JPH05190464A - Vapor growth device - Google Patents

Vapor growth device

Info

Publication number
JPH05190464A
JPH05190464A JP589192A JP589192A JPH05190464A JP H05190464 A JPH05190464 A JP H05190464A JP 589192 A JP589192 A JP 589192A JP 589192 A JP589192 A JP 589192A JP H05190464 A JPH05190464 A JP H05190464A
Authority
JP
Japan
Prior art keywords
substrate
reaction furnace
vapor phase
phase growth
growth apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP589192A
Other languages
Japanese (ja)
Other versions
JP3210051B2 (en
Inventor
Hirosuke Sato
裕輔 佐藤
Takashi Kataoka
敬 片岡
Keiichi Akagawa
慶一 赤川
Toshimitsu Omine
俊光 大嶺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP00589192A priority Critical patent/JP3210051B2/en
Publication of JPH05190464A publication Critical patent/JPH05190464A/en
Application granted granted Critical
Publication of JP3210051B2 publication Critical patent/JP3210051B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To grow a high-quality film in vapor phase by preventing the decomposition of material gas with baffle plate. CONSTITUTION:The temperature rise of material gas passing through the small- diameter hole 2a of a baffle plate 2 is suppressed and the decomposition of material gas is suppressed by arranging a cooler 13, in which cooling water 12 circulates, around the reactor 1 positioned upstream in the direction of a gas flow of a baffle plate 2 and cooling the baffle plate 2, whereby a reaction product is prevented from adhering onto as substrate 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体等の製造に用い
られる気相成長装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor phase growth apparatus used for manufacturing semiconductors and the like.

【0002】[0002]

【従来の技術】図12は、従来の気相成長装置の一例を
示す概略図である。この図に示すように、反応炉100
内の下部には基板101を載置した基板ホルダ102
と、基板ホルダ102に連結された回転軸103と、基
板101および基板ホルダ102を加熱するヒータ10
4が配設され、上部には反応炉100内にガス供給装置
(図示省略)からガス(原料ガス,キャリアガス等)を
供給するガス供給管105と、ガスの流れを整える複数
の孔106aを形成した円盤状の整流板106が配設さ
れている。
2. Description of the Related Art FIG. 12 is a schematic view showing an example of a conventional vapor phase growth apparatus. As shown in this figure, the reactor 100
A substrate holder 102, on which a substrate 101 is placed, in the lower part
A rotary shaft 103 connected to the substrate holder 102, and a heater 10 for heating the substrate 101 and the substrate holder 102.
4, a gas supply pipe 105 for supplying gas (raw material gas, carrier gas, etc.) from a gas supply device (not shown) into the reaction furnace 100, and a plurality of holes 106a for regulating the flow of gas are provided in the upper part. The formed disk-shaped straightening plate 106 is arranged.

【0003】また、反応炉100の外側下部には、回転
軸103を回転駆動する回転駆動装置107と、反応炉
100内の圧力調整および未反応ガス等を排気する排気
装置108が接続されている。
A rotary drive unit 107 for rotating the rotary shaft 103 and an exhaust unit 108 for adjusting the pressure inside the reactor 100 and exhausting unreacted gas are connected to the lower outside of the reactor 100. ..

【0004】従来の気相成長装置は上記のように構成さ
れており、基板101をヒータ104の加熱によって所
定温度に上昇させると共に、回転駆動装置107の回転
駆動によって所定の回転数で回転させ、ガス供給装置
(図示省略)からガス供給管105を通して反応炉10
0内に導入したガス(原料ガス,キャリアガス等)を、
整流板106の孔106aを通して基板101上に供給
して薄膜を気相成長させる。
The conventional vapor phase growth apparatus is constructed as described above, and the substrate 101 is heated to a predetermined temperature by the heating of the heater 104 and is rotated at a predetermined rotation speed by the rotation drive of the rotary drive unit 107. Reactor 10 from gas supply device (not shown) through gas supply pipe 105
The gas introduced into 0 (raw material gas, carrier gas, etc.)
It is supplied onto the substrate 101 through the holes 106a of the rectifying plate 106 to vapor-deposit a thin film.

【0005】また、基板101に薄膜を気相成長させる
時に、基板101あるいは基板ホルダ102の温度を測
定して常に所定の温度になるように温度制御が行われ
る。
Further, when the thin film is vapor-deposited on the substrate 101, the temperature of the substrate 101 or the substrate holder 102 is measured and temperature control is performed so that the temperature is always a predetermined temperature.

【0006】基板101あるいは基板ホルダ102の温
度測定は、例えば図13に示すように反応炉100上部
の外側に配設した放射温度計110によって行われる。
他の構成は図12に示した従来の気相成長装置と同様で
ある。放射温度計110は反応炉100の外側に配設さ
れているので、測定波長の光が透過するように反応炉1
00の上部には透明な石英窓100aが形成されてい
る。
The temperature of the substrate 101 or the substrate holder 102 is measured by, for example, a radiation thermometer 110 arranged outside the upper part of the reaction furnace 100 as shown in FIG.
Other configurations are similar to those of the conventional vapor phase growth apparatus shown in FIG. Since the radiation thermometer 110 is disposed outside the reaction furnace 100, the reaction furnace 1 is arranged so that light of the measurement wavelength is transmitted.
A transparent quartz window 100a is formed on the upper part of 00.

【0007】このように、放射温度計110によって反
応炉100の石英窓100aを通して基板101の所定
位置での温度測定を行い、基板101が所定の温度にな
るように温度制御装置(図示省略)によってヒータ10
4に流す電流を制御する。
As described above, the radiation thermometer 110 measures the temperature of the substrate 101 at a predetermined position through the quartz window 100a of the reaction furnace 100, and a temperature control device (not shown) controls the temperature of the substrate 101 to a predetermined temperature. Heater 10
4 controls the electric current.

【0008】[0008]

【発明が解決しようとする課題】ところで、上記した従
来の気相成長装置では、基板101の上方に配設される
整流板106もヒータ104の熱によって加熱されてい
るので、原料ガスが整流板106の孔106aを通る時
に分解されることにより、この時に生成される反応生成
物が基板101に付着し、高品質の薄膜を得ることがで
きなかった。
By the way, in the above-described conventional vapor phase growth apparatus, since the straightening plate 106 disposed above the substrate 101 is also heated by the heat of the heater 104, the source gas is a straightening plate. The reaction product generated at this time adhered to the substrate 101 due to decomposition when passing through the holes 106a of the film 106, and a high quality thin film could not be obtained.

【0009】また、上記した従来の気相成長装置では、
基板101あるいは基板ホルダ102の温度を測定する
放射温度計110は、反応炉100上部の石英窓100
aの外側に固定して配設されているので、基板101あ
るいは基板ホルダ102の任意の位置での温度測定や広
範囲での温度測定を行うことができなかった。
Further, in the above conventional vapor phase growth apparatus,
The radiation thermometer 110 for measuring the temperature of the substrate 101 or the substrate holder 102 is a quartz window 100 above the reaction furnace 100.
Since it is fixedly provided outside a, it is not possible to measure the temperature at an arbitrary position of the substrate 101 or the substrate holder 102 or in a wide range.

【0010】本発明は、上記した課題を解決する目的で
なされ、整流板での原料ガスの分解を防止し、また、基
板および基板ホルダの任意の位置での温度測定を精度よ
く行うことができる気相成長装置を提供しようとするも
のである。
The present invention has been made for the purpose of solving the above-mentioned problems, and it is possible to prevent the decomposition of the raw material gas at the straightening plate and to accurately measure the temperature of the substrate and the substrate holder at arbitrary positions. It is intended to provide a vapor phase growth apparatus.

【0011】[0011]

【課題を解決するための手段】前記した課題を解決する
ために請求項1に記載の本発明では、反応炉内に原料ガ
スを供給し、前記反応炉内に配設した基板ホルダ上の基
板を加熱手段により加熱して前記基板表面に薄膜を気相
成長させる気相成長装置において、前記基板に対して前
記原料ガスの流れ方向上流側に配設した複数の孔を有す
る整流板と、該整流板を冷却する冷却手段とを具備した
ことを特徴としている。
In order to solve the above problems, according to the present invention as set forth in claim 1, a source gas is supplied into a reaction furnace and a substrate on a substrate holder arranged in the reaction furnace. In a vapor phase growth apparatus for heating a thin film on the surface of the substrate by heating with a heating means, a straightening plate having a plurality of holes arranged upstream of the substrate in the flow direction of the source gas, It is characterized in that it is provided with a cooling means for cooling the baffle plate.

【0012】また、請求項2に記載の本発明では、反応
炉内に原料ガスを供給し、前記反応炉内に配設した基板
ホルダ上の基板を加熱手段により加熱して前記基板表面
に薄膜を気相成長させる気相成長装置において、前記基
板と対向して配設した前記基板もしくは前記基板ホルダ
の温度を非接触で測定する温度測定手段と、該温度測定
手段を前記基板表面に対して任意の方向に移動させる移
動手段とを具備したことを特徴としている。
Further, in the present invention as set forth in claim 2, the source gas is supplied into the reaction furnace, and the substrate on the substrate holder disposed in the reaction furnace is heated by the heating means to form a thin film on the surface of the substrate. In a vapor phase growth apparatus for performing vapor phase growth, temperature measuring means for measuring the temperature of the substrate or the substrate holder arranged facing the substrate in a non-contact manner, and the temperature measuring means with respect to the substrate surface. It is characterized in that it comprises a moving means for moving in an arbitrary direction.

【0013】また、請求項3に記載の本発明では、反応
炉内に原料ガスを供給し、前記反応炉内に配設した基板
ホルダ上の基板を加熱手段により加熱して前記基板表面
に薄膜を気相成長させる気相成長装置において、前記反
応炉内に配設され前記反応炉の内壁に前記原料ガスの分
解によって生成される反応生成物の付着を防止するライ
ナー管と、該ライナー管の外側に配設され前記基板もし
くは基板ホルダの温度を非接触で測定する温度測定手段
とを有し、前記ライナー管の前記温度測定手段から前記
基板ヘの温度測定光路と交差する部分に穴を形成するか
もしくは交差する部分を測定波長の光が透過する部材で
形成することを特徴としている。
Further, in the present invention as set forth in claim 3, the source gas is supplied into the reaction furnace, and the substrate on the substrate holder arranged in the reaction furnace is heated by the heating means to form a thin film on the surface of the substrate. In a vapor phase growth apparatus for performing vapor phase growth of a liner pipe, which is disposed in the reaction furnace and prevents adhesion of a reaction product generated by decomposition of the raw material gas to an inner wall of the reaction furnace; A temperature measuring means arranged outside to measure the temperature of the substrate or the substrate holder in a non-contact manner, and a hole is formed in a portion of the liner tube which intersects the temperature measuring optical path from the temperature measuring means to the substrate. It is characterized in that the intersecting or intersecting portion is formed of a member through which light of the measurement wavelength is transmitted.

【0014】[0014]

【作用】請求項1に記載の発明によれば、冷却手段によ
って整流板を冷却することにより、整流板の孔を通る原
料ガスの温度上昇が抑えられることにより、整流板での
原料ガスの分解を防止することができる。
According to the first aspect of the present invention, the temperature rise of the raw material gas passing through the holes of the straightening vane can be suppressed by cooling the straightening vane by the cooling means, so that the raw material gas is decomposed at the straightening vane. Can be prevented.

【0015】請求項2に記載の発明によれば、基板温度
を非接触で測定する温度測定手段を基板表面に対して任
意の方向に移動させることができるので、基板および基
板ホルダの任意の位置での温度測定を行うことができ
る。
According to the second aspect of the invention, since the temperature measuring means for measuring the substrate temperature in a non-contact manner can be moved in any direction with respect to the substrate surface, any position of the substrate and the substrate holder can be moved. The temperature can be measured at.

【0016】請求項3に記載の発明によれば、ライナー
管に形成した穴もしくは測定波長の光が透過する部材を
通して温度測定手段で基板の温度を測定することができ
るので、精度のよい温度測定を行うことができる。
According to the third aspect of the invention, the temperature of the substrate can be measured by the temperature measuring means through the hole formed in the liner tube or the member through which the light of the measurement wavelength is transmitted, so that the temperature measurement can be performed accurately. It can be performed.

【0017】[0017]

【実施例】以下、本発明を図示の実施例に基づいて詳細
に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below based on the illustrated embodiments.

【0018】〈第1実施例〉図1は、第1実施例に係る
気相成長装置を示す概略図である。この図に示すよう
に、反応炉1内の上部には、複数の小径孔2aが形成さ
れている円板状の開口率が例えば0.1の整流板2(図
2参照)と、原料ガス,キャリアガス等のガスを供給す
るガス供給装置3が接続されているガス導入管4が配設
されており、反応炉1内の下部には、基板(本実施例で
はシリコン基板)5を載置する基板ホルダ6と、基板ホ
ルダ6を着脱自在に支持する回転軸7と、基板ホルダ6
および基板5を加熱するヒータ8が配設されている。
<First Embodiment> FIG. 1 is a schematic view showing a vapor phase growth apparatus according to the first embodiment. As shown in this figure, in the upper part of the reaction furnace 1, a disk-shaped straightening plate 2 (see FIG. 2) having a plurality of small holes 2a and an opening ratio of, for example, 0.1, and a source gas A gas introduction pipe 4 to which a gas supply device 3 for supplying a gas such as a carrier gas is connected is provided, and a substrate (a silicon substrate in this embodiment) 5 is placed in the lower portion of the reaction furnace 1. A substrate holder 6 to be placed, a rotary shaft 7 for detachably supporting the substrate holder 6, and a substrate holder 6
And a heater 8 for heating the substrate 5 is provided.

【0019】また、反応炉1の外側下部には、回転軸7
を回転駆動する回転駆動装置9と、排気口1bを介して
反応炉1内の圧力調整および未反応ガス等を排気する排
気装置10が接続されている。
A rotary shaft 7 is provided on the lower outside of the reactor 1.
A rotary drive device 9 for rotationally driving and is connected to an exhaust device 10 for adjusting the pressure in the reaction furnace 1 and exhausting unreacted gas and the like through an exhaust port 1b.

【0020】整流板2は、石英やステンレス等で形成さ
れており、反応炉1内の内周面に沿って形成した支持台
11上に外周面が密接するようにして載置されている。
The current plate 2 is made of quartz, stainless steel, or the like, and is placed on the support base 11 formed along the inner peripheral surface of the reaction furnace 1 so that the outer peripheral surface thereof is in close contact.

【0021】また、整流板2のガス流れ方向上流側に位
置する反応炉1の外周面および上面には、冷却水12が
循環する冷却装置13が配設されており、冷却水12の
供給と排出は供給管14と排出管15を介して行われ
る。冷却装置13は、反応炉1の外周面および上面の一
部にのみ形成されていてもよい。
A cooling device 13 for circulating cooling water 12 is arranged on the outer peripheral surface and the upper surface of the reaction furnace 1 located upstream of the flow straightening plate 2 in the gas flow direction. The discharge is performed via the supply pipe 14 and the discharge pipe 15. The cooling device 13 may be formed only on a part of the outer peripheral surface and the upper surface of the reaction furnace 1.

【0022】本実施例に係る気相成長装置は上記のよう
に構成されており、排気装置10で反応炉1内を排気し
て反応炉内圧力を調整し、ヒータ8の加熱によって基板
ホルダ6に載置した基板5を所定温度(例えば1100
℃程度)で加熱すると共に、回転駆動装置9で回転軸7
を回転駆動して基板ホルダ6に載置した基板5を所定の
回転数で回転させ、ガス供給装置3から原料ガス(例え
ばSiH2 Cl2 ),キャリアガス(例えばH2 )をガ
ス導入管4を通して反応炉1内に供給する。
The vapor phase growth apparatus according to the present embodiment is constructed as described above, the inside of the reaction furnace 1 is evacuated by the exhaust device 10 to adjust the pressure inside the reaction furnace, and the heater 8 is heated to heat the substrate holder 6 The substrate 5 placed on the substrate at a predetermined temperature (for example, 1100
The temperature of the rotary shaft 7 is increased by the rotary drive device 9 while being heated at about
Is rotated to rotate the substrate 5 placed on the substrate holder 6 at a predetermined number of rotations, and a source gas (for example, SiH 2 Cl 2 ) and a carrier gas (for example, H 2 ) are supplied from the gas supply device 3 to the gas introduction pipe 4. Through the reactor.

【0023】そして、反応炉1内に供給された原料ガ
ス,キャリアガスは、整流板2の小径孔2aを通して基
板5上に供給されることによって、基板5上に半導体薄
膜が気相成長する。
The source gas and the carrier gas supplied into the reaction furnace 1 are supplied onto the substrate 5 through the small diameter holes 2a of the straightening plate 2, so that the semiconductor thin film is vapor-phase grown on the substrate 5.

【0024】この時、整流板2もヒータ8によって加熱
されるが、整流板2は冷却装置13内を流れる冷却水1
2によって冷却されているので整流板2の小径孔2aを
通る原料ガスの温度上昇が抑えられることにより、小径
孔2aを通る時に原料ガスの分解を抑制して基板5上に
反応生成物が付着するのを防止することができる。
At this time, the current plate 2 is also heated by the heater 8, but the current plate 2 is cooled by the cooling water 1 flowing in the cooling device 13.
Since it is cooled by 2, the temperature rise of the raw material gas passing through the small diameter hole 2a of the rectifying plate 2 is suppressed, so that the decomposition of the raw material gas is suppressed when passing through the small diameter hole 2a, and the reaction product adheres to the substrate 5. Can be prevented.

【0025】また、整流板2の位置つまり整流板2と基
板5間の距離も、原料ガスの分解と、基板5に気相成長
する半導体薄膜の膜厚の均一性に影響する。
The position of the straightening plate 2, that is, the distance between the straightening plate 2 and the substrate 5 also affects the decomposition of the source gas and the uniformity of the film thickness of the semiconductor thin film vapor-phase grown on the substrate 5.

【0026】下記に示す表1は、整流板2と基板5間の
距離の変化に対する膜厚の均一性と、整流板2での原料
ガスの分解の有無の実験結果を示したものである。表1
に示すように、整流板2と基板5間の距離がほぼ5cm〜
1mの範囲では、基板5に気相成長する半導体薄膜の膜
厚の均一性に問題なく、また、整流板2での原料ガスの
分解もほとんどなかった。
Table 1 shown below shows the results of experiments on the uniformity of the film thickness with respect to the change in the distance between the straightening plate 2 and the substrate 5, and the presence or absence of decomposition of the raw material gas on the straightening plate 2. Table 1
As shown in, the distance between the current plate 2 and the substrate 5 is approximately 5 cm
Within the range of 1 m, there was no problem in the uniformity of the film thickness of the semiconductor thin film vapor-deposited on the substrate 5, and there was almost no decomposition of the raw material gas in the rectifying plate 2.

【0027】[0027]

【表1】 〈第2実施例〉図3は、本発明の第2実施例に係る気相
成長装置を示す概略断面図である。この図に示すよう
に、反応炉1の上部側面には、原料ガス,キャリアガス
等のガスを供給するガス供給装置(図示省略)が接続さ
れているガス導入口1aが設けられ、反応炉1の下部側
面には、反応炉1内の圧力調整および未反応ガス等を排
気する排気装置(図示省略)が接続されている排気口1
bが設けられている。
[Table 1] <Second Embodiment> FIG. 3 is a schematic sectional view showing a vapor phase growth apparatus according to a second embodiment of the present invention. As shown in this figure, a gas inlet 1a to which a gas supply device (not shown) for supplying a gas such as a raw material gas and a carrier gas is connected is provided on the upper side surface of the reaction furnace 1. An exhaust device (not shown) for adjusting the pressure in the reaction furnace 1 and exhausting unreacted gas and the like is connected to the lower side surface of the exhaust port 1
b is provided.

【0028】反応炉1の上部のガス導入口1aの下方に
は、複数の小径孔2aが形成されている円板状の開口率
が例えば0.1の整流板2が配設され、その下方には、
基板(本実施例ではシリコン基板)5を載置する基板ホ
ルダ6と、基板ホルダ6を着脱自在に支持する回転軸7
と、基板ホルダ6および基板5を加熱するヒータ8が配
設されている。
Below the gas inlet 1a in the upper part of the reaction furnace 1, there is arranged a disk-shaped rectifying plate 2 having a plurality of small diameter holes 2a and an aperture ratio of 0.1, for example. Has
A substrate holder 6 on which a substrate (a silicon substrate in this embodiment) 5 is placed, and a rotating shaft 7 which detachably supports the substrate holder 6.
And a heater 8 for heating the substrate holder 6 and the substrate 5.

【0029】整流板2の外周部2bは反応炉1の外側に
位置しており、整流板2の外周部2b内には、冷媒(例
えば水)12が流れる流路30が形成されている。冷媒
(例えば水)12の供給と排出は、流路30に接続され
ている供給管14と排出管15を介して行われる。
The outer peripheral portion 2b of the straightening vane 2 is located outside the reaction furnace 1, and a flow passage 30 through which the refrigerant (for example, water) 12 flows is formed in the outer peripheral portion 2b of the straightening vane 2. Supply and discharge of the refrigerant (for example, water) 12 is performed via a supply pipe 14 and a discharge pipe 15 connected to the flow path 30.

【0030】ヒータ8は、基板ホルダ6内に形成した空
間に配設されており、回転軸7内を通して電源31に接
続されている。
The heater 8 is arranged in the space formed in the substrate holder 6 and is connected to the power supply 31 through the inside of the rotary shaft 7.

【0031】また反応炉1の外側下部には、回転軸7を
回転駆動する回転駆動装置(図示省略)が接続されてい
る。
A rotary drive device (not shown) for rotationally driving the rotary shaft 7 is connected to the lower outside of the reactor 1.

【0032】本実施例においても、第1実施例と同様に
して基板5上に半導体薄膜が気相成長する。
Also in this embodiment, a semiconductor thin film is vapor-phase grown on the substrate 5 in the same manner as in the first embodiment.

【0033】そして、気相成長時には、基板5上に均等
に原料ガス(例えばSiH2 Cl2 )を流す整流板2も
ヒータ8によって加熱されるが、整流板2は、整流板2
の外周部2bの流路30内を流れる冷媒(例えば水)1
2によって冷却されるので、整流板2の小径孔2aを通
る原料ガスの温度上昇が抑えられることにより、小径孔
2aを通る時に原料ガスの分解を抑制して基板5上に反
応生成物が付着するのを防止することができる。
At the time of vapor phase growth, the straightening plate 2 for flowing the source gas (for example, SiH 2 Cl 2 ) evenly over the substrate 5 is also heated by the heater 8. The straightening plate 2 is the straightening plate 2.
Refrigerant (eg, water) 1 flowing in the flow path 30 of the outer peripheral portion 2b of the
Since it is cooled by 2, the temperature rise of the raw material gas passing through the small diameter hole 2a of the rectifying plate 2 is suppressed, so that the decomposition of the raw material gas is suppressed when passing through the small diameter hole 2a and the reaction product adheres to the substrate 5. Can be prevented.

【0034】また、整流板2を熱電導率の高いアルミニ
ウム,アルミニウム合金,銅,銅合金等で形成すること
により、整流板2の外周部2bを冷媒(例えば水)12
で冷却することで、整流板2全体をより効果的に冷却す
ることができる。
Further, by forming the rectifying plate 2 of aluminum, aluminum alloy, copper, copper alloy or the like having high thermal conductivity, the outer peripheral portion 2b of the rectifying plate 2 is a refrigerant (for example, water) 12
By cooling with, the entire rectifying plate 2 can be cooled more effectively.

【0035】〈第3実施例〉図4は、本発明の第3実施
例に係る気相成長装置を示す概略断面図である。本実施
例では、図3で示した第2実施例において、整流板2の
外周部2bに沿って冷媒(例えば水)12が流れる冷却
パイプ32を接続した構成であり、冷却パイプ32に接
続されている供給管14と排出管15を介して冷媒(例
えば水)12の供給と排出が行われる。他の構成は図3
に示した第2実施例と同様である。
<Third Embodiment> FIG. 4 is a schematic sectional view showing a vapor phase growth apparatus according to a third embodiment of the present invention. In this embodiment, a cooling pipe 32 in which a coolant (for example, water) 12 flows is connected along the outer peripheral portion 2b of the current plate 2 in the second embodiment shown in FIG. 3, and is connected to the cooling pipe 32. The refrigerant (for example, water) 12 is supplied and discharged through the supply pipe 14 and the discharge pipe 15 that are provided. Other configurations are shown in FIG.
It is similar to the second embodiment shown in FIG.

【0036】本実施例においても、気相成長時に加熱さ
れる整流板2は、整流板2の外周部2bに接続した冷却
パイプ32内を流れる冷媒(例えば水)12によって冷
却されるので、整流板2の小径孔2aを通る原料ガスの
温度上昇が抑えられることにより、小径孔2aを通る時
に原料ガスの分解を抑制して基板5上に反応生成物が付
着するのを防止することができる。
Also in this embodiment, the flow straightening plate 2 heated during vapor phase growth is cooled by the refrigerant (for example, water) 12 flowing in the cooling pipe 32 connected to the outer peripheral portion 2b of the flow straightening plate 2, so that the flow straightening is performed. By suppressing the temperature rise of the raw material gas passing through the small diameter hole 2a of the plate 2, it is possible to suppress the decomposition of the raw material gas when passing through the small diameter hole 2a and prevent the reaction product from adhering to the substrate 5. ..

【0037】尚、本実施例では、整流板2の外周部2b
と冷却パイプ32間に熱的接触抵抗があるので、図3に
示した実施例2の場合よりも若干冷却効果が低下する
が、冷却構造を簡単にすることができる。
In this embodiment, the outer peripheral portion 2b of the rectifying plate 2 is
Since there is a thermal contact resistance between the cooling pipe 32 and the cooling pipe 32, the cooling effect is slightly lower than in the case of the second embodiment shown in FIG. 3, but the cooling structure can be simplified.

【0038】〈第4実施例〉図5は、本発明の第4実施
例に係る気相成長装置を示す概略断面図である。本実施
例では、図3で示した第2実施例において、整流板2の
外周部2bに沿ってフィン33を形成した構成であり、
他の構成は図3に示した第2実施例と同様である。
<Fourth Embodiment> FIG. 5 is a schematic sectional view showing a vapor phase growth apparatus according to a fourth embodiment of the present invention. In this embodiment, the fins 33 are formed along the outer peripheral portion 2b of the current plate 2 in the second embodiment shown in FIG.
The other structure is similar to that of the second embodiment shown in FIG.

【0039】本実施例においても、気相成長時に加熱さ
れる整流板2は、整流板2の外周部2bに形成したフィ
ン33からの放熱によって冷却されるので、整流板2の
小径孔2aを通る原料ガスの温度上昇が抑えられること
により、小径孔2aを通る時の原料ガスの分解を抑制し
て基板5上に反応生成物が付着するのを防止することが
できる。
Also in this embodiment, since the flow straightening plate 2 heated during vapor phase growth is cooled by heat radiation from the fins 33 formed on the outer peripheral portion 2b of the flow straightening plate 2, the small diameter holes 2a of the flow straightening plate 2 are removed. By suppressing the temperature rise of the raw material gas passing therethrough, it is possible to suppress the decomposition of the raw material gas when passing through the small diameter hole 2a and prevent the reaction product from adhering to the substrate 5.

【0040】また、前記した第1〜第4実施例では整流
板2を冷却する冷却手段が反応炉1の外周部に位置して
いるので、冷却手段の設置等を容易に行うことができ
る。
Further, in the above-mentioned first to fourth embodiments, since the cooling means for cooling the current plate 2 is located on the outer peripheral portion of the reaction furnace 1, the cooling means can be easily installed.

【0041】〈第5実施例〉図6は、本発明の第5実施
例に係る気相成長装置の整流板を示す斜視図である。
<Fifth Embodiment> FIG. 6 is a perspective view showing a current plate of a vapor phase growth apparatus according to a fifth embodiment of the present invention.

【0042】本実施例に係る整流板16は、複数の小径
孔16aが形成されている部分以外は内部に中空部16
bが形成されており、外周部に形成した冷却水の供給管
16cと排出管16dによって整流板16の中空部16
bに冷却水が循環される。このように、本実施例では、
第1実施例のように反応炉1に冷却装置13を設ける代
わりに整流板16内を直接冷却水で冷却する構造であ
る。他の構成は図1に示した第1実施例と同様である。
The current plate 16 according to this embodiment has a hollow portion 16 inside except for a portion where a plurality of small diameter holes 16a are formed.
b is formed, and the hollow portion 16 of the straightening plate 16 is formed by the cooling water supply pipe 16c and the discharge pipe 16d formed on the outer peripheral portion.
Cooling water is circulated in b. Thus, in this embodiment,
Instead of providing the cooling device 13 in the reactor 1 as in the first embodiment, the inside of the current plate 16 is directly cooled by cooling water. Other configurations are similar to those of the first embodiment shown in FIG.

【0043】本実施例においても前記実施例同様、整流
板16内の中空部16bを循環する冷却水によって整流
板16を冷却することができるので、整流板16の小径
孔16aを通る原料ガスの温度上昇が抑えられることに
より、原料ガスの分解を抑制して基板5上に反応生成物
が付着するのを防止することができる。
In this embodiment as well, as in the above-described embodiments, since the rectifying plate 16 can be cooled by the cooling water circulating in the hollow portion 16b in the rectifying plate 16, the raw material gas passing through the small diameter holes 16a of the rectifying plate 16 By suppressing the temperature rise, it is possible to suppress the decomposition of the source gas and prevent the reaction products from adhering to the substrate 5.

【0044】〈第6実施例〉図7は、本発明の第6実施
例に係る気相成長装置の整流板を示す斜視図である。
<Sixth Embodiment> FIG. 7 is a perspective view showing a current plate of a vapor phase growth apparatus according to a sixth embodiment of the present invention.

【0045】本実施例に係る石英から成る整流板2は、
前記同様原料ガスを通すための複数の小径孔2aが形成
されており、基板側(図では下側)に位置する表面に
は、熱反射率の大きい例えば金メッキ17が施されてい
る。このように本実施例では、第1実施例にように反応
炉1に冷却装置13を設ける代わりに、熱反射率の大き
い金メッキ17等で整流板2に輻射熱等によって伝わる
熱を低減して整流板2の温度上昇を抑える構造である。
他の構成は図1に示した第1実施例と同様である。
The current plate 2 made of quartz according to this embodiment is
Similar to the above, a plurality of small diameter holes 2a for passing the raw material gas are formed, and the surface located on the substrate side (lower side in the figure) is plated with, for example, gold 17 having a high heat reflectance. As described above, in this embodiment, instead of providing the cooling device 13 in the reaction furnace 1 as in the first embodiment, the heat transmitted by the radiant heat or the like to the rectifying plate 2 is reduced by the gold plating 17 or the like having a high heat reflectance to rectify the rectification. This is a structure for suppressing the temperature rise of the plate 2.
Other configurations are similar to those of the first embodiment shown in FIG.

【0046】本実施例においても、金メッキ17でヒー
タ8から輻射によって伝わる熱を低減して、整流板2の
温度上昇を抑えることができるので、原料ガスの分解を
抑制して基板5上に反応生成物が付着するのを防止する
ことができる。
Also in this embodiment, since the heat transmitted by the radiation from the heater 8 by the gold plating 17 can be reduced and the temperature rise of the rectifying plate 2 can be suppressed, the decomposition of the raw material gas is suppressed and the reaction on the substrate 5 is suppressed. It is possible to prevent the product from adhering.

【0047】第6実施例では、整流板2に金メッキ17
を施したが、これ以外にも熱反射率が大きければ他のメ
ッキでもよく、また、整流板2に熱反射率の大きい金メ
ッキ17等を施す代わりに、整流板2を輻射率の小さい
(例えば輻射率が0.5以下)ステンレスやアルミニウ
ム等の材質で形成しても同様の効果を得ることができ
る。
In the sixth embodiment, the current plate 2 is plated with gold 17.
In addition to this, other plating may be used as long as it has a high heat reflectance, and instead of applying the gold plating 17 having a high heat reflectance to the rectifying plate 2, the rectifying plate 2 has a low emissivity (for example, The same effect can be obtained even if the material is made of a material such as stainless steel or aluminum (emissivity is 0.5 or less).

【0048】また、前記した各実施例ではシリコンの気
相成長を行う場合であったが、これ以外にも例えば化合
物半導体の気相成長やダイアモンド等の炭素の気相成長
にも適用可能である。
Further, in each of the above-mentioned embodiments, the vapor phase growth of silicon is performed. However, other than this, the present invention can be applied to vapor phase growth of a compound semiconductor or carbon of diamond or the like. ..

【0049】〈第7実施例〉図8は、本発明の第7実施
例に係る気相成長装置を示す概略図である。この図に示
すように、反応炉1内の上部には、複数の小径孔2aが
形成されている開口率が例えば0.1の円板状の整流板
2と、原料ガス,キャリアガス等のガスを供給する供給
装置3a,3bが接続されているガス導入管4a,4b
が配設されており、反応炉1内の下部には、基板(本実
施例ではシリコン基板)5を載置する基板ホルダ6と、
基板ホルダ6を着脱自在に支持する回転軸7と、基板ホ
ルダ6および基板5を加熱するヒータ8と、ヒータ8の
熱を基板ホルダ6側に反射する複数の反射板20が配設
されている。
<Seventh Embodiment> FIG. 8 is a schematic view showing a vapor phase growth apparatus according to a seventh embodiment of the present invention. As shown in this figure, a plurality of small diameter holes 2a are formed in the upper portion of the reaction furnace 1, and a circular plate-shaped straightening plate 2 having an aperture ratio of, for example, 0.1 and a source gas, a carrier gas, etc. Gas introduction pipes 4a, 4b to which supply devices 3a, 3b for supplying gas are connected
And a substrate holder 6 on which a substrate (a silicon substrate in this embodiment) 5 is placed, in the lower part of the reaction furnace 1,
A rotary shaft 7 for detachably supporting the substrate holder 6, a heater 8 for heating the substrate holder 6 and the substrate 5, and a plurality of reflecting plates 20 for reflecting the heat of the heater 8 to the substrate holder 6 side are arranged. ..

【0050】整流板2は、光を透過するように石英ガラ
スで形成され、反応炉1内の内周面に沿って形成した支
持台11上に載置されており、小径孔2aは半径中心を
通る任意の直線上(斜線部分)には形成されていない
(図9参照)。また、整流板2の上方に位置する反応炉
1の上部1cの少なくとも図9の斜線部分の上部に相当
する部分は、光を透過するように石英ガラスで形成され
ている。
The current plate 2 is made of quartz glass so as to allow light to pass therethrough, and is placed on a support base 11 formed along the inner peripheral surface of the reaction furnace 1. The small diameter hole 2a has a radius center. It is not formed on an arbitrary straight line passing through (hatched portion) (see FIG. 9). Further, at least a portion corresponding to the upper portion of the hatched portion in FIG. 9 of the upper portion 1c of the reaction furnace 1 located above the rectifying plate 2 is formed of quartz glass so as to transmit light.

【0051】ガス導入管4a,4bは、反応炉1上部の
側面で整流板2の原料ガスの流れ方向上流側に対向して
配設されている。
The gas introduction pipes 4a and 4b are arranged on the side surface of the upper part of the reaction furnace 1 so as to face the upstream side of the flow straightening plate 2 in the flow direction of the raw material gas.

【0052】基板ホルダ6の下方に位置しているヒータ
8と反射板20は、それぞれ回転軸7の周面に支持部材
(図示省略)で支持されており、ヒータ8は、基板ホル
ダ6の外周面の下部に形成したリブ6aの内側に配設さ
れている。リブ6aにより、基板ホルダ6および基板5
をヒータ8で加熱する時の熱が基板ホルダ6の周囲から
反応炉1内の上部に伝わるのを低減することができる。
ヒータ8には、加熱温度を制御するための温度制御装置
(図示省略)が接続されている。
The heater 8 and the reflection plate 20 located below the substrate holder 6 are respectively supported on the peripheral surface of the rotary shaft 7 by a supporting member (not shown), and the heater 8 is the outer periphery of the substrate holder 6. It is arranged inside the rib 6a formed in the lower part of the surface. The rib 6a allows the substrate holder 6 and the substrate 5
It is possible to reduce the heat transmitted from the periphery of the substrate holder 6 to the upper portion of the reaction furnace 1 when the heater 8 is heated by the heater 8.
A temperature control device (not shown) for controlling the heating temperature is connected to the heater 8.

【0053】また、反応炉1内の整流板2と基板ホルダ
6間と、基板ホルダ6、ヒータ8、反射板20の外側に
は、それぞれ反応生成物の付着等を防止する石英から成
る筒状のライナー管21,22が配設されている。
Further, between the flow straightening plate 2 and the substrate holder 6 in the reaction furnace 1 and outside the substrate holder 6, the heater 8 and the reflecting plate 20, there are cylindrical cylinders made of quartz for preventing the adhesion of reaction products. Liner tubes 21 and 22 are provided.

【0054】反応炉1上部1bの上方には、基板5の温
度を測定する2色温度計等の放射温度計23が基板5に
対してほぼ垂直に配置されており、反応炉1の外側下部
には、回転軸7を回転駆動する回転駆動装置9と、排気
口1bを介して反応炉1内の圧力調整および未反応ガス
等を排気する排気装置10と、ガス供給口1dを通して
ライナー管22内にパージガスを供給するガス供給装置
24が接続されている。
A radiation thermometer 23 such as a two-color thermometer for measuring the temperature of the substrate 5 is arranged above the upper portion 1b of the reaction furnace 1 substantially vertically to the substrate 5, and the lower outside of the reaction furnace 1 The rotary drive device 9 that drives the rotary shaft 7 to rotate, the exhaust device 10 that adjusts the pressure inside the reaction furnace 1 through the exhaust port 1b and exhausts unreacted gas, and the liner pipe 22 through the gas supply port 1d. A gas supply device 24 for supplying a purge gas is connected inside.

【0055】放射温度計23は、接続されている移動装
置25により、整流板2の小径孔2aが形成されていな
い半径中心を通る直線上(図9で示した整流板2の斜線
部分)に沿って基板5の表面に対してほぼ平行に移動す
る。
The radiation thermometer 23 is moved by the connected moving device 25 on a straight line passing through the radial center where the small diameter hole 2a of the straightening vane 2 is not formed (the hatched portion of the straightening vane 2 shown in FIG. 9). Along which the surface of the substrate 5 is moved substantially parallel to.

【0056】移動装置25は、リニアステージ26上を
移動し、任意の位置で停止可能である。移動装置26を
移動させるための手段は、ステッピングモータ,エアア
クチュエータ等の動力を使ってもよく、また、手動でも
よい。
The moving device 25 moves on the linear stage 26 and can be stopped at any position. The means for moving the moving device 26 may use power such as a stepping motor or an air actuator, or may be manual.

【0057】本実施例に係る気相成長装置は上記のよう
に構成されており、基板5への半導体薄膜の気相成長は
第1実施例と同様にして行うことができるので、ここで
は気相成長についての説明は省略する。
The vapor phase growth apparatus according to the present embodiment is configured as described above, and vapor phase growth of the semiconductor thin film on the substrate 5 can be performed in the same manner as in the first embodiment. A description of the phase growth is omitted.

【0058】この時、ヒータ8、反射板20が配設され
ているライナー管22内には、ガス供給装置24からガ
ス供給口1dを通してパージガス(例えばH2 )が供給
されるので、この中に原料ガスが侵入するのを防止する
ことができる。
At this time, a purge gas (for example, H 2 ) is supplied from the gas supply device 24 through the gas supply port 1d into the liner pipe 22 in which the heater 8 and the reflection plate 20 are arranged. It is possible to prevent the raw material gas from entering.

【0059】そして、基板5に半導体薄膜を気相成長さ
せる時に、反応炉1の上部1cと整流板2を通して放射
温度計23で基板5の温度を測定し(この時の放射温度
計23の測定波長は例えば1〜2.5μmである)、常
に所定の温度になるようにヒータ8の温度制御装置(図
示省略)に制御信号を出力して温度制御を行う。
When vapor-depositing a semiconductor thin film on the substrate 5, the temperature of the substrate 5 is measured by the radiation thermometer 23 through the upper part 1c of the reaction furnace 1 and the rectifying plate 2 (measurement of the radiation thermometer 23 at this time). The wavelength is, for example, 1 to 2.5 μm), and a temperature control is performed by outputting a control signal to a temperature control device (not shown) of the heater 8 so that the temperature is always a predetermined temperature.

【0060】この時、リブ6aによってヒータ8の光が
遮断されるため、高温部の光が放射温度計23に入りに
くくなっている。また、移動装置25によって基板5の
表面に対してほぼ水平に移動可能なので、反応炉1内の
他の部分からの光が基板5に反射して放射温度計23に
入ることが少なくなるため、基板5の任意の位置での温
度を正確に測定することができ、精度よく基板5の温度
制御を行うことができる。
At this time, since the light from the heater 8 is blocked by the rib 6a, it is difficult for the light in the high temperature portion to enter the radiation thermometer 23. Further, since it can be moved substantially horizontally with respect to the surface of the substrate 5 by the moving device 25, light from other portions in the reaction furnace 1 is less likely to be reflected on the substrate 5 and enter the radiation thermometer 23. The temperature of the substrate 5 at any position can be accurately measured, and the temperature of the substrate 5 can be accurately controlled.

【0061】また、複数個の放射温度計23を、整流板
2の小径孔2aが形成されていない半径中心を通る直線
上に沿って基板5とほぼ平行に任意の位置に配置するこ
とにより、基板5上の複数点の温度を同時に測定するこ
とができる。
Further, by disposing a plurality of radiation thermometers 23 at arbitrary positions substantially parallel to the substrate 5 along a straight line passing through the radial center where the small diameter holes 2a of the straightening plate 2 are not formed, The temperatures at a plurality of points on the substrate 5 can be simultaneously measured.

【0062】また、本実施例では、整流板2の放射温度
計23が移動する領域に位置している部分には小径孔2
aが形成されていなかったが、図10に示すように整流
板2の放射温度計23が移動する領域に位置している部
分に長穴2cを形成してもよい。この場合、整流板2に
形成した長穴2cは、基板5へ均一にガス供給が行われ
るように形成されている。
Further, in the present embodiment, the small diameter hole 2 is formed in the portion of the rectifying plate 2 located in the area where the radiation thermometer 23 moves.
Although a is not formed, the elongated hole 2c may be formed in the portion of the current plate 2 located in the area where the radiation thermometer 23 moves, as shown in FIG. In this case, the elongated holes 2c formed in the straightening vane 2 are formed so that the gas is uniformly supplied to the substrate 5.

【0063】〈第8実施例〉図11は、本発明の第8実
施例に係る気相成長装置を示す概略図である。
<Eighth Embodiment> FIG. 11 is a schematic view showing a vapor phase growth apparatus according to an eighth embodiment of the present invention.

【0064】本実施例は、反応炉1の側面上部に石英窓
(図では2ヶ所)26,27を形成しての外側にそれぞ
れ2色温度計等の放射温度計23を配置し、放射温度計
23の基板温度の測定光路上に位置しているライナー管
21に穴21a,21bを形成した構成である。他の構
成は図8に示した第7実施例と同様である。
In the present embodiment, quartz windows (two places in the figure) 26 and 27 are formed on the upper side surface of the reaction furnace 1, and radiation thermometers 23, such as a two-color thermometer, are arranged outside the quartz windows 26 and 27, respectively. This is a configuration in which holes 21a and 21b are formed in the liner tube 21 located on the optical path for measuring the substrate temperature of the total 23. The other structure is similar to that of the seventh embodiment shown in FIG.

【0065】このように本実施例では、石英窓26,2
7、ライナー管21の穴21a,21bを通して反応炉
1の側面上部に設けた放射温度計23により、斜め上方
から基板5上の任意の位置の温度をライナー管21によ
る光の屈折等の影響を受けることなく、且つ、リブ6a
によってヒータ8の光の影響を受けることなく正確に測
定することができ、精度よく基板5の温度制御を行うこ
とができる。
As described above, in this embodiment, the quartz windows 26, 2 are
7. The radiation thermometer 23 provided on the upper side surface of the reaction furnace 1 through the holes 21a and 21b of the liner tube 21 controls the temperature at an arbitrary position on the substrate 5 from obliquely above the influence of light refraction by the liner tube 21. Without receiving the rib 6a
Thus, accurate measurement can be performed without being affected by the light from the heater 8, and the temperature of the substrate 5 can be accurately controlled.

【0066】ライナー管21に穴21a,21bを形成
しない場合でも、ライナー管21の測定光路にあたる部
分を測定波長の光を透過する部材で形成することによ
り、基板温度の測定が可能になる。この場合は、気相成
長時にライナー管21の下部にも原料ガスが分解した時
に生成される反応生成物等が付着するので、ライナー管
21の測定光路に当る部分は基板5から所定距離(例え
ば5cm以上)だけ離すことにより、その部分が汚れず、
正確な温度を測定することができる。また、ライナー管
21の内壁面に沿ってパージガス(例えばH2 )を流す
ことにより、ライナー管21に反応生成物等が付着する
のを防止することができる。また、窓26,27の内側
にパージガスを流すことにより、窓26,27が汚れる
ことなく、正確な温度を測定することができる。
Even when the holes 21a and 21b are not formed in the liner tube 21, the substrate temperature can be measured by forming the portion corresponding to the measurement optical path of the liner tube 21 with a member that transmits light of the measurement wavelength. In this case, since reaction products generated when the raw material gas is decomposed adhere to the lower portion of the liner tube 21 during vapor phase growth, the portion of the liner tube 21 that contacts the measurement optical path is separated from the substrate 5 by a predetermined distance (for example, By separating only 5 cm or more), that part does not get dirty,
Accurate temperature can be measured. Further, by flowing the purge gas (for example, H 2 ) along the inner wall surface of the liner pipe 21, it is possible to prevent the reaction products and the like from adhering to the liner pipe 21. Further, by flowing the purge gas inside the windows 26 and 27, it is possible to measure the accurate temperature without the windows 26 and 27 becoming dirty.

【0067】また、前記実施例では、反応炉1の側面上
部に2ヶ所の石英窓26,27を形成してその外側にそ
れぞれ1個の放射温度計23を配置したが、これに限定
されることはなく、例えば反応炉1の側面上部に1ヶ所
あるいは2ヶ所以上石英窓を形成して、その外側に1個
あるいは複数個の放射温度計23を配置する構成でもよ
い。
In the above embodiment, two quartz windows 26 and 27 are formed in the upper part of the side surface of the reaction furnace 1 and one radiation thermometer 23 is arranged outside each of the quartz windows 26 and 27, but the invention is not limited to this. However, for example, one or more quartz windows may be formed on the upper side surface of the reaction furnace 1, and one or a plurality of radiation thermometers 23 may be arranged outside the quartz windows.

【0068】また、前記実施例では、測定用窓に石英を
使用しているが、石英に限らず、測定用の光を透過する
部材であれば、KBr等の他の材質でもよい。
Although quartz is used for the measuring window in the above-mentioned embodiment, the material is not limited to quartz, and other materials such as KBr may be used as long as it is a member that transmits the measuring light.

【0069】また、前記した第7,第8実施例におい
て、基板ホルダ6と一体に回転する基板5の回転に同期
させて(基板5の任意の測定点が放射温度計23の測定
光路上に来た時)、放射温度計23で基板5の温度を測
定することにより、基板5が回転していても基板5の任
意の位置の温度を測定することができる。
In addition, in the seventh and eighth embodiments described above, in synchronization with the rotation of the substrate 5 which rotates integrally with the substrate holder 6 (an arbitrary measurement point of the substrate 5 is on the measurement optical path of the radiation thermometer 23). When the radiation thermometer 23 measures the temperature of the substrate 5, the temperature of the substrate 5 at an arbitrary position can be measured even when the substrate 5 is rotating.

【0070】また、放射温度計は2色温度計等の色温度
計でもよく、また、他の非接触温度測定手段を用いても
よい。
The radiation thermometer may be a color thermometer such as a two-color thermometer, or other non-contact temperature measuring means may be used.

【0071】[0071]

【発明の効果】以上、実施例に基づいて具体的に説明し
たように、請求項1に記載の第1の発明によれば、整流
板を冷却することにより整流板での原料ガスの分解を防
止することができるので、基板上に反応生成物が付着す
ることがなくなり、高品質の薄膜を得ることができる。
As described above in detail with reference to the embodiments, according to the first aspect of the present invention, by cooling the straightening vane, the decomposition of the raw material gas in the straightening vane can be performed. Since it can be prevented, the reaction product does not adhere to the substrate, and a high quality thin film can be obtained.

【0072】また、請求項2に記載の第2発明によれ
ば、基板上の任意の位置での温度測定を精度よく行うこ
とができ、また請求項3に記載の第3の発明によれば、
反応炉の側面からライナー管を通して基板上の温度測定
を行う場合でも、精度のよい温度測定を行うことができ
る。
Further, according to the second aspect of the present invention, it is possible to accurately measure the temperature at an arbitrary position on the substrate, and according to the third aspect of the present invention. ,
Even when the temperature on the substrate is measured from the side surface of the reaction furnace through the liner tube, the temperature can be measured with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る気相成長装置を示す
概略断面図である。
FIG. 1 is a schematic cross-sectional view showing a vapor phase growth apparatus according to a first embodiment of the present invention.

【図2】図1に示した気相成長装置の整流板を示す斜視
図である。
FIG. 2 is a perspective view showing a current plate of the vapor phase growth apparatus shown in FIG.

【図3】本発明の第2実施例に係る気相成長装置を示す
概略断面図である。
FIG. 3 is a schematic cross-sectional view showing a vapor phase growth apparatus according to a second embodiment of the present invention.

【図4】本発明の第3実施例に係る気相成長装置を示す
概略断面図である。
FIG. 4 is a schematic sectional view showing a vapor phase growth apparatus according to a third embodiment of the present invention.

【図5】本発明の第4実施例に係る気相成長装置を示す
概略断面図である。
FIG. 5 is a schematic sectional view showing a vapor phase growth apparatus according to a fourth embodiment of the present invention.

【図6】本発明の第5実施例に係る気相成長装置の整流
板を示す斜視図である。
FIG. 6 is a perspective view showing a current plate of a vapor phase growth apparatus according to a fifth embodiment of the present invention.

【図7】本発明の第6実施例に係る気相成長装置の整流
板を示す断面図である。
FIG. 7 is a sectional view showing a current plate of a vapor phase growth apparatus according to a sixth embodiment of the present invention.

【図8】本発明の第7実施例に係る気相成長装置を示す
概略断面図である。
FIG. 8 is a schematic sectional view showing a vapor phase growth apparatus according to a seventh embodiment of the present invention.

【図9】図7に示した気相成長装置の整流板を示す平面
図である。
9 is a plan view showing a current plate of the vapor phase growth apparatus shown in FIG.

【図10】図7に示した気相成長装置の整流板の変形例
を示す平面図である。
10 is a plan view showing a modified example of the current plate of the vapor phase growth apparatus shown in FIG.

【図11】本発明の第8実施例に係る気相成長装置を示
す概略断面図である。
FIG. 11 is a schematic sectional view showing a vapor phase growth apparatus according to an eighth embodiment of the present invention.

【図12】従来の気相成長装置の一例を示す概略図であ
る。
FIG. 12 is a schematic view showing an example of a conventional vapor phase growth apparatus.

【図13】従来の気相成長装置の一例を示す概略図であ
る。
FIG. 13 is a schematic view showing an example of a conventional vapor phase growth apparatus.

【符号の説明】[Explanation of symbols]

1 反応炉 2,16 整流板 2a,16a 小径孔 2b 長穴 3,3a,3b ガス供給装置 5 基板 6 基板ホルダ 6a リブ 8 ヒータ 13 冷却装置(冷却手段) 17 金メッキ 21,22 ライナー管 21a,21b 穴 23 放射温度計(温度測定手段) 25 移動装置(移動手段) 26,27 石英窓 30 流路(冷却手段) 32 冷却パイプ(冷却手段) 33 フィン(冷却手段) 1 Reactor 2, 16 Rectifier 2a, 16a Small diameter hole 2b Long hole 3, 3a, 3b Gas supply device 5 Substrate 6 Substrate holder 6a Rib 8 Heater 13 Cooling device (cooling means) 17 Gold plating 21, 22 Liner pipe 21a, 21b Hole 23 Radiation thermometer (temperature measuring means) 25 Moving device (moving means) 26, 27 Quartz window 30 Flow path (cooling means) 32 Cooling pipe (cooling means) 33 Fin (cooling means)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大嶺 俊光 神奈川県川崎市幸区小向東芝町1 株式会 社東芝総合研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshimitsu Omine 1 Komukai Toshiba-cho, Kouki-ku, Kawasaki-shi, Kanagawa Stock company Toshiba Research Institute

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 反応炉内に原料ガスを供給し、前記反応
炉内に配設した基板ホルダ上の基板を加熱手段により加
熱して前記基板表面に薄膜を気相成長させる気相成長装
置において、前記基板に対して前記原料ガスの流れ方向
上流側に配設した複数の孔を有する整流板と、該整流板
を冷却する冷却手段とを具備したことを特徴とする気相
成長装置。
1. A vapor phase growth apparatus for supplying a source gas into a reaction furnace and heating a substrate on a substrate holder arranged in the reaction furnace by a heating means to vapor-deposit a thin film on the surface of the substrate. A vapor phase growth apparatus comprising: a straightening plate having a plurality of holes arranged upstream of the substrate in the flow direction of the raw material gas; and a cooling unit for cooling the straightening plate.
【請求項2】 反応炉内に原料ガスを供給し、前記反応
炉内に配設した基板ホルダ上の基板を加熱手段により加
熱して前記基板表面に薄膜を気相成長させる気相成長装
置において、前記基板と対向して配設した前記基板もし
くは前記基板ホルダの温度を非接触で測定する温度測定
手段と、該温度測定手段を前記基板表面に対して任意の
方向に移動させる移動手段とを具備したことを特徴とす
る気相成長装置。
2. A vapor phase growth apparatus for supplying a raw material gas into a reaction furnace and heating a substrate on a substrate holder arranged in the reaction furnace by a heating means to vapor grow a thin film on the surface of the substrate. A temperature measuring means for measuring the temperature of the substrate or the substrate holder arranged facing the substrate in a non-contact manner, and a moving means for moving the temperature measuring means in an arbitrary direction with respect to the surface of the substrate. A vapor phase growth apparatus characterized by being provided.
【請求項3】 反応炉内に原料ガスを供給し、前記反応
炉内に配設した基板ホルダ上の基板を加熱手段により加
熱して前記基板表面に薄膜を気相成長させる気相成長装
置において、前記反応炉内に配設され前記反応炉の内壁
に前記原料ガスの分解によって生成される反応生成物の
付着を防止するライナー管と、該ライナー管の外側に配
設され前記基板もしくは基板ホルダの温度を非接触で測
定する温度測定手段とを有し、前記ライナー管の前記温
度測定手段から前記基板ヘの温度測定光路と交差する部
分に穴を形成するかもしくは交差する部分を測定波長の
光が透過する部材で形成することを特徴とする気相成長
装置。
3. A vapor phase growth apparatus for supplying a raw material gas into a reaction furnace and heating a substrate on a substrate holder arranged in the reaction furnace by a heating means to vapor grow a thin film on the surface of the substrate. A liner pipe disposed inside the reaction furnace for preventing adhesion of a reaction product generated by decomposition of the raw material gas to an inner wall of the reaction furnace, and the substrate or substrate holder disposed outside the liner pipe And a temperature measuring means for measuring the temperature of the non-contact, forming a hole in a portion of the liner tube which intersects with the temperature measuring optical path from the temperature measuring means to the substrate, or at the intersecting portion of the measuring wavelength. A vapor phase growth apparatus characterized by being formed of a member that transmits light.
JP00589192A 1992-01-16 1992-01-16 Vapor phase growth equipment Expired - Lifetime JP3210051B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00589192A JP3210051B2 (en) 1992-01-16 1992-01-16 Vapor phase growth equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00589192A JP3210051B2 (en) 1992-01-16 1992-01-16 Vapor phase growth equipment

Publications (2)

Publication Number Publication Date
JPH05190464A true JPH05190464A (en) 1993-07-30
JP3210051B2 JP3210051B2 (en) 2001-09-17

Family

ID=11623525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00589192A Expired - Lifetime JP3210051B2 (en) 1992-01-16 1992-01-16 Vapor phase growth equipment

Country Status (1)

Country Link
JP (1) JP3210051B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193509A (en) * 2002-12-13 2004-07-08 Watanabe Shoko:Kk Shower nozzle and film-forming apparatus
JP2007201406A (en) * 2005-12-27 2007-08-09 Tokyo Electron Ltd Deposition device, depositing method, pre-coat layer and its forming method
JPWO2005024928A1 (en) * 2003-09-03 2007-11-08 東京エレクトロン株式会社 Gas processing apparatus and heat dissipation method
JP2009027021A (en) * 2007-07-20 2009-02-05 Nuflare Technology Inc Vapor-phase growing device and vapor-phase growing method
WO2009031450A1 (en) * 2007-09-03 2009-03-12 Canon Anelva Corporation Substrate heat-treating apparatus, and substrate heat-treating method
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
JP2010116606A (en) * 2008-11-13 2010-05-27 Sharp Corp Vapor phase deposition system and gas feeding method
JP2012069904A (en) * 2010-08-27 2012-04-05 Nuflare Technology Inc Film deposition device and film deposition method
JP2013115312A (en) * 2011-11-30 2013-06-10 Stanley Electric Co Ltd Crystal growth apparatus
JP2013207196A (en) * 2012-03-29 2013-10-07 Nuflare Technology Inc Deposition apparatus and deposition method
CN104576456A (en) * 2014-12-24 2015-04-29 宜兴市环洲微电子有限公司 Flow-evening source baffle plate for diffusion ventilation
JP2018505551A (en) * 2014-12-31 2018-02-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support having multiple heating zones
JP2018525812A (en) * 2015-06-29 2018-09-06 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Thermal shielding for electrostatic chucks
US10407772B2 (en) 2015-11-05 2019-09-10 Nuflare Technology, Inc. Shower head, vapor phase growth apparatus, and vapor phase growth method
CN113512665A (en) * 2021-07-14 2021-10-19 上海铂世光半导体科技有限公司 Heat dissipation platform of special water course design of alloy material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193509A (en) * 2002-12-13 2004-07-08 Watanabe Shoko:Kk Shower nozzle and film-forming apparatus
JPWO2005024928A1 (en) * 2003-09-03 2007-11-08 東京エレクトロン株式会社 Gas processing apparatus and heat dissipation method
JP4536662B2 (en) * 2003-09-03 2010-09-01 東京エレクトロン株式会社 Gas processing apparatus and heat dissipation method
JP2007201406A (en) * 2005-12-27 2007-08-09 Tokyo Electron Ltd Deposition device, depositing method, pre-coat layer and its forming method
JP2009027021A (en) * 2007-07-20 2009-02-05 Nuflare Technology Inc Vapor-phase growing device and vapor-phase growing method
WO2009031450A1 (en) * 2007-09-03 2009-03-12 Canon Anelva Corporation Substrate heat-treating apparatus, and substrate heat-treating method
JP2009147392A (en) * 2007-09-03 2009-07-02 Canon Anelva Corp Substrate manufacturing method
US8090245B2 (en) 2007-09-03 2012-01-03 Canon Anelva Corporation Apparatus for heat-treating substrate and method for heat-treating substrate
JP2009076689A (en) * 2007-09-20 2009-04-09 Tokyo Electron Ltd Substrate treatment device, and substrate mounting base used for it
JP2010116606A (en) * 2008-11-13 2010-05-27 Sharp Corp Vapor phase deposition system and gas feeding method
JP2012069904A (en) * 2010-08-27 2012-04-05 Nuflare Technology Inc Film deposition device and film deposition method
US9873941B2 (en) 2010-08-27 2018-01-23 Nuflare Technology, Inc. Film-forming manufacturing apparatus and method
JP2013115312A (en) * 2011-11-30 2013-06-10 Stanley Electric Co Ltd Crystal growth apparatus
JP2013207196A (en) * 2012-03-29 2013-10-07 Nuflare Technology Inc Deposition apparatus and deposition method
CN104576456A (en) * 2014-12-24 2015-04-29 宜兴市环洲微电子有限公司 Flow-evening source baffle plate for diffusion ventilation
JP2018505551A (en) * 2014-12-31 2018-02-22 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Substrate support having multiple heating zones
JP2018525812A (en) * 2015-06-29 2018-09-06 ヴァリアン セミコンダクター イクイップメント アソシエイツ インコーポレイテッド Thermal shielding for electrostatic chucks
US10407772B2 (en) 2015-11-05 2019-09-10 Nuflare Technology, Inc. Shower head, vapor phase growth apparatus, and vapor phase growth method
US10550473B2 (en) 2015-11-05 2020-02-04 Nuflare Technology, Inc. Shower head, vapor phase growth apparatus, and vapor phase growth method
US11047047B2 (en) 2015-11-05 2021-06-29 Nuflare Technology, Inc. Shower head, vapor phase growth apparatus, and vapor phase growth method
CN113512665A (en) * 2021-07-14 2021-10-19 上海铂世光半导体科技有限公司 Heat dissipation platform of special water course design of alloy material
US11892249B2 (en) 2021-07-14 2024-02-06 Shanghai Worldiray Semiconductor Technology Co., Ltd. Heat dissipation table made of alloy material and with special waterway design

Also Published As

Publication number Publication date
JP3210051B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
US5332442A (en) Surface processing apparatus
US6090210A (en) Multi-zone gas flow control in a process chamber
US6617247B2 (en) Method of processing a semiconductor wafer in a reaction chamber with a rotating component
US9449858B2 (en) Transparent reflector plate for rapid thermal processing chamber
JPH05190464A (en) Vapor growth device
US6435869B2 (en) Quartz window having reinforcing ribs
US5781693A (en) Gas introduction showerhead for an RTP chamber with upper and lower transparent plates and gas flow therebetween
KR100430947B1 (en) Heating apparatus, and processing apparatus
US6110289A (en) Rapid thermal processing barrel reactor for processing substrates
US7127367B2 (en) Tailored temperature uniformity
US20010036706A1 (en) Thermal processing apparatus for introducing gas between a target object and a cooling unit for cooling the target object
TWI745717B (en) A coated liner assembly for a semiconductor processing chamber
US11842907B2 (en) Spot heating by moving a beam with horizontal rotary motion
US6566630B2 (en) Thermal processing apparatus for introducing gas between a target object and a cooling unit for cooling the target object
JPH1145861A (en) Vented lower liner for heating exhaust gas in single wafer reactor
US20060027165A1 (en) Heated gas box for PECVD applications
US11680338B2 (en) Linear lamp array for improved thermal uniformity and profile control
JPS627685B2 (en)
TWI545654B (en) Transparent reflector plate for rapid thermal processing chamber
JPS6215816A (en) Infrared-ray heater
JP2017190506A (en) Vapor growth apparatus and vapor growth method
JPH0437692A (en) Base plate heating apparatus
JPH03287772A (en) Single wafer processing atmospheric cvd device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713