JPH05192155A - Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto - Google Patents

Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto

Info

Publication number
JPH05192155A
JPH05192155A JP6371091A JP6371091A JPH05192155A JP H05192155 A JPH05192155 A JP H05192155A JP 6371091 A JP6371091 A JP 6371091A JP 6371091 A JP6371091 A JP 6371091A JP H05192155 A JPH05192155 A JP H05192155A
Authority
JP
Japan
Prior art keywords
yeast
hydrogen sulfide
gene
nhs5
suppressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6371091A
Other languages
Japanese (ja)
Inventor
Hidetoshi Tezuka
秀敏 手塚
Hideyo Aoki
秀代 青木
Mitsuhiro Touma
満浩 東間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Breweries Ltd
Original Assignee
Asahi Breweries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries Ltd filed Critical Asahi Breweries Ltd
Priority to JP6371091A priority Critical patent/JPH05192155A/en
Publication of JPH05192155A publication Critical patent/JPH05192155A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Alcoholic Beverages (AREA)

Abstract

PURPOSE:To suppress the ability to produce hydrogen sulfide and enable obtaining of beer in a short time by transducing a gene (NHS5) capable of exhibiting a prescribed base sequence suppressing the production of the hydrogen sulfide with a yeast. CONSTITUTION:A plasmid (pHS5), capable of suppressing H2S and having a well-known gene capable of suppressing H2S is subcloned to prepare a gene (NHS5) that is a protein having an amino acid sequence composed of a sequence of bases, etc., expressed by the formula in which the interval between prescribed positions is coded in the base sequence. The resultant NHS5 is then treated with a restriction enzyme to afford a plasmid (e.g. YCpAG-5SS), which is subsequently transduced into a yeast of the genus Saccharomyces for brewing to provide a transformant. The obtained transformant is then inoculated into a wort containing a hop added thereto and fermented to reduce the amount of the produced hydrogen sulfide from the parent strain by, 20-40%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、酵母の硫化水素生成を
抑制する遺伝子、この遺伝子の特定の塩基配列を持つタ
ンパク質、および前記遺伝子を導入した醸造用酵母に関
する。
TECHNICAL FIELD The present invention relates to a gene that suppresses hydrogen sulfide production in yeast, a protein having a specific nucleotide sequence of this gene, and a brewing yeast into which the gene has been introduced.

【0002】[0002]

【従来の技術】我が国で主に市販されているピルスナー
タイプの淡色ビールに硫化水素(H2 S)臭が感じられ
ることは品質上好ましくない。しかし、同種のビール製
造に用いられるビール酵母(下面酵母)は、この硫化水
素を主発酵工程で生成する特性を持つ。そのため、後発
酵以降の工程でビール中の硫化水素量を閾値以下にコン
トロールすることがビール製造において重要な課題の1
つとなっており、その解決策は貯酒期間を延長すること
であった。
2. Description of the Related Art It is unfavorable in terms of quality to sense the smell of hydrogen sulfide (H 2 S) in Pilsner type light beer which is mainly sold in Japan. However, brewer's yeast (bottom yeast) used in the same type of beer production has a characteristic of producing this hydrogen sulfide in the main fermentation step. Therefore, controlling the amount of hydrogen sulfide in beer below a threshold value in post-fermentation and subsequent steps is an important issue in beer production.
The solution was to extend the storage period.

【0003】そのため従来から硫化水素生成に影響する
因子に関する研究や、硫化水素低生成酵母の突然変異法
や細胞融合法による育種研究が報告されているが、これ
らいずれの方法によっても、単に酵母の硫化水素生成量
を減少させるだけでなく、酵母の他の醸造特性(発酵速
度、ビール香味)にまで影響するため、醸造用酵母とし
て好適な酵母は現在まで得られていない。
Therefore, studies on factors affecting the production of hydrogen sulfide and breeding studies on low-hydrogen sulfide-producing yeasts by the mutation method and cell fusion method have been reported. A yeast suitable for use as a brewing yeast has not been obtained so far because it not only reduces the amount of hydrogen sulfide produced but also affects other brewing characteristics (fermentation rate, beer flavor) of the yeast.

【0004】[0004]

【発明が解決しようとする課題】しかし、最近になっ
て、近年発達した遺伝子操作技術を利用した新しい試み
が手塚らによって報告された(日本発酵工学会大会 講
演要旨集 第5頁(昭和63年)、醸造におけるバイオテ
クノロジー 産調出版(1990年) 第82頁)。それは通常
硫化水素を菌体外に生成しない酵母(x−2180)の染色
体から、硫化水素抑制作用をもつ3種のDNA断片を単
離し、各DNA断片を下面ビール酵母に導入して硫化水
素低生成酵母を育種しようとする試みである。
However, recently, a new trial using the gene manipulation technology developed in recent years was reported by Tezuka et al. (Proceedings of the Japan Fermentation Engineering Society Conference, page 5 (1988). ), Biotechnology in brewing, Industrial Publishing (1990), p. 82). It is the isolation of three DNA fragments with hydrogen sulfide-suppressing activity from the chromosome of yeast (x-2180), which does not normally produce hydrogen sulfide outside the cells, and each DNA fragment is introduced into bottom brewer's yeast to reduce hydrogen sulfide. This is an attempt to breed the producing yeast.

【0005】この報告は遺伝子操作技術を用いることに
より、硫化水素を生成しない酵母の性質のみを、下面酵
母に移すことを試みたもので、特に、下面酵母の醸造特
性を変えることなく硫化水素生成能だけを低下させ得る
点が、従来の突然変異や細胞融合による育種法に比べ優
れていると考えられる。しかし、この報告では単離され
たDNA断片上のどこに硫化水素抑制遺伝子が存在する
か、その部分にコードされているタンパク質のアミノ酸
配列などが不明であり、また硫化水素量の低下がビール
の香味にどう影響するかも検証されておらず、報告され
ている知見だけでは実用的にビールを製造することはで
きない。
This report attempts to transfer only the property of yeast that does not produce hydrogen sulfide to the bottom yeast by using genetic engineering technology. In particular, hydrogen sulfide production without changing the brewing characteristics of the bottom yeast. It is considered that it is superior to the conventional breeding method by mutation or cell fusion in that only the ability can be reduced. However, in this report, it is unknown where the hydrogen sulfide suppressor gene exists on the isolated DNA fragment, the amino acid sequence of the protein encoded in that part, and the decrease in the amount of hydrogen sulfide is due to the flavor of beer. However, it is not possible to practically produce beer only with the reported findings.

【0006】本発明は、酵母の醸造特性を変えることな
く硫化水素生成のみを抑制し、実用的にビールを製造で
きる遺伝子を見出し、この遺伝子を酵母に導入すること
を目的とする。
An object of the present invention is to find a gene that can practically produce beer by suppressing only hydrogen sulfide production without changing the brewing characteristics of yeast, and to introduce this gene into yeast.

【0007】[0007]

【課題を解決するための手段】本発明は、酵母の硫化水
素生成を抑制し、その塩基配列が化5〜8で示される遺
伝子(NHS5)である。また、本発明は下記化5〜8
で示される遺伝子(NHS5)の塩基配列中、AからB
まででコードされるアミノ酸配列を持つタンパク質であ
る。さらに本発明は、前記遺伝子(NHS5)を導入
し、硫化水素生成量を減少させたサッカロマイセス属の
醸造用酵母である。また本発明は、前記アミノ酸配列を
持つタンパク質を酵母内で発現させる塩基配列をもつD
NAを導入し、硫化水素生成量を減少させたサッカロマ
イセス属の醸造用酵母である。 (塩基配列)
The present invention is a gene (NHS5) which suppresses the production of hydrogen sulfide in yeast and whose nucleotide sequence is represented by Chemical formulas 5-8. In addition, the present invention includes the following chemical formulas
In the nucleotide sequence of the gene (NHS5) shown by
It is a protein with an amino acid sequence encoded by Furthermore, the present invention is a brewer's yeast of the genus Saccharomyces into which the gene (NHS5) has been introduced to reduce the amount of hydrogen sulfide produced. The present invention also provides a D having a nucleotide sequence that allows the protein having the amino acid sequence to be expressed in yeast.
It is a brewer's yeast of the genus Saccharomyces in which NA is introduced to reduce the amount of hydrogen sulfide produced. (Base sequence)

【0008】[0008]

【化5】 [Chemical 5]

【0009】[0009]

【化6】 [Chemical 6]

【0010】[0010]

【化7】 [Chemical 7]

【0011】[0011]

【化8】 [Chemical 8]

【0012】具体的には、まず、先に報告されている硫
化水素抑制遺伝子を含むプラスミドをもとに、このプラ
スミド上のどこに硫化水素抑制遺伝子が存在するかをサ
ブクローニング実験によって見出した。すなわちプラス
ミド(以下pHS5と呼称する)上の約12Kbのx−2180
株由来のDNA断片を各種制限酵素で切断し、生じた複
数の断片のどれに硫化水素抑制遺伝子があるか検討し
た。その結果、前記化5〜8に示す位置に硫化水素抑制
遺伝子が存在することを突き止め、この遺伝子をNHS
5と命名した。そこで次にこの部分のDNA塩基配列を
調べることにより更に詳細にNHS5の構造を調べた。
その結果得られた塩基配列とそれから推測されるアミノ
酸配列が化5〜8に示したものである。
[0012] Specifically, first, based on the previously reported plasmid containing the hydrogen sulfide suppressor gene, it was found by subcloning experiments where the hydrogen sulfide suppressor gene is present on this plasmid. That is, about −12 Kb of x-2180 on a plasmid (hereinafter referred to as pHS5)
The strain-derived DNA fragment was cleaved with various restriction enzymes, and it was examined which of a plurality of generated fragments contained the hydrogen sulfide suppressor gene. As a result, it was found that the hydrogen sulfide suppressor gene was present at the positions shown in Chemical formulas 5 to 8 above, and this gene was identified as NHS.
It was named 5. Therefore, the structure of NHS5 was examined in more detail by examining the DNA base sequence of this portion.
The nucleotide sequence obtained as a result and the amino acid sequence deduced therefrom are shown in Chemical formulas 5-8.

【0013】以上の結果からNHS5の存在場所が分か
ったので、次に実施例でも示すが3種のベクター、すな
わち2μDNA由来の複製起点を持つYEpタイプのベ
クターと、酵母染色体のセントロメアー部分を持つYC
pタイプ、および酵母由来のDNAをNHS5以外持た
ず酵母染色体に組み込むためのYIpタイプにNHS5
を挿入したプラスミドを作製し、これらのプラスミドを
導入した醸造用酵母を用いて発酵試験を行った。
From the above results, the location of NHS5 was identified. Therefore, as will be shown in the next Example, three types of vectors, that is, a YEp type vector having a replication origin derived from 2 μDNA and a centromere portion of the yeast chromosome are included. YC
NHS5 for p-type and YIp-type for integrating yeast-derived DNA into yeast chromosome without NHS5
Were prepared, and a fermentation test was performed using yeast for brewing into which these plasmids were introduced.

【0014】発酵試験の結果、これら3種のプラスミド
を持つ株の発酵ガス中の硫化水素量は親株に比べ20〜40
%抑制されており、NHS5はいずれのタイプのベクタ
ーを用いても親株の硫化水素生成を抑制することが判っ
た。また発酵終了時の発酵液(若ビール)の香気につい
て官能検査を行った結果、親株に比べNHS5を導入さ
れた株では硫化水素臭が減少していることが確認され、
また硫化水素以外の異臭は感じられなかった。以上の結
果は、従来熟成期間を延長するだけしか対策のなかった
硫化水素臭のコントロールが本発明技術を用いることで
可能になり、その結果、従来の技術に比べ、より短期間
に未熟臭のないビールを製造し得ることを示している。
As a result of the fermentation test, the amount of hydrogen sulfide in the fermentation gas of the strain having these three plasmids was 20 to 40 compared with the parent strain.
%, And NHS5 was found to suppress hydrogen sulfide production in the parent strain using any type of vector. In addition, as a result of a sensory test on the aroma of the fermentation broth (young beer) at the end of fermentation, it was confirmed that the hydrogen sulfide odor was reduced in the NHS5-introduced strain compared to the parent strain,
No off-flavor other than hydrogen sulfide was felt. The above results make it possible to control the hydrogen sulfide odor by using the technique of the present invention, which has been the only countermeasure for extending the aging period in the past, and as a result, compared with the conventional technique, the odor of immature odor can be reduced in a shorter period of time. It shows that no beer can be produced.

【0015】[0015]

【発明の効果】本発明によれば、酵母の硫化水素生成を
抑制し実用的にビールを製造できる遺伝子が得られるの
で、この遺伝子を導入した酵母を使用することによっ
て、酵母の醸造特性を変えることなく硫化生成能を抑制
したビールを短期間に製造することができる。
INDUSTRIAL APPLICABILITY According to the present invention, a gene capable of practically producing beer by suppressing hydrogen sulfide production in yeast can be obtained. Therefore, by using a yeast into which this gene has been introduced, the brewing characteristics of yeast can be changed. It is possible to produce beer in a short period of time without the ability to generate sulfurization.

【0016】[0016]

【実施例】以下に本発明について、NHS5のDNA塩
基配列およびアミノ酸配列の決定を実施例1で、NHS
5を酵母に導入するために用いたプラスミドの作製法に
ついて実施例2で、作製したプラスミドの酵母への導入
について実施例3で、当該遺伝子によって硫化水素生成
量が減少した酵母による発酵試験について実施例4で、
それぞれさらに詳細に説明する。
[Examples] With respect to the present invention, the determination of the DNA base sequence and amino acid sequence of NHS5 will be described below in Example 1.
The method of constructing the plasmid used to introduce 5 into yeast was carried out in Example 2, and the introduction of the constructed plasmid into yeast was carried out in Example 3, and the fermentation test was carried out by yeast in which hydrogen sulfide production was reduced by the gene. In Example 4,
Each will be described in more detail.

【0017】なお、実施例1に示す塩基配列は、前記化
5〜8に示されたアミノ酸配列をコードし、且つそのア
ミノ酸配列を持つタンパク質が酵母内で発現する限りど
のような塩基配列であっても良い。特に遺伝子の転写翻
訳を制御する塩基配列部分は既知のものを適宜組み合わ
せて使っても良い。また前記化5〜8に示されたアミノ
酸配列も酵母内で当該遺伝子が硫化水素抑制作用を示す
限り、アミノ酸のいくつかについて、欠失、置換、付加
等があってもよい。
The base sequence shown in Example 1 is any base sequence as long as it encodes the amino acid sequence shown in Chemical formulas 5 to 8 above and a protein having the amino acid sequence is expressed in yeast. May be. In particular, known base sequence portions that control transcription and translation of genes may be used in appropriate combination. The amino acid sequences shown in Chemical Formulas 5 to 8 may have deletions, substitutions, additions, etc. to some of the amino acids as long as the gene has a hydrogen sulfide suppressing action in yeast.

【0018】次に、実施例2で当該遺伝子を酵母に導入
するために用いたプラスミドは、例示の3種以外にも当
該遺伝子が酵母に導入され安定に保持される限りどのよ
うなプラスミドであっても良く、また当該遺伝子を酵母
の染色体に組み込む場合にもどのような組み込み方であ
っても良い。例えば当該遺伝子の両端に既知の酵母遺伝
子を付加しても良いし、当該遺伝子そのものだけを組み
込んでも良い。形質転換のための選択マーカーは実施例
2で示したG418 を用い、その薬剤に対する耐性遺伝子
としては、大腸菌由来のG418 耐性遺伝子中の構造遺伝
子部分の前後に酵母アルコールデヒドロゲナーゼ(AD
H)遺伝子の転写プロモーター、終結シグナルを連結し
た遺伝子を用いることが、形質転換頻度やプラスミドの
安定性の観点から望ましいが、他の選択マーカーとその
耐性遺伝子の組合せで行っても良い。また栄養要求マー
カーを用いても良いことは言うまでもない。
Next, the plasmid used for introducing the gene into yeast in Example 2 is not limited to any of the three exemplified types, as long as the gene is introduced into yeast and stably retained. In addition, when the gene is integrated into the yeast chromosome, any integration method may be used. For example, a known yeast gene may be added to both ends of the gene, or only the gene itself may be incorporated. G418 shown in Example 2 was used as a selection marker for transformation, and as a resistance gene for the drug, yeast alcohol dehydrogenase (AD) was added before and after the structural gene part in the G418 resistance gene derived from Escherichia coli.
H) It is preferable to use a gene in which a transcription promoter of the gene and a termination signal are linked, from the viewpoint of transformation frequency and stability of the plasmid, but other selectable marker and its resistance gene may be used in combination. Needless to say, a nutritional requirement marker may be used.

【0019】なお、酵母の硫化水素生成量を硫化水素抑
制遺伝子を用いることにより低下させることは、本発明
者によって初めて確認されたことであるが、使用したプ
ラスミドの作製法、形質転換法、その他の遺伝子操作法
は分子生物学、生物学において用いられる慣用法、例え
ば、モレキュラークローニング(Molecular Cloning,Col
d Spring Harbor Laboratory, 1982)記載の方法を用い
て差し支えない。
Although it was first confirmed by the present inventors that the production amount of hydrogen sulfide in yeast is reduced by using the hydrogen sulfide suppressor gene, the method for producing the used plasmid, the transformation method, etc. The genetic engineering method of the above is a molecular biology, a conventional method used in biology, for example, molecular cloning (Molecular Cloning, Col
d Spring Harbor Laboratory, 1982).

【0020】実施例1 既に報告されている、プラスミドpHSG5(文献名:
日本発酵工学会大会講演要旨集 第5頁(昭和63年)、
醸造におけるバイオテクノロジー 産調出版(1990年)
第82頁)に含まれている酵母由来のDNA断片上のどこ
に硫化水素抑制遺伝子があるかを調べるために、より詳
細な制限酵素地図の作製とサブクローニング実験を行っ
た。図1にその結果を示す。
Example 1 The plasmid pHSG5 (literature name: already reported) has been reported.
Proceedings of the Japan Society for Fermentation Engineering, page 5 (1988),
Biotechnology in brewing Industry-style publication (1990)
In order to investigate where the hydrogen sulfide suppressor gene is present on the yeast-derived DNA fragment contained in page 82), more detailed restriction enzyme map construction and subcloning experiments were performed. The results are shown in FIG.

【0021】図1の制限酵素地図に示すようにNHS5
は約1.5Kb のXbaI−HpaI断片上に存在することが判
った。そこでx−2180株由来のDNA断片中のBglII切
断部位周辺の塩基配列をダイデオキシ法(プロシーディ
ングス オブ ザ ナショナル アカデミー オブ サ
イエンセス オブ ザ ユナイテッド ステイツ オブ
アメリカ Proc. Natl. Acad. Sci. U.S.A. 74, 5463
(1977)) によって決定したところ、この部分には 1344b
p からなるオープンリーディングフレームが見出され
た。このオープンリーディングフレームによりアミノ酸
448 残基からなる分子量49,588のタンパク質がコードさ
れていることが判った。
As shown in the restriction map of FIG. 1, NHS5
Was found to reside on the Xba I- Hpa I fragment of approximately 1.5 Kb. Therefore, the nucleotide sequence around the Bgl II cleavage site in the DNA fragment derived from the x-2180 strain was determined by the dideoxy method (Proceedings of the National Academy of Sciences of the United States of America Proc. Natl. Acad. Sci. USA 74 , 5463).
(1977)).
An open reading frame consisting of p was found. Amino acids by this open reading frame
It was found that a protein with a molecular weight of 49,588 consisting of 448 residues was encoded.

【0022】実施例2 NHS5を3種のベクターを用いて酵母に導入して発酵
試験を行い、NHS5の硫化水素抑制作用を確認した。
用いた3種のベクターはそれぞれ公知のプラスミドベク
ターであるYEp24、YCp11、pBR322 をBam HI
SalIで切断し、ベクター由来の約290bp のBam HI
SalI断片を除去し、代わりに尾形らによって報告
(日本発酵工学会大会 講演要旨集 109 頁(昭和63
年))されているG418 耐性遺伝子(大腸菌のトランスポ
ゾン由来のG418 耐性遺伝子の前後に酵母アルコールデ
ヒドロゲナーゼ遺伝子のプロモーター部分と酵母チトク
ロームC遺伝子のターミネーターを連結した約2.5Kb の
両端にBam HI 、SalI切断部位を持つDNA断片)を
ベクターのBam HI −SalI切断部位に挿入した。
Example 2 NHS5 was introduced into yeast using three types of vectors and a fermentation test was conducted to confirm the inhibitory action of NHS5 on hydrogen sulfide.
The three types of vectors used are Bam HI and YEp24, YCp11, and pBR322, which are known plasmid vectors, respectively.
And digested with Sal I, vector-derived Bam HI of about 290 bp
-Sal I fragment was removed and reported by Ogata et al. Instead (Proceedings of the Japan Society for Fermentation Engineering, p. 109 (Showa 63)
)) G418 resistance gene (the G418 resistance gene derived from the transposon of E. coli, the promoter portion of the yeast alcohol dehydrogenase gene and the terminator of the yeast cytochrome C gene were ligated at both ends of approximately 2.5 Kb, Bam HI and Sal I digestion. It was inserted into Sal I cleavage site - a DNA fragment) with the site Bam HI vector.

【0023】NHS5を含むDNA断片としては、図1
に示したpHS5を制限酵素Bam HI で切断し、続いて
切断末端からエキソヌクレアーゼBal31で約2Kb分解し
て生じた末端にBam HI リンカーを付加し、その後、
paIで再度切断して得られるNHS5を含む2.5Kb のD
NA断片を、YEp24のBam HI −Eco RV 切断部位
に、pBR322 の場合もBam HI −Eco RV 切断部位に
それぞれ挿入してYEpAG−5SSとpHSI5の2
種のプラスミドを作製した。
The DNA fragment containing NHS5 is shown in FIG.
Cleavage of pHS5 shown in the above with the restriction enzyme Bam HI, followed by addition of a Bam HI linker to the resulting end obtained by digesting the cleaved end with the exonuclease Bal 31 for about 2 Kb, and then adding H
2.5 Kb D containing NHS5 obtained by cutting again with pa I
The NA fragment, YEp24 the Bam HI - the Eco RV cleavage site, Bam HI in the case of pBR322 - Eco RV respectively cleavage site inserted to YEpAG-5SS and 2 pHSI5
The seed plasmid was generated.

【0024】またセントロメアを持つYCpタイプの場
合は、その2.5Kb の断片のHpaI切断部位にもBam H
I リンカーを付与して、ベクターのBam HI 切断部位に
挿入し、YCpAG−5SSを作製した。こうして得ら
れた3種のプラスミドを図2と図3に示す。 実施例3 これら3種のプラスミドの酵母への導入は親株を100ml
の坂口フラスコで2〜4×107cells/ml まで培養後、冷
水で洗浄し、0.2ml の1mol ソルビトール溶液に懸濁
し、この懸濁液50μl にプラスミド1μg (5μl)を加え
0.2cm のキュベットに移し、ジーンパルサー(バイオラ
ッド社製)を用いエレクトロポレーション法(ヌクレイ
ック アシッド リサーチ Nucl. Acids. Res., 16, 6
127(1988))で3.5KV/cm、25μF の導入条件で形質転換を
行った。形質転換株の選択にはG418 (50μg/ml) を含
むYPD(イーストエキストラクト1%、ペプトン1
%、グルコース2%)寒天培地を用いた。
In the case of the YCp type having a centromere, Bam H is also present at the HpaI cleavage site of its 2.5 Kb fragment.
An I linker was added, and the vector was inserted into the Bam HI cleavage site of the vector to prepare YCpAG-5SS. The three types of plasmids thus obtained are shown in FIGS. 2 and 3. Example 3 For introduction of these three types of plasmids into yeast, 100 ml of the parent strain was used.
After culturing up to 2-4 × 10 7 cells / ml in a Sakaguchi flask, wash with cold water, suspend in 0.2 ml of 1 mol sorbitol solution, and add 50 μl of this suspension with 1 μg (5 μl) of plasmid.
Transfer to a 0.2 cm cuvette and use the electroporation method (Nucleic Acid Research Nucl. Acids. Res., 16, 6) using Gene Pulser (manufactured by Bio-Rad).
127 (1988)) and transformation was carried out under the conditions of 3.5 KV / cm and 25 μF. For selection of transformants, YPD containing G418 (50 μg / ml) (1% yeast extract, 1 peptone) was selected.
%, Glucose 2%) agar medium was used.

【0025】実施例4 得られた3種の形質転換株と親株の計4株を用いて糖度
11の加ホップ麦汁を用いて発酵試験を行った。前培養は
プレートで培養した形質転換株を、まず10mlのスケール
で、25℃で2日間静置培養し、次に15℃で4日間静置培
養した。発酵試験500ml の3角フラスコを用い、15℃で
8日間行った。なお、発酵試験に用いた加ホップ麦汁に
は前培養も含めて選択薬剤であるG418 は添加せずに行
った。硫化水素の定量は発酵ガス中の硫化水素を酢酸亜
鉛溶液で一旦トラップした後、メチレンブルー法により
比色定量した。また発酵経過は、炭酸ガスの生成にとも
なう発酵液の重量減少で追跡した。
Example 4 Using the three transformants thus obtained and the parent strain, a total of 4 strains were used to measure the sugar content.
A fermentation test was conducted using 11 added hop worts. The pre-culture was carried out by statically culturing the plate-transformed transformant at a scale of 10 ml at 25 ° C. for 2 days and then at 15 ° C. for 4 days. Fermentation test Using a 500 ml triangular flask, it was carried out at 15 ° C for 8 days. In addition, the added hop wort used in the fermentation test was performed without adding the selective drug G418, including preculture. For the determination of hydrogen sulfide, hydrogen sulfide in the fermentation gas was once trapped with a zinc acetate solution, and then colorimetrically determined by the methylene blue method. The fermentation process was followed by the weight loss of the fermented liquor accompanying the production of carbon dioxide.

【0026】その結果、図4に示すようにNHS5を導
入した形質転換株の8日間の硫化水素生成量は親株に比
べ20〜40%低下していた。一方、その際の発酵経過は図
5に示すようにほとんど差は認められなかった。最後
に、こうして得られた発酵液(若ビール)の香気を調べ
るために官能検査を行った。官能検査は10人の選抜パネ
ルにより硫化水素臭の強弱と異臭の有無の2項目につい
て5段階評価で行った。その結果、表1に示すようにN
HS5を導入された株は全て親株より官能的にも硫化水
素臭が減少しており、またNHS5の導入による異臭も
認められなかった。 5人のパネリストの得点の平均値で表した。(5強−1
弱) 以上の結果から、本発明は発酵工程で生ずる硫化水素を
減少させ、その結果ビール品質の向上や製造期間の短縮
に有効であることが確認された。
As a result, as shown in FIG. 4, the amount of hydrogen sulfide produced in the NHS5-introduced transformant for 8 days was 20 to 40% lower than that of the parent strain. On the other hand, the fermentation process at that time showed almost no difference as shown in FIG. Finally, a sensory test was conducted to examine the aroma of the fermentation liquid (young beer) thus obtained. A sensory test was conducted by a panel of 10 persons, and a 5-level evaluation was conducted on two items, that is, the intensity of the hydrogen sulfide odor and the presence or absence of a strange odor. As a result, as shown in Table 1, N
All the strains introduced with HS5 had a functionally reduced hydrogen sulfide odor compared to the parent strain, and no offensive odor due to the introduction of NHS5 was observed. It was expressed as the average value of the scores of five panelists. (5 strong-1
(Weak) From the above results, it was confirmed that the present invention is effective in reducing hydrogen sulfide generated in the fermentation process and, as a result, improving beer quality and shortening the production period.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例1で作成した制限酵素地図を示す図、FIG. 1 is a diagram showing a restriction enzyme map prepared in Example 1,

【図2】 実施例2で作成した3種のプラスミドのう
ち、YEpAG−5SSとpHSI5の制限酵素地図を
示す図、
FIG. 2 is a diagram showing a restriction enzyme map of YEpAG-5SS and pHSI5 among the three types of plasmids prepared in Example 2,

【図3】 実施例2で作成した3種のプラスミドのう
ち、YCpAG−5SSの制限酵素地図を示す図、
FIG. 3 is a diagram showing a restriction map of YCpAG-5SS among the three types of plasmids prepared in Example 2,

【図4】 実施例4において、NHS5を導入した形質
転換株の8日間の硫化水素生成量の変化を示すグラフで
あり、○はコントロール、●はYEpAG−5SS、黒
い△はYCpAG−5SS、黒い□はpHSI5の場合
である。
FIG. 4 is a graph showing changes in the amount of hydrogen sulfide produced in the NHS5-introduced transformant over 8 days in Example 4, where ○ is a control, ● is YEpAG-5SS, and black Δ is YCpAG-5SS, black. □ is the case of pHSI5.

【図5】 実施例4において、NHS5を導入した形質
転換株の8日間の発酵経過を24時間毎に追跡したエキ
ス減少を示すグラフであり、○はコントロール、●はY
EpAG−5SS、黒い△はYCpAG−5SS、黒い
□はpHSI5の場合である。
FIG. 5 is a graph showing the decrease in extract obtained by following the 8-day fermentation process of the NHS5-introduced transformant every 24 hours in Example 4, where ○ is a control and ● is a Y.
EpAG-5SS, black Δ is YCpAG-5SS, and black □ is pHSI5.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 //(C12N 15/31 C12R 1:645) (C12N 1/19 C12R 1:865) (C12P 21/02 C12R 1:865) Front page continuation (51) Int.Cl. 5 Identification code Office reference number FI Technology display area // (C12N 15/31 C12R 1: 645) (C12N 1/19 C12R 1: 865) (C12P 21/02 C12R 1: 865)

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 酵母の硫化水素生成を抑制し、下記塩基
配列で示される遺伝子(NHS5)。 (塩基配列) 【化1】 【化2】 【化3】 【化4】
1. A gene (NHS5) which suppresses hydrogen sulfide production in yeast and is represented by the following nucleotide sequence. (Base sequence) [Chemical 2] [Chemical 3] [Chemical 4]
【請求項2】 請求項1記載の遺伝子(NHS5)の塩
基配列中、AからBまででコードされるアミノ酸配列を
持つタンパク質。
2. A protein having an amino acid sequence encoded by A to B in the nucleotide sequence of the gene (NHS5) according to claim 1.
【請求項3】 請求項1記載の遺伝子(NHS5)を導
入し、硫化水素生成量を減少させたサッカロマイセス属
の醸造用酵母。
3. A brewing yeast of the genus Saccharomyces in which the gene (NHS5) according to claim 1 has been introduced to reduce the amount of hydrogen sulfide produced.
【請求項4】 請求項2記載のアミノ酸配列を持つタン
パク質を酵母内で発現させる塩基配列をもつDNAを導
入し、硫化水素生成量を減少させたサッカロマイセス属
の醸造用酵母。
4. A brewer's yeast of the genus Saccharomyces, in which a DNA having a nucleotide sequence for expressing the protein having the amino acid sequence according to claim 2 in yeast is introduced to reduce hydrogen sulfide production.
JP6371091A 1991-03-06 1991-03-06 Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto Pending JPH05192155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6371091A JPH05192155A (en) 1991-03-06 1991-03-06 Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6371091A JPH05192155A (en) 1991-03-06 1991-03-06 Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto

Publications (1)

Publication Number Publication Date
JPH05192155A true JPH05192155A (en) 1993-08-03

Family

ID=13237208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6371091A Pending JPH05192155A (en) 1991-03-06 1991-03-06 Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto

Country Status (1)

Country Link
JP (1) JPH05192155A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086592A1 (en) * 2006-01-24 2007-08-02 Kirin Holdings Kabushiki Kaisha Method for breeding high sulfurous acid-producing yeast and method for producing liquor using the yeast

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007086592A1 (en) * 2006-01-24 2007-08-02 Kirin Holdings Kabushiki Kaisha Method for breeding high sulfurous acid-producing yeast and method for producing liquor using the yeast

Similar Documents

Publication Publication Date Title
Nagasawa et al. Cloning and nucleotide sequence of the alcohol acetyltransferase II gene (ATF2) from Saccharomyces cerevisiae Kyokai No. 7
WO1990014423A1 (en) Microorganism transformation
Yoshimoto et al. Characterization of the ATF1 and Lg-ATF1 genes encoding alcohol acetyltransferases in the bottom fermenting yeast Saccharomyces pastorianus
JP3433295B2 (en) Recombinant method and host for xylitol production
CA1340101C (en) Amylolytic enzymes producing microorganisms, constructed by recombinant dna technology and their use for fermentation processes
EP0228009B1 (en) Dna strand coding for alpha-acetolactate decarboxylase and yeast transformed with the dna strand
JP2530650B2 (en) Method for producing low alcohol or no alcohol beer
CA2149171C (en) Recombinant yeast producing a decreased amount of hydrogen sulfide in beer production
EP0257115A1 (en) Amylolytic enzyme producing microorganisms, constructed by recombinant DNA technology, and their use in fermentation processes
AU679208B2 (en) Yeast agglutination genes and yeast containing them
JP3426633B2 (en) Beer production method
JP2708154B2 (en) Yeast strains improved for foreign gene expression
US5151354A (en) Fermentation processes using amylolytic enzyme producing microorganisms
JPH05192155A (en) Gene capable of suppressing production of hydrogen sulfide with yeast and yeast for brewing containing the same gene transduced thereinto
Ibragimova et al. A strategy for construction of industrial strains of distiller's yeast
JPH02117385A (en) Plasmid vector for gene destruction or gene replacement, transformant therefrom and its use
EP1874924B1 (en) Use of catalase genes for assessing or modifying the sulfite-producing capabiliy of yeasts
US5545556A (en) Microorganisms and methods for their use
Kim et al. Cloning of a new allelic variant of a Saccharomyces diastaticus glucoamylase gene and its introduction into industrial yeasts
CA1296276C (en) DNA STRAND CODING FOR .alpha.-ACETOLACTATE DECARBOXYLASE AND YEAST TRANSFORMED WITH THE DNA STRAND
JP3423043B2 (en) Yeast hybrids and method for producing wine using the same
JPH09234077A (en) Esterase gene, obtaining of the same, yeast for brewing and production of alcoholic beverage using the same
WO2021163439A1 (en) Improved yeasts for brewing
JPH1156361A (en) Variant yeast, its breeding and production of fermented food using the same
JPH07171A (en) Production of liquors