JPH051900B2 - - Google Patents

Info

Publication number
JPH051900B2
JPH051900B2 JP59183818A JP18381884A JPH051900B2 JP H051900 B2 JPH051900 B2 JP H051900B2 JP 59183818 A JP59183818 A JP 59183818A JP 18381884 A JP18381884 A JP 18381884A JP H051900 B2 JPH051900 B2 JP H051900B2
Authority
JP
Japan
Prior art keywords
ceramic
particles
thick film
substrate
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59183818A
Other languages
Japanese (ja)
Other versions
JPS6162854A (en
Inventor
Takao Kojima
Akira Nakano
Toshitaka Matsura
Akio Takami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP18381884A priority Critical patent/JPS6162854A/en
Priority to US06/664,872 priority patent/US4688015A/en
Priority to DE8484112859T priority patent/DE3479053D1/en
Priority to EP84112859A priority patent/EP0140340B1/en
Publication of JPS6162854A publication Critical patent/JPS6162854A/en
Priority to US06/880,013 priority patent/US4720394A/en
Publication of JPH051900B2 publication Critical patent/JPH051900B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 厚膜素子は最近のハイブリツド技術の進歩につ
れて、ますます応用範囲を広めつつあり、たとえ
ばセラミツク基板上に温度もしくはガス成分濃度
によつて抵抗値が変化する検知機能性の金属酸化
物半導体厚膜を被着形成してセンサを作る場合と
か、セラミツク基板上に高誘電性金属酸化物厚膜
を被着形成してセラミツクコンデンサを作る場合
とか、或いは、例えばSi3N4の表面にその耐蝕性
や耐酸化性を向上させる為にAl2O3などの保護被
覆層を被着形成する場合など、いろいろな応用が
現になされている。 この種の厚膜素子の改良に関してこの明細書で
述べる技術内容は、種々な厚膜に共通した技術的
課題としてその厚膜と、セラミツク絶縁基体と
の、密着性の抜本的改善についての開発成果を提
案するところにある。 〔従来の技術〕 ある種の厚膜素子については厚膜材の中にガラ
スのような、密着性を高めるのに役立つ添加剤が
用いられ、文献としては、マイクロエレクトロニ
ツクスシンポジウム1971(D.L.Her bst et al Int.
Microelectronics Symp.(1971)4.7)やプロシー
デイングス インステイチユート エレクトロレ
デイオ エンジニアリング コンフアレンス1976
(M.V.Coleman et:Proc.Inst.Electro.Radio
Eng.Conf.(1976)〔31〕1−16)などが参照され
るけれども、しばしば添加剤によつて厚膜素子自
体の変質が余儀なくされる。 別の方法として、基体と熱膨張係数の近い厚膜
の組合せを選ぶことがマテリアルス アンド テ
クニクス フオア バキユーム デバイス(W.
H.Kohl“Materials and Techniques for
Vacum Devices”p391(1967)Reinhold Pub.)
に示されているように、熱膨張係数の近似によつ
て熱歪が小さくなり、たとい密着強度がやや低く
ともはく離の防止にはかなり有効である。とは云
え機械的なシヨツクに対して充分な抵抗をもつこ
とができない。 これらのほか、基体表面の粗度をあらくして厚
膜の密着性を上げることもしばしば行われ、ここ
に古くかな知られているように基体表面の粒度の
粗な砥粒によつて研削または投射の手法で粗面化
したり、また基体表面を粗い結晶粒子にて被覆
し、これによる凹凸の利用も試みられたが、基体
との結晶粒子径の差から両者の焼結特性が異な
り、良好な密着が得られなかつたり、均一なコン
トロールされた凹凸を得ることができなかつた。
更に、10μm以上のような厚膜に対してはとり分
け、必ずしも充分な密着が得られ難く、とくに前
者の粗面化は基体表面を傷つけるので、基本強度
に関し不利を伴う。またこれらの従来技術につい
ては少なくとも機能性半導体厚膜の固着に関する
ものには該当しない。 (発明が解決しようとする問題点) 厚膜、とくに膜厚が10μm以上であることが必
要とされる場合に、セラミツク絶縁基体の表面に
高い密着強さでの被成が実現され得る、金属酸化
物厚膜を担持した、セラミツク基板を与えること
が、この発明の目的である。 (問題点を解決するための手段) 上記の目的は、次の事項を骨子とする構成によ
り、有利に達成される。すなわちこの発明は、セ
ラミツク絶縁基体の表面に金属酸化物類の焼付け
厚膜をそなえ、該セラミツク絶縁基体の表面は、
平均粒径5μm以上最大粒径500μ以下のセラミツ
ク焼成粒子群をその平均粒径の1/20〜1/4だけセ
ラミツク絶縁基体中に部分的な埋没下に分散合体
させて該基体の表面に形成した凹凸下地を有し、
この凹凸下地上に、該凹凸下地の間〓の内部を満
たして金属酸化物類の焼付け厚膜層を被成して成
ることを特徴とする金属酸化物膜厚を担持した、
セラミツク基板である。 ここにセラミツク絶縁基板は、アルミナ、ベリ
リア、フオルステライト、ジルコニア、そしてチ
タバリやフエライトなどの金属酸化物はもちろ
ん、シリコンナイトライド、アルミニウムナイト
ライドのような、非酸化物の如きを適用すること
ができる。 これらのセラミツク絶縁基体表面における金属
酸化物厚膜の堅固な密着を確保するのに用いるセ
ラミツク焼成粒子については、基板と同一又は類
似の材質の適用が有利であるが、とくに焼結特性
に類似性があれば、異種の材質であつても、もち
ろんかまわない。 ここにセラミツク焼成粒子は、未焼成の状態下
の造粒粒子として平均粒径5μm以上、よりのぞ
ましくは50〜200μm、最大粒径は500μm、とく
に300μm以下で有利に適合する。 平均粒径は、5μmより小さいと、とくに厚膜
につき密着強さの確保に役立つ程の、係止効果が
生じ難い一方、最大粒径について500μmをこえ
る粒子は例えば検知機能性半導体の厚膜を、通例
に従う厚膜印刷法などの手順にて、均一に形成す
ることが困難となりまた機能素子としたとき厚膜
の特性のばらつきを来し易い。 セラミツク絶縁基体の表面におけるセラミツク
焼成粒子の一部分埋没は、平均粒子径のほぼ1/20
〜1/4程度の深さとすることがのぞましく、1/20
より浅いと、セラミツク焼成粒子の食い込みによ
る固着が不充分となり勝ちであり、一方1/4をこ
えるような深すぎる埋没は作業が困難な上に、検
知機能性半導体厚膜のその後の被成の際に、充分
な鉤状拘束作用を期待し難くする不利がある。 セラミツク焼成粒子の埋没分散の密度は、その
埋没を行つたセラミツク絶縁基体表面自体の垂直
方向露呈面積と、分散粒子による垂直方向被覆面
積との比(以下被覆比という)にて、1:4〜
4:1の範囲にすることが好ましく、最適な被覆
比は1:1であるが、その膜の利用目的によつて
適宜選ぶことができる。 セラミツク焼成粒子の材質については、セラミ
ツク絶縁基体の材質との関連においてすべに述べ
たとおりであるが、機械的強度、耐熱性、絶縁
性、そして価格なども勘案して、アルミナを最適
とし、ついでムライト、ジルコニア、そしてスピ
ネルなども適合する。 この発明によるセラミツク基板の製法を例示的
に説明すると次の通りである。 まずセラミツク絶縁基体につき、有機質結合剤
を配合したセラミツク粉を有機溶剤中で混合した
スラリーをつくり、たとえばドクターブレード法
の如きにより、基体となるべきグリーンシートを
成形する。 得られたグリーンシートの表面にPt、Pd、
Rh、Auないしはそれらの合金の如きを用いた金
属ペーストにより、所望の電極パターンをたとえ
ば櫛形、渦巻き形などの所定形状にて厚膜印刷を
行う。なおこの電極形成工程はこの順序で行うこ
とはより好ましいが必須ではなく後述の凹凸下地
面の形成後に行つてもよい。また単にセラミツク
上に異物質をコートする目的の場合にはこの電極
形成工程ははぶくことも云うまでもない。 一方において別途にセラミツク粉末を、すでに
述べた範囲となる粒度に常法好ましくはスプレイ
ドライアを用いて造粒し、この造粒による生のも
のもしくはハンドリング性をよくするために焼結
開始温度以下で加熱処理して仮固結させた粒子を
やはり前述の被覆比となるように上記グリーンシ
ート表面の要所、例えば電極パターンの近傍にて
散布し、例えば平板をもつてする加圧により、各
粒子の分散下に、部分的な埋没を生じさせればよ
く、ここに造粒粒子の形態が保持されるような、
加圧用の平板としてクツシヨンシートを介装する
ことものぞましい。なおセラミツク焼成粒子を、
部分的埋没下で基体に合体させるためには粒子を
押圧押没する方法に限られず、造粒粒子と結合用
微粒子とをサスペンシヨン用液中に混合した混合
物を生の基体面上に予め塗布しておくことによ
り、上記微細粒子を造粒粒子が所定の深さで埋没
されるように造粒粒子の脚元に沈積させたのち、
一体化焼結するようにしてもよいし、生シート表
面に溶媒を塗布しておいた上に単に造粒粒子を分
散させてもよい。 このようにしてセラミツクグリーンシートに、
造粒、生粒子を埋没状に分散させたのちに、それ
らの焼結に適合する温度条件にて焼成を施し、引
続いて例えば検知機能性半導体厚膜の被成に役立
つ、TiO2、SnO2、ZnO、そしてFe2O3などのガ
ス感応性金属酸化物粉末より主として成り、必要
に応じて上掲の金属ペーストの成分を添加した、
厚膜用ペーストを、厚膜印刷もしくはキヤステイ
ングの手法にて施用し、焼付けを行うことによつ
て、厚膜を担持したセラミツク基板が得られる。 以上のようにして例えば検知機能性半導体厚膜
のセラミツク絶縁基体上への担持が、該基体上に
埋没状にしてほぼ一様分散一体化配置した、セラ
ミツク焼結粒子で形成される凹凸下地の間〓に浸
入した、厚膜用ペーストの焼付けによるから、厚
膜自体はもちろんその凹凸下地との固着強さが著
しく高く、しかも検知機能性半導体厚膜の場合と
くに安定な性能の機能性半導体厚膜素子が得られ
る。 さて第1図にこの発明に従うセラミツク基板の
板面を横切る断面を模式に示し、図中1はセラミ
ツク絶縁基体、2は該基体の表面で部分的な埋没
下に合体したセラミツク焼成粒子、3は該粒子の
分散にて基体表面に形成した凹凸下地、そして4
が凹凸下地3上に該凹凸下地3の間〓内部を満た
して被成した金属酸化物類の焼付け厚膜層であ
る。5はこの例における電極層を示す。 (作用) ここにセラミツク絶縁基体1は元来第2図aに
示すような表面あらさをもち、これについて従来
の技術に従う粗面化を施したとしても同図bの程
度に表面あらさをやや大きくなし得るにぎない
が、この発明によれば、たとえば粒径ほぼ30μm
程度の球状をなすセラミツク焼結粒子2がセラミ
ツク絶縁基体1の表面に、数μm程度埋没した事
例について第2図cに図解したように、粗面化の
程度がとくに著しい点で特徴的な凹凸下地3を得
る。 この凹凸下地3は、第1図、第2図cに明らか
なようにセラミツク焼成粒子2の分散相互間にて
セラミツク絶縁基体1の表面に向かつて奥広がり
状をなす凹凸間隙が形成されるので、該間隙の内
部を満たして被成する焼付け厚膜層4の根固め
が、堅固に成就されるわけである。 実際には、セラミツク絶縁基体1の表面に、焼
付け厚膜層4でおおわれる領域にわたつて、均等
なセラミツク焼結粒子の埋没分散を行うことによ
り上記の根固め効果が充分に発揮される。 以下にこの発明の厚膜型ガスセンサとしての実
施態様について主に説明する。 第3図にこの種ガスセンサの外観を示し、図中
5a,5bはセラミツク絶縁基体1上に設けた電
極であり、従来は電極5a,5b間にわたつてガ
ス検出膜としての焼付け厚膜層4を形成していた
が、密着性が充分でなかつかたためセンサの内部
抵抗の変化をしばしば生じ勝ちでとくに自動車の
排気ガスのように熱サイクルの激しいか酷な温度
環境での使用中、セラミツク絶縁基体1と焼付け
厚膜層5との間の熱膨張係数の差に起因する熱ひ
ずみのため、焼付け厚膜層4のはく離により、セ
ンサの機能が早期に損なわれる問題点があつた。 なおこのような事例はガスセンサのみに限ら
ず、セラミツク絶縁基体上に被着させる被着層と
してサーミスタ膜を用いるサーモセンサ、感湿材
を使う湿度センサ、そのほか抵抗体膜を用いる抵
抗素子、さらには、誘電体膜を使用する厚膜コン
デンサなど検知機能性半導体厚膜を用いる機能素
子に共通てあり、また加えて、単なる保護被膜と
しての異種材料セラミツク被覆層とセラミツク本
体との間の密着強さを高めるためにもこの発明は
すべてに有用であるのは、明らかである。 この発明においては、第3図の−断面図に
示したように焼付け厚膜層4が、セラミツク焼成
粒子2の、セラミツク絶縁基体1の表面で部分的
な埋没状下におけるほぼ一様な分散合体による、
凹凸下地3を介して根固めされるので、まずこの
凹凸による接着面積の拡大と、粒子相互間の間隙
の内部を満たして浸入する焼付け厚膜層5の鉤状
拘束とによつて、密着強さが飛躍的に改善され
る。 なお第4図には、セラミツク絶縁基体1に重ね
合わせる窓孔つき基体6を用い、その窓孔7の内
部にてセラミツク焼成粒子の撒布域を限定するこ
とにより、所定部分での均一分散を容易にした例
を示した。 以下にこの発明の実施例について説明する。 (実施例) 実施例 1 平均粒径1.5μmのAl2O392重量%、SiO24重量
%、CaO2重量%およびMgO2重量%からなる混
合粉末100重量部に対してブチラール樹脂12重量
部およびDBP6重量部を添加し、有機溶剤中で混
合しスラリーとし、ドクターブレードにて第5図
及び第6図に示す形状で厚さ1mmのグリーンシー
ト8及び厚さ0.2mmのグリーンシート9を作つた。
グリーンシート8の表面に第5図に示す形状の発
熱抵抗体パターン10及び電極パターン11a,
11bを白金ペーストで厚膜印刷し、各パターン
の端部に0.3mmφの白金リード線12a,12b
及び12cを配置した。他方、グリーンシート9
にはこれをグリーンシート21上に重ねた場合に
電極パターン11a,11bの先端が露出し得る
位置に打ち抜きによつて開口13を設けた後、こ
れら2枚のグリーンシート8,9を積層熱圧着し
た。 別途、各グリーンシート8,9に使用した混合
粉末と同一組成の粉末に4重量部のポリビニルア
ルコールを添加し湿式混合し、噴霧乾燥機を用い
て造粒後表1に示す粒度範囲に篩い分けしてセラ
ミツク粒子2とすべき顆粒を得た。 この顆粒は開口5に被覆比が1程度になるよう
に充填し、その上よりクツシヨン用のシートを介
して50℃にて8Kg/cm2の圧力で顆粒をおさえ、粒
子をグリーンシート中に埋没させた。 そののち圧着した2枚のグリーンシート8,9
とともに大気中温度1550℃、保持時間2時間の条
件で焼成した。 セラミツク焼結粒子2の平均の埋没深さはその
その平均粒径のほぼ1/10であつた。 次に平均粒径1.2μmのTiO2粉末に対し5モル
部の白金ブラツクを添加し、更に全粉末に対し3
重量部のエチルセルロースを添加しブチルカルビ
トール中で混合し300ポアズに粘度調整したTiO2
ペーストを、開口5の内部に充填し且つ電極パタ
ーン11a,11bの先端に被着するように厚膜
印刷し、検出素子13として大気中温度1200℃、
保持時間1時間の条件で焼付けることによつて第
7図に示すガスセンサを試作した。 なお表1で区分したたセラミツク粒子の粒度範
囲区分にて、供試センサNo.1〜8を区別した。 ここにガスセンサNo.1は比較のために開口5に
セラミツク粒子を充填せずに検出素子13を形成
したものである。 ガスセンサNo.1〜No.8の素子内部抵抗をプロパ
ンバーナにより温度350℃に設定した雰囲気で測
定した処、理論空燃比λ>1ではいずれも20MΩ
以上であつたがλ=0.9になると表1の値に変化
し、センサ機能を維持していることがわかつた。 上記ガスセンサを全負荷状態の2000c.c.エンジン
から排出される最高温度800℃の排気に5分間晒
し、次いでアイドリング状態に5分間曝す熱衝撃
試験を繰り返し実施し、検出素子13がはく離す
るまでの時間を測定した成績も表1に示す。
(Field of industrial application) Thick film devices are increasingly being applied in line with recent advances in hybrid technology. For example, when making a sensor by depositing a metal oxide semiconductor thick film, or making a ceramic capacitor by depositing a highly dielectric metal oxide thick film on a ceramic substrate, or for example, Si 3 N 4 Various applications are currently underway, such as forming a protective coating layer such as Al 2 O 3 on the surface of aluminum to improve its corrosion resistance and oxidation resistance. The technical content described in this specification regarding the improvement of this type of thick film element is the development result of a fundamental improvement in the adhesion between the thick film and the ceramic insulating substrate, which is a technical problem common to various thick films. This is where we propose. [Prior Art] For some types of thick film devices, additives are used in the thick film material to help improve adhesion, such as glass. et al Int.
Microelectronics Symp. (1971) 4.7) and Proceedings Institute Electroradio Engineering Conference 1976.
(MV Coleman et: Proc.Inst.Electro.Radio
Eng. Conf. (1976) [31] 1-16), etc., but additives often force the thick film element itself to change in quality. Another method is to choose a combination of a substrate and a thick film with a similar coefficient of thermal expansion.
H.Kohl “Materials and Techniques for
Vacum Devices”p391 (1967) Reinhold Pub.)
As shown in , thermal strain is reduced by approximating the coefficient of thermal expansion, and even if the adhesion strength is somewhat low, it is quite effective in preventing peeling. However, it does not have sufficient resistance to mechanical shock. In addition to these, it is often done to increase the adhesion of thick films by roughening the surface of the substrate. Attempts have been made to roughen the surface using a projection method or to coat the surface of the substrate with coarse crystal grains to make use of the unevenness, but the sintering properties of the two differ due to the difference in crystal grain size from the base material, resulting in poor results. It was not possible to obtain proper adhesion or to obtain uniform and controlled unevenness.
Furthermore, it is difficult to obtain sufficient adhesion, especially for thick films of 10 μm or more, and the roughening of the former damages the surface of the substrate, which is disadvantageous in terms of basic strength. Furthermore, these conventional techniques do not apply at least to those related to the fixation of functional semiconductor thick films. (Problems to be Solved by the Invention) When a thick film, particularly a film thickness of 10 μm or more, is required, a metal that can be deposited with high adhesion strength on the surface of a ceramic insulating substrate. It is an object of the invention to provide a ceramic substrate carrying a thick oxide film. (Means for Solving the Problems) The above object can be advantageously achieved by a configuration based on the following points. That is, in this invention, a thick film of metal oxides is baked on the surface of a ceramic insulating base, and the surface of the ceramic insulating base is
A group of fired ceramic particles with an average particle size of 5 μm or more and a maximum particle size of 500 μm or less are dispersed and coalesced in a ceramic insulating substrate by 1/20 to 1/4 of the average particle size while being partially buried in the substrate, and formed on the surface of the substrate. It has an uneven base,
Carrying a thick metal oxide film on the uneven base, which is characterized by forming a baked thick film layer of a metal oxide filling the inside of the uneven base.
It is a ceramic substrate. Here, ceramic insulating substrates can be made of metal oxides such as alumina, beryllia, forsterite, zirconia, chitavari, ferrite, and non-oxides such as silicon nitride and aluminum nitride. . For the fired ceramic particles used to ensure firm adhesion of the metal oxide thick film on the surface of these ceramic insulating substrates, it is advantageous to use materials that are the same or similar to those of the substrate, especially those with similar sintering properties. Of course, it does not matter if it is made of a different material if there is one. Fired ceramic particles are advantageously suitable here as granulated particles in an unfired state with an average particle size of 5 μm or more, preferably 50 to 200 μm, and a maximum particle size of 500 μm, particularly 300 μm or less. If the average particle size is smaller than 5 μm, it is difficult to produce a locking effect that is useful for ensuring adhesion strength, especially for thick films, while particles with a maximum particle size of more than 500 μm, for example, cannot be used for thick films of sensing functional semiconductors. However, it is difficult to form the film uniformly using a conventional thick film printing method, and when it is used as a functional element, the thick film tends to have uneven properties. Partial embedding of fired ceramic particles on the surface of the ceramic insulating substrate is approximately 1/20 of the average particle diameter.
It is preferable to make the depth about 1/4, 1/20
If it is shallower, the fired ceramic particles will likely bite into the particles and will not adhere properly, while if they are buried too deep (more than 1/4 of the way), the work will be difficult and the subsequent deposition of the sensing functional semiconductor thick film will be difficult. In some cases, there is a disadvantage that it is difficult to expect a sufficient hook-like restraint effect. The density of the buried ceramic fired particles is determined by the ratio of the vertically exposed area of the surface of the ceramic insulating substrate itself to the vertically covered area by the dispersed particles (hereinafter referred to as coverage ratio) of 1:4 to 1:4.
The coverage ratio is preferably in the range of 4:1, and the optimum coverage ratio is 1:1, but it can be selected as appropriate depending on the intended use of the membrane. As for the material of the fired ceramic particles, as already mentioned in relation to the material of the ceramic insulating substrate, we selected alumina as the best material, taking into consideration mechanical strength, heat resistance, insulation, and price. Mullite, zirconia, and spinel are also suitable. The method for manufacturing a ceramic substrate according to the present invention will be exemplified as follows. First, for a ceramic insulating substrate, a slurry is prepared by mixing ceramic powder mixed with an organic binder in an organic solvent, and a green sheet to be used as the substrate is formed by, for example, a doctor blade method. Pt, Pd,
A desired electrode pattern is thick-film printed in a predetermined shape, such as a comb shape or a spiral shape, using a metal paste such as Rh, Au, or an alloy thereof. Although it is more preferable to perform this electrode forming step in this order, it is not essential and may be performed after the formation of the uneven base surface described later. Moreover, it goes without saying that this electrode forming step is skipped if the purpose is simply to coat a foreign substance on ceramic. On the other hand, ceramic powder is separately granulated to a particle size within the above-mentioned range using a conventional method, preferably using a spray dryer. The heat-treated and temporarily solidified particles are scattered at key points on the surface of the green sheet, for example near the electrode pattern, so that the coverage ratio as described above is achieved, and each particle is It is only necessary to cause partial embedding during the dispersion of the granulated particles, so that the shape of the granulated particles is maintained here.
It is also desirable to interpose a cushion sheet as a pressurizing flat plate. Furthermore, ceramic fired particles are
In order to integrate the particles into the substrate under partial burying, the method is not limited to pressing the particles, but it is also possible to apply a mixture of granulated particles and bonding fine particles in a suspension liquid in advance onto the raw substrate surface. By keeping the fine particles in place, the fine particles are deposited at the foot of the granulated particles so that the granulated particles are buried at a predetermined depth.
It may be integrated and sintered, or the surface of the green sheet may be coated with a solvent and the granulated particles may simply be dispersed therein. In this way, the ceramic green sheet is
After granulation and dispersion of raw particles in an embedded manner, sintering is carried out under temperature conditions compatible with their sintering, followed by TiO 2 , SnO, etc., which are useful for depositing, for example, semiconductor thick films with sensing functionality. 2 , ZnO, and gas-sensitive metal oxide powders such as Fe 2 O 3 , with the above-mentioned metal paste components added as necessary.
A ceramic substrate carrying a thick film can be obtained by applying the thick film paste by thick film printing or casting and baking. In this way, for example, a sensing functional semiconductor thick film can be supported on a ceramic insulating substrate on an uneven base formed of ceramic sintered particles, which are buried and almost uniformly distributed and integrated on the substrate. This is due to the baking of the thick film paste that has penetrated between the layers, so the adhesion strength between the thick film itself and the uneven substrate is extremely high.Moreover, in the case of a sensing functional semiconductor thick film, the functional semiconductor thickness has particularly stable performance. A membrane element is obtained. Now, FIG. 1 schematically shows a cross section across the plate surface of a ceramic substrate according to the present invention, in which 1 is a ceramic insulating base, 2 is ceramic fired particles that have coalesced under partial burial on the surface of the base, and 3 is a An uneven base formed on the substrate surface by dispersing the particles, and 4
This is a baked thick film layer of metal oxides formed on the uneven base 3 and filling the spaces between the uneven base 3. 5 indicates the electrode layer in this example. (Function) The ceramic insulating substrate 1 originally has a surface roughness as shown in FIG. However, according to the present invention, for example, the particle size is approximately 30 μm.
As illustrated in Fig. 2c for a case in which ceramic sintered particles 2 having a spherical shape are buried in the surface of the ceramic insulating substrate 1 by several micrometers, the unevenness is characteristic in that the degree of surface roughening is particularly remarkable. Obtain base 3. As is clear from FIGS. 1 and 2c, this uneven base 3 has uneven gaps that widen toward the surface of the ceramic insulating base 1 between the dispersed ceramic fired particles 2. Therefore, the hardening of the baked thick film layer 4 that fills the inside of the gap is firmly achieved. In fact, the above-mentioned hardening effect can be sufficiently achieved by uniformly dispersing the ceramic sintered particles in the area covered with the baked thick film layer 4 on the surface of the ceramic insulating substrate 1. Embodiments of the present invention as a thick film gas sensor will be mainly described below. FIG. 3 shows the external appearance of this type of gas sensor. In the figure, 5a and 5b are electrodes provided on a ceramic insulating substrate 1. Conventionally, a baked thick film layer 4 as a gas detection film is provided between the electrodes 5a and 5b. However, due to insufficient adhesion, the internal resistance of the sensor often changes, especially when used in harsh temperature environments with severe thermal cycles such as automobile exhaust gas. Due to thermal strain caused by the difference in coefficient of thermal expansion between the base body 1 and the baked thick film layer 5, there was a problem in that the function of the sensor was quickly impaired due to peeling of the baked thick film layer 4. Note that such examples are not limited to gas sensors, but also include thermosensors that use a thermistor film as an adhesion layer on a ceramic insulating substrate, humidity sensors that use moisture-sensitive materials, and other resistive elements that use resistor films. This is common to functional devices that use a sensing functional semiconductor thick film, such as thick film capacitors that use a dielectric film, and in addition, the adhesion strength between a ceramic coating layer of a dissimilar material and the ceramic body, which is simply a protective film. It is clear that this invention is useful for all purposes. In this invention, as shown in the cross-sectional view in FIG. by,
Since the roots are hardened through the uneven base 3, the adhesion is strengthened by expanding the adhesion area due to the unevenness and by the hook-like restraint of the baked thick film layer 5 that fills the inside of the gap between the particles and penetrates. is dramatically improved. In addition, in FIG. 4, a substrate 6 with a window hole is used which is superimposed on the ceramic insulating substrate 1, and by limiting the spraying area of fired ceramic particles inside the window hole 7, uniform dispersion in a predetermined area is facilitated. An example is shown below. Examples of the present invention will be described below. (Example) Example 1 12 parts by weight of butyral resin and 100 parts by weight of mixed powder consisting of 92% by weight of Al 2 O 3 , 4% by weight of SiO 2 , 2% by weight of CaO and 2% by weight of MgO with an average particle size of 1.5 μm. 6 parts by weight of DBP was added and mixed in an organic solvent to form a slurry, and a green sheet 8 with a thickness of 1 mm and a green sheet 9 with a thickness of 0.2 mm were made in the shapes shown in Figures 5 and 6 using a doctor blade. .
On the surface of the green sheet 8, a heating resistor pattern 10 and an electrode pattern 11a having the shape shown in FIG.
11b is thickly printed with platinum paste, and platinum lead wires 12a, 12b with a diameter of 0.3 mm are attached to the ends of each pattern.
and 12c were placed. On the other hand, green sheet 9
After punching out openings 13 at positions where the tips of the electrode patterns 11a and 11b can be exposed when stacked on the green sheet 21, these two green sheets 8 and 9 are laminated and thermocompressed. did. Separately, 4 parts by weight of polyvinyl alcohol was added to a powder having the same composition as the mixed powder used for each green sheet 8, 9, wet-mixed, granulated using a spray dryer, and then sieved into the particle size range shown in Table 1. Granules to be used as ceramic particles 2 were obtained. The granules are filled into the opening 5 so that the coverage ratio is approximately 1, and then the granules are held down with a pressure of 8 kg/cm 2 at 50°C through a cushioning sheet, so that the granules are buried in the green sheet. I let it happen. Two green sheets 8 and 9 were then crimped together.
At the same time, it was fired in the air at a temperature of 1550°C and a holding time of 2 hours. The average burial depth of ceramic sintered particles 2 was approximately 1/10 of its average particle size. Next, 5 mol parts of platinum black was added to TiO 2 powder with an average particle size of 1.2 μm, and 3 parts of platinum black was added to the total powder.
TiO 2 mixed in butyl carbitol with the addition of parts by weight of ethyl cellulose and adjusted to a viscosity of 300 poise.
The paste was filled into the opening 5 and printed as a thick film so as to adhere to the tips of the electrode patterns 11a and 11b.
The gas sensor shown in FIG. 7 was prototyped by baking under conditions of a holding time of 1 hour. The test sensors No. 1 to 8 were distinguished according to the particle size range of the ceramic particles classified in Table 1. For comparison, gas sensor No. 1 is one in which the detection element 13 is formed without filling the opening 5 with ceramic particles. When the internal resistance of gas sensors No. 1 to No. 8 was measured in an atmosphere set at a temperature of 350℃ using a propane burner, they were all 20MΩ at the stoichiometric air-fuel ratio λ>1.
However, when λ=0.9, the values changed to those shown in Table 1, indicating that the sensor function was maintained. A thermal shock test was repeatedly conducted in which the gas sensor was exposed to exhaust gas with a maximum temperature of 800°C discharged from a 2000 c.c. engine under full load for 5 minutes and then idling for 5 minutes until the detection element 13 peeled off. Table 1 also shows the results of time measurements.

【表】 で測定した値を示す。
表1からわかるようにこの発明に従うガスセン
サNo.3〜No.6は比較例のガスセンサNo.1〜No.2に
較べて極めてはく離強度の高いものであつた。
尚、比較例ガスセンサNo.7〜No.8はNo.3〜6と同
程度の接着強度を示したが、検出素子13の印刷
状態が不均一で抵抗値のばらつきも多いものであ
つた。 実施例 2 実施例1のセンサNo.4におけるセラミツク粒子
を用い、表2の条件でクツシヨンシートを介して
顆粒をおさえて焼成した後の、平均の埋没深さ
(n=5)と、このセラミツク絶縁基体をJIS
B8031−1974に規定される衝撃試験後の顆粒の脱
落率を測定した結果を表2に示す。
[Table] Shows the values measured in.
As can be seen from Table 1, gas sensors No. 3 to No. 6 according to the present invention had extremely high peel strength compared to gas sensors No. 1 to No. 2 of the comparative example.
Although Comparative Example Gas Sensors No. 7 to No. 8 showed adhesive strength comparable to No. 3 to No. 6, the printing condition of the detection element 13 was uneven and there were many variations in resistance value. Example 2 Using the ceramic particles in sensor No. 4 of Example 1, the average burial depth (n = 5) after holding the granules with a cushion sheet and firing them under the conditions shown in Table 2, and this Ceramic insulation base JIS
Table 2 shows the results of measuring the dropout rate of the granules after the impact test specified in B8031-1974.

【表】 表2に示されるように粒子の埋没量の少ないも
のは、多量の脱落が認められるものの、1/20〜1/
4(5〜25%)程度のものは良好な密度が得られ
れた。なお28%以上埋没させることは、顆粒が加
圧時に多量にこわれてしまい作業困難であつた。
[Table] As shown in Table 2, particles with a small amount of buried particles are 1/20 to 1/20, although a large amount of particles have fallen off.
4 (5 to 25%), good density was obtained. It was difficult to bury the granules more than 28% because a large amount of the granules were broken during pressurization.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のセラミツク基板の要部断面
図、第2図はセラミツク基板の粗面化前後の比較
図と、この発明による凹凸下地との対照図であ
り、第3図はガスセンサの外観図と、部分断面
図、第4図は別例の断面図、第5図〜第7図はガ
スセンサの製作手順図である。 1……セラミツク絶縁基体、2……セラミツク
焼成粒子、3……凹凸下地、4……焼付け厚膜
層。
Fig. 1 is a cross-sectional view of the main parts of the ceramic substrate of the present invention, Fig. 2 is a comparison diagram of the ceramic substrate before and after roughening, and a contrast diagram of the uneven base according to the present invention, and Fig. 3 is an external view of the gas sensor. FIG. 4 is a sectional view of another example, and FIGS. 5 to 7 are manufacturing procedure diagrams of the gas sensor. DESCRIPTION OF SYMBOLS 1... Ceramic insulating base, 2... Ceramic fired particles, 3... Uneven base, 4... Baked thick film layer.

Claims (1)

【特許請求の範囲】 1 セラミツク絶縁基体1の表面に金属酸化物類
の焼付け厚膜4をそなえ、 該セラミツク絶縁基体1の表面は、平均粒径
5μm以上最大粒径500μm以下のセラミツク焼成
粒子2群をその平均粒径の1/20〜1/4だけセラミ
ツク絶縁基体1中に部分的な埋没下に分散合体さ
せて該基体1の表面に形成した凹凸下地3を有
し、この凹凸下地3上に、該凹凸下地3の間〓の
内部を満たして金属酸化物類の焼付け厚膜4層を
被成して成ることを特徴とする金属酸化物厚膜を
担持した、セラミツク基板。
[Claims] 1. The surface of the ceramic insulating substrate 1 is provided with a baked thick film 4 of metal oxides, and the surface of the ceramic insulating substrate 1 has an average grain size.
Two groups of fired ceramic particles with a maximum particle size of 5 μm or more and a maximum particle size of 500 μm or less are dispersed and coalesced in a ceramic insulating substrate 1 by 1/20 to 1/4 of the average particle size while being partially buried in the ceramic insulating substrate 1, and formed on the surface of the substrate 1. The metal oxidation method is characterized in that it has an uneven base 3, and on this uneven base 3, four baked thick films of metal oxides are formed filling the inside spaces between the uneven base 3. A ceramic substrate that supports a thick film.
JP18381884A 1983-10-28 1984-09-04 Ceramic substrate supporting metal oxide thick film Granted JPS6162854A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP18381884A JPS6162854A (en) 1984-09-04 1984-09-04 Ceramic substrate supporting metal oxide thick film
US06/664,872 US4688015A (en) 1983-10-28 1984-10-25 Gas sensor with ceramics substrate having surface-carried ceramics particles
DE8484112859T DE3479053D1 (en) 1983-10-28 1984-10-25 Gas sensor with ceramics substrate and method for producing the same
EP84112859A EP0140340B1 (en) 1983-10-28 1984-10-25 Gas sensor with ceramics substrate and method for producing the same
US06/880,013 US4720394A (en) 1983-10-28 1986-06-30 Gas sensor with ceramics substrate and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18381884A JPS6162854A (en) 1984-09-04 1984-09-04 Ceramic substrate supporting metal oxide thick film

Publications (2)

Publication Number Publication Date
JPS6162854A JPS6162854A (en) 1986-03-31
JPH051900B2 true JPH051900B2 (en) 1993-01-11

Family

ID=16142393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18381884A Granted JPS6162854A (en) 1983-10-28 1984-09-04 Ceramic substrate supporting metal oxide thick film

Country Status (1)

Country Link
JP (1) JPS6162854A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542372Y2 (en) * 1987-06-05 1993-10-26
JPH01132947A (en) * 1987-11-18 1989-05-25 Toyota Motor Corp Ceramic substrate with metal oxide semiconductor film and manufacture thereof
WO2007105865A1 (en) * 2006-03-10 2007-09-20 Joinset Co., Ltd Ceramic component element and ceramic component and method for the same
JP5021377B2 (en) * 2006-06-16 2012-09-05 日本特殊陶業株式会社 Gas sensor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155293A (en) * 1974-06-04 1975-12-15
JPS5288098A (en) * 1976-01-17 1977-07-22 Murata Manufacturing Co Gas detecting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50155293A (en) * 1974-06-04 1975-12-15
JPS5288098A (en) * 1976-01-17 1977-07-22 Murata Manufacturing Co Gas detecting element

Also Published As

Publication number Publication date
JPS6162854A (en) 1986-03-31

Similar Documents

Publication Publication Date Title
US4688015A (en) Gas sensor with ceramics substrate having surface-carried ceramics particles
JP4758117B2 (en) Gas sensor element and manufacturing method thereof
JPH07270375A (en) Exhaust gas sensor containing detecting element made of composite tile and manufacture thereof
US5110442A (en) Reinforced electrolyte function elements
US4340635A (en) Ceramic substrate for fine-line electrical circuitry
JPH11251109A (en) Thermistor element and its manufacture
JPH051900B2 (en)
US5476003A (en) Measuring sensor for determining gas compositions
JPH0582550B2 (en)
KR102430465B1 (en) Integrated Gas Sensor Assembly and Its Manufacturing Method
JP4084626B2 (en) Electrode forming paste and oxygen sensor using the same
US4631160A (en) Method of manufacturing ceramic substrate for fine-line electrical circuitry
JPH0437939B2 (en)
JP2002365258A (en) Gas sensor element, its manufacturing method and gas sensor
JP2898106B2 (en) Thermistor ceramic sensor and method for manufacturing the same
JP4113479B2 (en) Oxygen sensor element
JPH0417375B2 (en)
JP4822606B2 (en) Ceramic chip heater and element heating type sensor using the same
JP4700214B2 (en) Oxygen sensor element and manufacturing method thereof
JP4744043B2 (en) Air-fuel ratio sensor element
JP4698041B2 (en) Air-fuel ratio sensor element
JPH07167714A (en) Temperature sensor and its manufacture
JPH10144503A (en) Resistance-type temperature sensor and its manufacture
JP2002190402A (en) Thermistor element and its manufacturing method
JPH10312907A (en) Thermistor element and its manufacture