場合を説明すると、オフに
対する電圧を例えば20Vに設定したとき、オンに対す
る電圧は1.45倍の29Vになっているので、ヒステリシ
スの大きさΔVは少なくとも9V未満でなくてはならな
い。コントラスト比を考慮するならばヒステリシスの電
圧幅は0Vに近い方が望ましい。
Since the liquid crystal has a property of responding to the effective value of the applied voltage, the voltage waveforms of FIGS. 5C and 6C are generally expressed in terms of the ratio of the effective value voltage. .. That is, the effective voltage of the ON voltage waveform of FIG.
Assuming that the ratio of the effective voltage of the off-voltage waveform in (c) is M,
It is indicated that the larger M is, the higher the contrast ratio is likely to be obtained. According to a general calculation, the number of scanning lines driven by the bias ratio B is N, and when B is N 1/2 +1, the magnitude of M has a maximum value, and M is ((N 1/2 +1 ) / (N 1/ 2-
1)) Take a size of 1/2 . For example, the number of scan lines is 8
In the book, M is 1.45, which means that the voltage applied to the ON pixel is 1.45 times the applied voltage applied to the OFF pixel. When actually using such a driving method, the voltage ratio M In the range of, the liquid crystal display element must respond. When driving a liquid crystal display device having a large hysteresis in the transmittance-applied voltage curve, it is necessary that the voltage ratio M is not absorbed by the hysteresis voltage width ΔV.
Specifically, the case where the number of scanning lines is 8 will be described. When the voltage for OFF is set to 20V, for example, the voltage for ON is 1.45 times 29V, so that the magnitude of hysteresis ΔV is at least less than 9V. Must be Considering the contrast ratio, it is desirable that the voltage width of the hysteresis be close to 0V.

【0038】本実施例のマルチプレクス駆動において
は、液晶セルは、図2図示のガラス基板11上の走査線Y
の電極数が16本、信号線Xの電極数が128 本であり、こ
れらの電極群はマトリクス状に対向するように配設され
た構成をとっている。
In the multiplex drive of this embodiment, the liquid crystal cell is the scanning line Y on the glass substrate 11 shown in FIG.
The number of electrodes is 16 and the number of electrodes of the signal line X is 128, and these electrode groups are arranged so as to face each other in a matrix.

【0039】この素子をバイアス比B=5で、液晶駆動
電圧Vop =75V(オフ画素に印加される実効値電圧1
8V、オン画素に印加される実効値電圧24V)でマル
チプレクス駆動しスクリーンに投射したところ、コント
ラスト比8の良好な表示が、どのような表示パターンに
対しても得られた。
This device has a bias ratio B = 5 and a liquid crystal drive voltage Vop = 75V (effective value voltage 1 applied to an off pixel).
When multiplex driving was performed at 8 V and an effective value voltage of 24 V applied to ON pixels and projection was performed on a screen, a good display with a contrast ratio of 8 was obtained for any display pattern.

【0040】すなわち、本実施例の高分子分散型液晶表
示素子においては、ヒステリシスがほとんど生じず、マ
ルチプレクス可能で高いコントラスト比が得られる。
That is, in the polymer-dispersed liquid crystal display device of this embodiment, there is almost no hysteresis, multiplexing is possible, and a high contrast ratio is obtained.

【0041】[比較例1]次ぎに、液晶表示素子の製作
方法を実施例1と同様とし、ただし液晶物質にはシアノ
ビフェニル系液晶(メルクリミテッド社製E8)に旋光
性物質S−811(E.メルク社製)を添加しないで液
晶表示素子を作成した。この透過率−印加電圧曲線を測
定したところ、Vup50=22V、Vdown50=17.5V
で、ヒステリシスの大きさは、ΔV=4.5Vと大きい
値を示した。
Comparative Example 1 Next, the manufacturing method of the liquid crystal display element was the same as in Example 1, except that the liquid crystal substance was a cyanobiphenyl liquid crystal (E8 manufactured by Merck Limited) and the optical rotatory substance S-811 (E). A liquid crystal display device was prepared without adding Merck. When this transmittance-applied voltage curve was measured, Vup50 = 22V, Vdown50 = 17.5V
The magnitude of hysteresis showed a large value of ΔV = 4.5V.

【0042】[比較例2]次ぎに、液晶表示素子の製作
方法を実施例1と同様とし、ただし液晶物質にはシアノ
ビフェニル系液晶(メルクリミテッド社製E8)に旋光
性物質S−811(E.メルク社製)を0.02重量%
添加したものおよび1.2重量%添加したものを用いて
液晶表示素子を作成した。液晶の螺旋ピッチは各々50
0μm、8μmであり、d/pは各々0.002、0.
13である。この透過率−印加電圧曲線を測定したとこ
ろ、前者はVup50=22V、Vdown50=17.7Vで、
ヒステリシスの大きさは、ΔV=4.3Vとなり、後者
はVup50=24V、Vdown50=20.0Vで、ヒステリ
シスの大きさは、ΔV=4.0Vといずれも大きい値を
示した。
Comparative Example 2 Next, the manufacturing method of the liquid crystal display element was the same as in Example 1, except that the liquid crystal material was a cyanobiphenyl liquid crystal (E8 manufactured by Merck Limited) and the optical rotatory material S-811 (E). 0.02% by weight
A liquid crystal display device was prepared using the added material and the added material of 1.2% by weight. Liquid crystal spiral pitch is 50 each
0 μm and 8 μm, and d / p is 0.002, 0.
It is 13. When the transmittance-applied voltage curve was measured, the former was Vup50 = 22V and Vdown50 = 17.7V.
The magnitude of hysteresis was ΔV = 4.3V, the latter was Vup50 = 24V, Vdown50 = 20.0V, and the magnitude of hysteresis was a large value of ΔV = 4.0V.

【0043】[実施例2]実施例1と同様の液晶表示素
子の製作方法で、液晶材料に添加する旋光性物質S−8
11の量を0.05、0.3 、0.8 重量%と変えて液晶の螺旋
ピッチを各200 、30、13μmと増減した場合、すなわち
d/pを各々0.005 、 0.03、0.08と増減した場合、Δ
Vは各々1.2 、0.5 、1.5 Vと、なり、0.003 乃至0.1
の範囲ではヒステリシスの大きさは小さかった。
[Embodiment 2] By a method of manufacturing a liquid crystal display element similar to that of Embodiment 1, an optical rotatory substance S-8 added to a liquid crystal material is used.
If the helical pitch of the liquid crystal is increased or decreased to 200, 30, or 13 μm by changing the amount of 11 to 0.05, 0.3, or 0.8% by weight, that is, if the d / p is increased or decreased to 0.005, 0.03, or 0.08, Δ
V is 1.2, 0.5, and 1.5 V respectively, and 0.003 to 0.1
The magnitude of hysteresis was small in the range of.

【0044】[実施例3]実施例1と同様の液晶表示素
子において樹脂中に垂直配向剤として一般的な一塩基性
クロム錯体FC−805(3M社製)を0.3重量%添
加したものを用いた。この樹脂にシアノビフェニル系液
晶E8(メルクリミテッド社製)に旋光性物質としてC
B−15(メルクリミテッド社製)を0.3重量%添加
したものを重量比1:1で混ぜ2枚の電極付き基板の間
に挟み均一なセル厚を得て、ここに紫外線を10分間照
射し紫外線硬化型樹脂を硬化させて液晶表示素子とし
た。このとき、素子は樹脂中に液晶が水滴状に分散した
構造で、水滴直径が2乃至3μmであり、液晶の螺旋ピ
ッチは約50μm、d/pは0.04乃至0.06である。ま
た、この樹脂の液晶に対する接触角θは約35度であっ
た。
[Example 3] A liquid crystal display device similar to that of Example 1 except that 0.3% by weight of a general monobasic chromium complex FC-805 (manufactured by 3M Co.) as a vertical aligning agent was added to the resin. Was used. Cyanobiphenyl liquid crystal E8 (manufactured by Mercury Limited) was added to this resin as an optically active substance.
0.3% by weight of B-15 (manufactured by Merck Limited) was added at a weight ratio of 1: 1 and sandwiched between two substrates with electrodes to obtain a uniform cell thickness. Irradiation was performed to cure the ultraviolet curable resin to obtain a liquid crystal display element. At this time, the device has a structure in which liquid crystals are dispersed in the resin in the form of water droplets, the diameter of the water droplets is 2 to 3 μm, the helical pitch of the liquid crystals is about 50 μm, and d / p is 0.04 to 0.06. The contact angle θ of this resin with the liquid crystal was about 35 degrees.

【0045】本実施例の場合、Vup50=18.0V、V
down50=17.9Vで、ヒステリシスの大きさは、ΔV
=0.1Vと非常に小さい値を示した。
In the case of this embodiment, Vup50 = 18.0V, V
down50 = 17.9V, the magnitude of hysteresis is ΔV
= 0.1V, which is a very small value.

【0046】[実施例4]実施例1と同様、高分子分散
型液晶表示素子は2枚の電極付き基板の間に、樹脂と液
晶物質を混合させた層をもっている。混合物を構成する
樹脂は、紫外線硬化型樹脂NOA65(ノーランド社
製)を用いた。液晶物質はシアノビフェニル系液晶E8
(メルクリミテッド社製)に旋光性物質としてS−81
1(E.メルク社製)を0.1重量%添加したものを用
いた。液晶の螺旋ピッチは100μmである。樹脂と液
晶の重量比1:4で室温にて5分間スタラー混合した。
これに直径約20μmのガラスファイバーを混ぜ2枚の
電極付き基板の間に挟み均一なセル厚を得て、ここに紫
外線を30分間照射し紫外線硬化型樹脂を硬化させて液
晶表示素子を得た。得られた高分子分散型液晶表示素子
は液晶中に樹脂が網の目のように張り巡らされた構造を
もっており、この網目が作る空隙の間隔dはほぼ1乃至
4μmであり、d/pは0.01乃至0.04である。
[Embodiment 4] As in Embodiment 1, the polymer dispersed liquid crystal display device has a layer in which a resin and a liquid crystal substance are mixed between two substrates with electrodes. As a resin forming the mixture, an ultraviolet curable resin NOA65 (manufactured by Norland) was used. Liquid crystal substance is cyanobiphenyl liquid crystal E8
(Manufactured by Mel Limited) as an optically active substance, S-81
1 (manufactured by E. Merck) was used in an amount of 0.1% by weight. The helical pitch of the liquid crystal is 100 μm. The resin and the liquid crystal were mixed with a stirrer at a weight ratio of 1: 4 at room temperature for 5 minutes.
A glass fiber having a diameter of about 20 μm was mixed and sandwiched between two substrates with electrodes to obtain a uniform cell thickness, which was irradiated with ultraviolet rays for 30 minutes to cure the ultraviolet curable resin to obtain a liquid crystal display device. .. The obtained polymer-dispersed liquid crystal display element has a structure in which a resin is stretched in a liquid crystal like a mesh, and the interval d between the voids formed by the mesh is about 1 to 4 μm, and d / p is It is 0.01 to 0.04.

【0047】実施例1と同様に、0Vから徐々に印加電
圧(交流70Hz)を50Vまで増加、50Vから徐々
に0Vまで減少させていったときの透過率−印加電圧曲
線を測定した。50Vの電圧を印加した状態では透過率
は約80%を示した。ここで、最大透過率の半分の透過
率となる電圧を電圧上昇の場合Vup50とし、電圧下降の
場合Vdown50とし、Vup50とVdown50の差をヒステリシ
スの大きさΔVと定義した。
As in Example 1, the transmittance-applied voltage curve was measured when the applied voltage (AC 70 Hz) was gradually increased from 0 V to 50 V and gradually decreased from 50 V to 0 V. The transmittance was about 80% when a voltage of 50 V was applied. Here, the voltage at which the transmittance is half of the maximum transmittance is defined as Vup50 when the voltage increases and Vdown50 when the voltage decreases, and the difference between Vup50 and Vdown50 is defined as the hysteresis magnitude ΔV.

【0048】本実施例の場合、Vup50=19.5V、V
down50=19.0Vで、ヒステリシスの大きさは、ΔV
=0.5Vと非常に小さい値を示した。
In the case of this embodiment, Vup50 = 19.5V, V
down50 = 19.0V, the magnitude of hysteresis is ΔV
= 0.5V, which is a very small value.

【0049】[比較例3]次に、液晶表示素子の製作方
法を実施例4と同様とし、ただし、液晶物質にはシアノ
ビフェニル系液晶E8(メルクリミテッド社製)に旋光
性物質(S−811)を添加しないで素子を作成した。
[Comparative Example 3] The liquid crystal display device was manufactured in the same manner as in Example 4, except that the liquid crystal substance was a cyanobiphenyl liquid crystal E8 (manufactured by Merck Limited) and the optical rotatory substance (S-811). The element was prepared without adding).

【0050】この透過率−印加電圧曲線を測定したとこ
ろ、Vup50=26V、Vdown50=22.0Vで、ヒステ
リシスの大きさは、ΔV=4.0Vと大きい値を示し
た。
When the transmittance-applied voltage curve was measured, Vup50 = 26V, Vdown50 = 22.0V, and the magnitude of hysteresis was as large as ΔV = 4.0V.

【0051】[実施例5]実施例4と同様に同様の液晶
表示素子において樹脂中に垂直配向剤として一塩基性ク
ロム錯体FC−805(3M社製)を0.4重量%添加
したものを用いた。液晶としてはシアノビフェニル系液
晶(メルクリミテッド社製)に旋光性物質としてノナン
酸コレステリル(チッソ社製)を0.5重量%添加した
ものを用いた。 液晶の螺旋ピッチは70μmである。
樹脂と液晶の重量比1:4で室温にて5分間スタラー混
合した。これに直径約20μmのガラスファイバーを混
ぜ2枚の電極付き基板の間に挟み均一なセル厚を得て、
ここに紫外線を20分間照射し紫外線硬化型樹脂を硬化
させて液晶表示素子を得た。得られた高分子分散型液晶
表示素子は液晶中に樹脂が網の目のように張り巡らされ
た構造をもっており、この網目が作る空隙の間隔dはほ
ぼ3乃至5μmであり、d/pは0.04乃至0.07であっ
た。また、このとき樹脂の液晶に対する接触角θは約4
0度であった。
Example 5 A liquid crystal display device similar to that of Example 4 was prepared by adding 0.4% by weight of a monobasic chromium complex FC-805 (manufactured by 3M Company) as a vertical aligning agent to a resin. Using. As the liquid crystal, a cyanobiphenyl liquid crystal (manufactured by Merck Limited) to which 0.5% by weight of cholesteryl nonanoate (manufactured by Chisso Corporation) was added as an optically active substance was used. The helical pitch of the liquid crystal is 70 μm.
The resin and the liquid crystal were mixed with a stirrer at a weight ratio of 1: 4 at room temperature for 5 minutes. This is mixed with glass fiber with a diameter of about 20 μm and sandwiched between two substrates with electrodes to obtain a uniform cell thickness,
This was irradiated with ultraviolet rays for 20 minutes to cure the ultraviolet curable resin to obtain a liquid crystal display element. The obtained polymer-dispersed liquid crystal display element has a structure in which a resin is stretched in a liquid crystal like a mesh, and the distance d between the voids formed by the mesh is approximately 3 to 5 μm, and d / p is It was 0.04 to 0.07. At this time, the contact angle θ of the resin with the liquid crystal is about 4
It was 0 degrees.

【0052】本実施例の場合、Vup50=17.5V、V
down50=17.4Vで、ヒステリシスの大きさは、ΔV
=0.1Vと非常に小さい値であった。
In the case of this embodiment, Vup50 = 17.5V, V
down50 = 17.4V, the magnitude of hysteresis is ΔV
= 0.1V, which is a very small value.

【0053】[0053]

【発明の効果】本発明によれば、高分子分散型液晶表示
素子の透過率ー印加電圧曲線のヒステリシスを大幅に低
減させ、マルチプレクス駆動が可能な電圧制御型光散乱
液晶表示素子を提供することができる。
According to the present invention, there is provided a voltage-controlled light-scattering liquid crystal display device in which the hysteresis of the transmittance-applied voltage curve of the polymer-dispersed liquid crystal display device is significantly reduced and multiplex driving is possible. be able to.

【0054】[0054]

【図面の詳細な説明】[Detailed Description of Drawings]

【0055】[0055]

【図1】(a)は本発明をマルチプレクス駆動液晶表示
素子に適用した実施例を示す平面図、(b)は駆動電源
回路を示す回路図である。
1A is a plan view showing an embodiment in which the present invention is applied to a multiplex drive liquid crystal display device, and FIG. 1B is a circuit diagram showing a drive power supply circuit.

【0056】[0056]

【図2】図1の表示パネルの一部を概念的に示す断面
図、
FIG. 2 is a sectional view conceptually showing a part of the display panel of FIG.

【0057】[0057]

【図3】(a)、(b)、(c)、(d)および(e)
は樹脂面での液晶分子の配向状態を示す線図である。
3 (a), (b), (c), (d) and (e).
FIG. 4 is a diagram showing an alignment state of liquid crystal molecules on a resin surface.

【0058】[0058]

【図4】液晶表示素子の透過率ー印加電圧曲線を示した
図である。
FIG. 4 is a diagram showing a transmittance-applied voltage curve of a liquid crystal display element.

【0059】[0059]

【図5】マルチプレクス駆動のための各駆動電位
(a)、(b)と、オン画素を指定するとき液晶に印加
される電圧波形(c)を示す図である。
FIG. 5 is a diagram showing drive potentials (a) and (b) for multiplex drive, and a voltage waveform (c) applied to a liquid crystal when an ON pixel is designated.

【0060】[0060]

【図6】マルチプレクス駆動のための各駆動電位
(a)、(b)と、オフ画素を指定するとき液晶に印加
される電圧波形(c)を示す図である。
FIG. 6 is a diagram showing drive potentials (a) and (b) for multiplex drive and a voltage waveform (c) applied to liquid crystal when an off pixel is designated.

【0061】[0061]

【符号の説明】[Explanation of symbols]

10…液晶表示パネル、 11…ガラス基板、 12…透光性の樹脂、 13…液晶組成物 10 ... Liquid crystal display panel, 11 ... Glass substrate, 12 ... Translucent resin, 13 ... Liquid crystal composition

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 一対の電極の間に、透光性の樹脂と正の
誘電率異方性を有する液晶組成物とが混在し、前記液晶
が前記樹脂中に水滴状または、前記液晶が前記樹脂中に
連続的に形成されて成る層、或いは前記液晶中に前記樹
脂を網の目のように巡らせてなる層が挟持されてなる液
晶表示素子において、 前記樹脂がつくる水滴状空隙の直径あるいは樹脂を網の
目がつくる空隙の間隔をdとして、前記液晶組成物の螺
旋ピッチをpとした場合、その比d/pが 0.003≦d/p≦0.1 であることを特徴とする液晶表示素子。
1. A translucent resin and a liquid crystal composition having a positive dielectric anisotropy are mixed between a pair of electrodes, and the liquid crystal is in the form of water droplets in the resin or the liquid crystal is In a liquid crystal display element in which a layer formed continuously in a resin or a layer formed by wrapping the resin like a mesh in the liquid crystal is sandwiched, a diameter of a water drop-like void formed by the resin or When the distance between the voids formed by the mesh of the resin is d and the spiral pitch of the liquid crystal composition is p, the ratio d / p is 0.003 ≦ d / p ≦ 0.1. Liquid crystal display device.
【請求項2】 液晶組成物が10μm乃至300μmの
螺旋ピッチを有することを特徴とする請求項1記載の液
晶表示素子
2. The liquid crystal display device according to claim 1, wherein the liquid crystal composition has a spiral pitch of 10 μm to 300 μm.
【請求項3】 樹脂が液晶組成物に対して25度以上の
接触角をもつ樹脂であることを特徴とする請求項1記載
の液晶表示素子
3. The liquid crystal display element according to claim 1, wherein the resin has a contact angle of 25 degrees or more with the liquid crystal composition.
JP25953791A 1991-10-08 1991-10-08 Liquid crystal display element Pending JPH05100213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25953791A JPH05100213A (en) 1991-10-08 1991-10-08 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25953791A JPH05100213A (en) 1991-10-08 1991-10-08 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH05100213A true JPH05100213A (en) 1993-04-23

Family

ID=17335490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25953791A Pending JPH05100213A (en) 1991-10-08 1991-10-08 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH05100213A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017272A1 (en) * 1994-12-01 1996-06-06 Seiko Epson Corporation Liquid crystal display element and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017272A1 (en) * 1994-12-01 1996-06-06 Seiko Epson Corporation Liquid crystal display element and method of manufacturing the same
US6025895A (en) * 1994-12-01 2000-02-15 Seiko Epson Corporation Liquid crystal display with mutually oriented and dispersed birefringent polymer and liquid crystal and random oriented twist alignment

Similar Documents

Publication Publication Date Title
US5251048A (en) Method and apparatus for electronic switching of a reflective color display
TW386169B (en) Liquid crystal display apparatus
IL101766A (en) Liquid crystalline light modulating device and material
US6894733B2 (en) Liquid crystal display apparatus exhibiting cholesteric phase
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JP3688704B2 (en) Cholesteric liquid crystal display device and driving method of cholesteric liquid crystal display element
JPH0829812A (en) Liquid crystal display device
US7362406B2 (en) Electrophoretic liquid crystal display device
JPH05100213A (en) Liquid crystal display element
JP7180589B2 (en) Light control film, light control system, light control component
JPH05107524A (en) Liquid crystal display element
Armitage Liquid-crystal display device fundamentals
JP2004191694A (en) Display device
JPH0519236A (en) Liquid crystal display element
JPH0553151A (en) Liquid crystal display element
JPH08136941A (en) Liquid crystal display element
US6937218B2 (en) Method for driving a liquid crystal display device
JPH07199205A (en) Liquid crystal display element
JP4048889B2 (en) Driving method of liquid crystal display device
JP4715012B2 (en) Driving method and driving apparatus for memory cholesteric liquid crystal display device
JP2003172947A (en) Liquid crystal display device and driving method therefor
JP4048895B2 (en) Driving method of transparent display device
JP3123694B2 (en) Display medium, display method and display device
JPH10274761A (en) Light scatter type liquid crystal display element and driving method
JP2003344821A (en) Liquid crystal display device