JPH05187187A - Fiber-reinforced resin composite pipe for propulsion pipe and manufacture thereof - Google Patents
Fiber-reinforced resin composite pipe for propulsion pipe and manufacture thereofInfo
- Publication number
- JPH05187187A JPH05187187A JP291992A JP291992A JPH05187187A JP H05187187 A JPH05187187 A JP H05187187A JP 291992 A JP291992 A JP 291992A JP 291992 A JP291992 A JP 291992A JP H05187187 A JPH05187187 A JP H05187187A
- Authority
- JP
- Japan
- Prior art keywords
- pipe
- reinforced resin
- fiber
- spacer
- propulsion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Excavating Of Shafts Or Tunnels (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、地中に管路を形成する
ための各種工法のうち、特に推進工法における推進管と
して好適な繊維強化樹脂複合管(以下、単に複合管とい
う。)及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber-reinforced resin composite pipe (hereinafter simply referred to as a composite pipe) suitable as a propulsion pipe in a propulsion method among various construction methods for forming a conduit in the ground. The manufacturing method is related.
【0002】[0002]
【従来の技術】推進工法は、立坑内に設置した推進機に
より定尺の推進管を順次互いの管端面同士を衝合させて
地中に横向きに推し進め管路を形成する工法であり、下
水道の構築などによく用いられている。2. Description of the Related Art The propulsion method is a method of forming a pipeline by pushing a standard length propulsion pipe in a horizontal direction into the ground by sequentially abutting the end faces of each other with a propulsion device installed in a vertical shaft. It is often used for construction.
【0003】この推進工法に用いられる推進管として
は、現在、複合管がこれまでのコンクリート管や鋳鉄管
に代わって多用されるようになってきている。As a propulsion pipe used in this propulsion method, a composite pipe is now widely used in place of the concrete pipe or cast iron pipe.
【0004】図9は従来の複合管の製造工程を示し、ま
ず芯型(図示省略)に繊維強化樹脂層a,レジンモルタ
ル層b、繊維強化樹脂層cの3層を順次フィラメントワ
インディングによって成形し(図9(a)参照)、管壁
の肉厚が全長にわたって一定の管を作る。次に、図9
(b)及び図10(図9(b)のA部拡大図)に示すよ
うに、管端部における外周側の繊維強化樹脂層c及びレ
ジンモルタル層bの一部を研削して管継手接続用の段部
dを形成する。続いて、図9(c)及び図11(図9
(c)のB部拡大図)に示すように、この研削によって
露出したレジンモルタル層bの表面に再度繊維強化樹脂
層eを形成し、推進時に加わる荷重によって外周側の繊
維強化樹脂層cとレジンモルタル層bの境界部分に剥離
や亀裂が生じることがないよう、該露出部分を保護す
る。そして最後に、図9(d)及び図12(図9(d)
のC部拡大図)に示すように、段部dに形成した繊維強
化樹脂層eの表面を再度研削してこの部分の外径を調整
し、全工程を終了する。このようにして製造された従来
の複合管は、その管端部の外周面に段部を有し、図13
に示すように、推進工法においてこの段部dに外嵌され
る短筒状の管継手fによって後続のものと接続される。FIG. 9 shows a manufacturing process of a conventional composite pipe. First, three layers of a fiber reinforced resin layer a, a resin mortar layer b and a fiber reinforced resin layer c are sequentially formed by filament winding on a core die (not shown). (See FIG. 9 (a)). A tube having a constant wall thickness is formed over the entire length. Next, FIG.
As shown in (b) and FIG. 10 (enlarged view of part A in FIG. 9 (b)), a part of the fiber-reinforced resin layer c and the resin mortar layer b on the outer peripheral side at the pipe end is ground to connect the pipe joint. To form a step d. Subsequently, FIG. 9C and FIG.
As shown in (c) enlarged view of portion B), the fiber reinforced resin layer e is formed again on the surface of the resin mortar layer b exposed by this grinding, and the fiber reinforced resin layer c on the outer peripheral side is formed by the load applied during propulsion. The exposed portion is protected so that peeling or cracking does not occur at the boundary portion of the resin mortar layer b. And finally, FIG. 9 (d) and FIG. 12 (FIG. 9 (d)
As shown in (enlarged view of C portion), the surface of the fiber reinforced resin layer e formed on the step d is ground again to adjust the outer diameter of this portion, and the whole process is completed. The conventional composite pipe manufactured in this manner has a step portion on the outer peripheral surface of the pipe end portion.
As shown in FIG. 3, in the propulsion method, the pipe joint f is fitted to the step portion d so as to be connected to the subsequent one by a short tubular pipe joint f.
【0005】また、従来の複合管としては上記したもの
以外に、例えば実公平2−4308号公報に示されてい
る複合管が知られている。この複合管は、段部が形成さ
れる管端部が繊維強化樹脂層だけで構成されており、他
の部分は上記した複合管と同様、2つの繊維強化樹脂層
の間にレジンモルタル層を設けた3層構造となされたも
のである。In addition to the above-mentioned composite pipes, for example, the composite pipe disclosed in Japanese Utility Model Publication No. 2-4308 is known. In this composite pipe, the pipe end where the step is formed is composed only of the fiber reinforced resin layer, and other parts have a resin mortar layer between the two fiber reinforced resin layers as in the above-mentioned composite pipe. The three-layer structure is provided.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記い
ずれの複合管も管端部の外周面に管継手接続用の段部を
研削加工により2次的に形成しているものであるから、
その分製造に要する時間及びコストが多くかかるといっ
た不都合があった。However, in any of the above composite pipes, a step for connecting a pipe joint is secondarily formed by grinding on the outer peripheral surface of the pipe end.
Therefore, there is a disadvantage that it takes a lot of time and cost for manufacturing.
【0007】特に前者の複合管にあっては、管端部にお
いて繊維強化樹脂層の形成と研削とを交互に繰り返し行
うものであるから、上記した問題がより一層大きかっ
た。Particularly, in the former composite pipe, since the formation of the fiber reinforced resin layer and the grinding are alternately repeated at the end of the pipe, the above-mentioned problem is further serious.
【0008】本発明は上記従来の問題に鑑みなされたも
のであって、一度に管本体部分と管継手接続用の段部と
を形成することができ、従来必要とされていた管端部に
おける研削加工を一切なくした推進管用繊維強化樹脂複
合管及びその製造方法を提供するものである。The present invention has been made in view of the above-mentioned problems of the prior art, and it is possible to form the pipe body portion and the step portion for connecting the pipe joint at one time, and in the pipe end portion which has been conventionally required. The present invention provides a fiber-reinforced resin composite pipe for a propulsion pipe without any grinding process and a method for producing the same.
【0009】[0009]
【課題を解決するための手段】本発明に係る推進管用繊
維強化樹脂複合管は、管端部の内周壁に、短筒状の管継
手が嵌入される段部が形成され、該管端部も含めて管壁
全体が、2つの繊維強化樹脂層の間にレジンモルタル層
が存する3層構造となされたものである。A fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention is provided with a step portion into which a short tubular pipe joint is fitted, on the inner peripheral wall of the pipe end portion, and the pipe end portion is formed. The entire tube wall including the one is a three-layer structure in which a resin mortar layer is present between two fiber reinforced resin layers.
【0010】また本発明に係る繊維強化樹脂複合管の製
造方法は、周方向に回転しつつ軸方向に移動する芯型に
前記管継手と同大の段部形成用スペーサを装着してから
該芯型に繊維強化樹脂層、レジンモルタル層、繊維強化
樹脂層の3層を順次巻回積層するとともに硬化させたの
ち、これを前記スペーサの軸方向中心部で切断し、次い
で該スペーサを抜去するものである。Further, in the method for producing a fiber-reinforced resin composite pipe according to the present invention, the step-forming spacer of the same size as the pipe joint is mounted on the core type which moves in the axial direction while rotating in the circumferential direction, Three layers of a fiber-reinforced resin layer, a resin mortar layer, and a fiber-reinforced resin layer are sequentially wound and laminated on a core type and cured, and then this is cut at the axial center of the spacer, and then the spacer is removed. It is a thing.
【0011】[0011]
【作用】管端部も含めて管壁全体が、2つの繊維強化樹
脂層の間にレジンモルタル層が存する3層構造となさ
れ、管の主体部分から段部にかけて内周側の繊維強化樹
脂層が一体となっているため、主体部分と段部との境界
部分における強度が高い。[Function] The entire pipe wall including the pipe end has a three-layer structure in which the resin mortar layer is present between the two fiber reinforced resin layers, and the fiber reinforced resin layer on the inner peripheral side extends from the main portion of the pipe to the step portion. The strength is high at the boundary portion between the main body portion and the stepped portion because of the integral structure.
【0012】また、段部が管端部の内周壁に形成されて
おり、管同士の接続時に管継手がこの段部内に嵌入され
るから、管同士の接続部分の表面が平滑となり、外嵌さ
れる管継手により接続部分に凹凸が生じる従来の複合管
の場合(図13参照)と比べて推進時の抵抗が小さい。Further, since the step portion is formed on the inner peripheral wall of the pipe end portion and the pipe joint is fitted into the step portion when the pipes are connected to each other, the surface of the connecting portion between the pipes becomes smooth and the pipe is fitted to the outside. The resistance at the time of propulsion is smaller than that in the case of the conventional composite pipe (see FIG. 13) in which unevenness is generated in the connection portion due to the pipe joint.
【0013】[0013]
【実施例】本発明の一実施例を図面を参照して説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings.
【0014】本発明の複合管は、図1に示すように、管
端部1の内周壁に、短筒状の管継手8(図5参照)が嵌
入される段部2が形成され、該管端部1も含めて管壁3
全体が、2つの繊維強化樹脂層4,6の間にレジンモル
タル層5が存する3層構造となされたものである。In the composite pipe of the present invention, as shown in FIG. 1, a step portion 2 into which a short tubular pipe joint 8 (see FIG. 5) is fitted is formed on an inner peripheral wall of a pipe end portion 1, Pipe wall 3 including pipe end 1
The entire structure is a three-layer structure in which the resin mortar layer 5 is present between the two fiber reinforced resin layers 4 and 6.
【0015】上記繊維強化樹脂層4,6は、従来の複合
管と同様、例えばガラス繊維により強化された熱硬化性
樹脂からなるものである。The fiber-reinforced resin layers 4 and 6 are made of, for example, a thermosetting resin reinforced by glass fibers, as in the conventional composite pipe.
【0016】上記段部2の深さ(管の軸方向に沿う長
さ)は、管継手8の長さの半分よりもやや長い寸法に設
定されている。また、段部2の最奥部21は、図示のよ
うに内周壁面と直角である必要はなく、斜面又は曲面で
あってもよい。The depth of the stepped portion 2 (length along the axial direction of the pipe) is set to be slightly longer than half the length of the pipe joint 8. Further, the innermost portion 21 of the step portion 2 need not be at a right angle to the inner peripheral wall surface as shown in the drawing, but may be an inclined surface or a curved surface.
【0017】管端部1の肉厚は、管の長さや径などに応
じて推進時の荷重に耐えうる厚みに設定される。また、
管端面7は外周壁面と直角な平滑面となされている。The wall thickness of the tube end portion 1 is set to a thickness that can withstand the load during propulsion according to the length and diameter of the tube. Also,
The tube end surface 7 is a smooth surface perpendicular to the outer peripheral wall surface.
【0018】次に、上記複合管の製造方法について図2
以下を参照して説明する。Next, a method for manufacturing the composite pipe will be described with reference to FIG.
A description will be given with reference to the following.
【0019】ここで使用される芯型9は、芯の外周面に
螺旋状に巻回された無端のスチールベルトが軸方向に移
動する方式のもので、軸方向に回転しつつスチールベル
トの幅分ずつ軸方向に移動する。The core die 9 used here is a type in which an endless steel belt spirally wound around the outer peripheral surface of the core moves in the axial direction, and the width of the steel belt rotates while rotating in the axial direction. Move axially by minutes.
【0020】まず、芯型9の外周面にセロファンやポリ
エステルフィルムなどの離型材10を螺旋状に巻回し、
その上に段部形成用スペーサ11を、製造しようとする
複合管の長さに応じた間隔で順次装着していく。First, a release material 10 such as cellophane or polyester film is spirally wound around the outer peripheral surface of the core die 9,
The stepped portion forming spacers 11 are sequentially mounted thereon at intervals according to the length of the composite pipe to be manufactured.
【0021】段部形成用スペーサ11は、図7に示すよ
うに、一対の割型11a,11bからなり、互いの係止
部11c,11dを係合させることにより短筒状に一体
化されるものである。この段部形成用スペーサ11の外
径は段部2における内径と等しくなされており、長さは
管継手8の長さよりわずかに長くなされている。また、
この段部形成用スペーサ11の材料としては、例えば硬
質ウレタン樹脂、フェノール樹脂、アクリル樹脂、ポリ
エチレン、ポリプロピレン、ABS樹脂等の軽量発泡
体、あるいはこのような有機質のもの以外に、ガラス、
モルタル等の発泡体など無機質の材料が用いられる。As shown in FIG. 7, the step portion forming spacer 11 is composed of a pair of split molds 11a and 11b, and is integrated into a short tubular shape by engaging the locking portions 11c and 11d with each other. It is a thing. The outer diameter of the step forming spacer 11 is equal to the inner diameter of the step 2, and the length thereof is slightly longer than the length of the pipe joint 8. Also,
Examples of the material of the step forming spacer 11 include light urethane foam, phenol resin, acrylic resin, polyethylene, polypropylene, ABS resin, or other lightweight foam, or glass other than such organic materials.
An inorganic material such as foam such as mortar is used.
【0022】なお、段部形成用スペーサ11の外形状
は、図2に示すように、外周縁部が直角となされたもの
である必要はなく、例えば、図8(a)乃至(c)に示
すように、外周縁部が傾斜面又は曲面となされたもので
もよい。むしろ外周縁部が傾斜面又は曲面となされたス
ペーサの方が、内周側の繊維強化樹脂層4を芯型9から
スペーサにかけて一様に形成し易くなるので好ましい。The outer shape of the step-forming spacer 11 does not need to have a right peripheral edge as shown in FIG. 2. For example, as shown in FIGS. As shown, the outer peripheral edge portion may be an inclined surface or a curved surface. Rather, it is preferable to use a spacer whose outer peripheral edge portion is an inclined surface or a curved surface because it is easy to uniformly form the fiber reinforced resin layer 4 on the inner peripheral side from the core mold 9 to the spacer.
【0023】次に、上記のようにして段部形成用スペー
サ11を装着した芯型9に、図3(a)に示すように、
繊維強化樹脂層4、レジンモルタル層5、繊維強化樹脂
層6の3層を順次巻回積層する。繊維強化樹脂層4,6
は、それぞれ熱硬化性樹脂を含浸させたガラスロービン
グを芯型9の移動速度に対応したピッチで螺旋状に巻回
することで形成する。また、レジンモルタル層5は常に
一定量が供給されるので、段部形成用スペーサ11が存
する部分では余分のレジンモルタルを掻き落とし、表面
が常に平滑となるようにする。図3(b)はこのように
して上記3層4,5,6が形成された後の段部形成用ス
ペーサ11部分を示す部分拡大断面図である。この図に
示すように、内周側の繊維強化樹脂層6が芯型9から段
部形成用スペーサ11にかけて一様に形成されており、
該スペーサ11の部分では、レジンモルタル層5の厚み
が異なる以外、他の部分と同様外周側及び内周側の繊維
強化樹脂層4,6の厚みが一定な3層構造となってい
る。Next, as shown in FIG. 3 (a), the core mold 9 having the step forming spacer 11 mounted thereon is attached as described above.
Three layers of the fiber reinforced resin layer 4, the resin mortar layer 5, and the fiber reinforced resin layer 6 are sequentially wound and laminated. Fiber reinforced resin layers 4, 6
Is formed by spirally winding glass rovings impregnated with thermosetting resin at a pitch corresponding to the moving speed of the core die 9. Further, since the resin mortar layer 5 is always supplied in a constant amount, excess resin mortar is scraped off at the portion where the step forming spacer 11 is present so that the surface is always smooth. FIG. 3B is a partial enlarged cross-sectional view showing the stepped portion forming spacer 11 portion after the above-mentioned three layers 4, 5, 6 are formed. As shown in this figure, the fiber reinforced resin layer 6 on the inner peripheral side is uniformly formed from the core die 9 to the step portion forming spacer 11,
The spacer 11 has a three-layer structure in which the thicknesses of the resin mortar layer 5 are different and the thicknesses of the fiber-reinforced resin layers 4 and 6 on the outer peripheral side and the inner peripheral side are constant as in the other portions.
【0024】この後、硬化炉(図示せず)内を通過させ
て上記3層4,5,6を硬化させたのち、図4において
縦の破線Xで示すように、段部形成用スペーサ11の軸
方向中心部で切断し、次いで該スペーサ11を抜去す
る。なお、この切断は、上記3層4,5,6のみについ
て行っても、あいは段部形成用スペーサ11もとろも行
ってもよい。上記3層4,5,6のみを切断する場合
は、段部形成用スペーサ11がそのままの形で残るの
で、再利用することができる。Thereafter, after passing through a curing furnace (not shown) to cure the three layers 4, 5 and 6, as shown by a vertical broken line X in FIG. Then, the spacer 11 is removed at the axially central part of FIG. It should be noted that this cutting may be performed only on the above-mentioned three layers 4, 5, and 6, or in some cases, the spacer 11 for forming the step portion. When only the three layers 4, 5 and 6 are cut, the spacer 11 for forming the step portion remains as it is and can be reused.
【0025】以上で本発明の複合管を完成する。The composite pipe of the present invention is completed as described above.
【0026】このようにしてできた複合管の接続には、
図5に示すような合成樹脂製の管継手8を用いる。この
管継手8は、短筒状のものであって、外周面の両縁部に
抜止用の鋸歯部81が形成されている。また、この管継
手8の長さは、複合管の段部2の深さの2倍よりもわず
かに短い寸法とされており、外径(上記鋸歯部81にお
ける外径)は段部2における内径と略等しくなされてい
る。To connect the composite pipes thus formed,
A pipe joint 8 made of synthetic resin as shown in FIG. 5 is used. The pipe joint 8 has a short tubular shape, and has saw-tooth portions 81 for preventing slipping off at both edges of the outer peripheral surface. Further, the length of the pipe joint 8 is set to be slightly shorter than twice the depth of the step portion 2 of the composite pipe, and the outer diameter (outer diameter of the sawtooth portion 81) is equal to that of the step portion 2. It is made almost equal to the inner diameter.
【0027】図6は上記管継手8により複合管同士を接
続した状態を示す破断断面図であり、両複合管は互いの
管端面7同士のみで当接しており、この部分を介して推
進力が伝達される。FIG. 6 is a cutaway sectional view showing a state in which the composite pipes are connected to each other by the pipe joint 8. The composite pipes are in contact with each other only at their pipe end faces 7, and the propulsive force is exerted through this portion. Is transmitted.
【0028】[0028]
【発明の効果】本発明の複合管は、段部も含めて管壁全
体が、2つの繊維強化樹脂層の間にレジンモルタル層が
存する3層構造となされたものであるから、管端部にお
ける強度が高く、推進時にこの部分で剥離や亀裂等が生
じるおそれがない。したがって、接続部分に何の不安も
ない管路を構築することができる。In the composite pipe of the present invention, the entire pipe wall including the step portion has a three-layer structure in which the resin mortar layer is present between the two fiber reinforced resin layers, and therefore the pipe end portion is formed. The strength is high and there is no risk of peeling or cracking at this portion during propulsion. Therefore, it is possible to construct a pipe line without any fear in the connecting portion.
【0029】しかも段部が管端部の内周壁に形成されて
おり、管同士の接続時に管継手がこの段部内に嵌入され
るから、管同士の接続部分の表面が平滑となり、外嵌さ
れる管継手により接続部分に凹凸が生じる従来の複合管
の場合と比べて推進時の抵抗が小さい。したがって、作
業性にも優れている。Moreover, since the step portion is formed on the inner peripheral wall of the pipe end portion and the pipe joint is fitted into the step portion when the pipes are connected to each other, the surface of the connecting portion of the pipes becomes smooth and the pipe is externally fitted. The resistance at the time of propulsion is smaller than that in the case of the conventional composite pipe in which unevenness occurs in the connection part due to the pipe joint. Therefore, workability is also excellent.
【0030】また、本発明の製造方法は、段部形成用ス
ペーサを用いて管端部に段部を形成するものであるか
ら、従来必要であった段部形成のための研削加工を一切
無くすことができ、生産性の大幅な向上とコストの低廉
化とを図ることができる。しかも、従来の研削加工によ
る方法と比べて、段部の寸法精度が高い。Further, in the manufacturing method of the present invention, since the step portion is formed at the pipe end portion by using the step portion forming spacer, the grinding process for forming the step portion, which has been conventionally required, is completely eliminated. Therefore, it is possible to significantly improve the productivity and reduce the cost. Moreover, the dimensional accuracy of the stepped portion is higher than that of the conventional grinding method.
【図1】本発明の推進管用繊維強化樹脂複合管の一実施
例を示す中間部分を省略した破断断面図である。FIG. 1 is a broken sectional view showing an embodiment of a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention, with an intermediate portion omitted.
【図2】本発明の推進管用繊維強化樹脂複合管の製造方
法を示す工程図である。FIG. 2 is a process drawing showing the method for producing a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention.
【図3】本発明の推進管用繊維強化樹脂複合管の製造方
法を示す工程図である。FIG. 3 is a process drawing showing a method for manufacturing a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention.
【図4】本発明の推進管用繊維強化樹脂複合管の製造方
法を示す工程図である。FIG. 4 is a process drawing showing the method for producing a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention.
【図5】本発明の推進管用繊維強化樹脂複合管の接続に
使用される管継手の一例を示す破断断面図である。FIG. 5 is a cutaway sectional view showing an example of a pipe joint used for connecting the fiber-reinforced resin composite pipe for a propulsion pipe of the present invention.
【図6】本発明の推進管用繊維強化樹脂複合管の接続状
態を示す破断断面図である。FIG. 6 is a broken sectional view showing a connected state of the fiber-reinforced resin composite pipe for a propulsion pipe of the present invention.
【図7】本発明の推進管用繊維強化樹脂複合管の製造方
法に使用される段部形成用スペーサの一例を示す分解正
面図である。FIG. 7 is an exploded front view showing an example of a step portion forming spacer used in the method for producing a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention.
【図8】本発明の推進管用繊維強化樹脂複合管の製造方
法に使用される段部形成用スペーサの他の例を示す一部
破断正面図である。FIG. 8 is a partially cutaway front view showing another example of the stepped portion forming spacer used in the method for producing a fiber-reinforced resin composite pipe for a propulsion pipe according to the present invention.
【図9】従来の推進管用繊維強化樹脂複合管の製造方法
を示す工程図である。FIG. 9 is a process chart showing a conventional method for manufacturing a fiber-reinforced resin composite pipe for a propulsion pipe.
【図10】図9におけるA部の各部分拡大図である。FIG. 10 is a partial enlarged view of a portion A in FIG.
【図11】図9におけるB部の各部分拡大図である。FIG. 11 is an enlarged view of each part of a B part in FIG.
【図12】図9におけるC部の各部分拡大図である。FIG. 12 is an enlarged view of portions of a C section in FIG.
【図13】従来の推進管用繊維強化樹脂複合管の接続状
態を示す破断断面図である。FIG. 13 is a broken sectional view showing a connected state of a conventional fiber-reinforced resin composite pipe for a propulsion pipe.
1 管端部 2 段部 3 管壁 4 繊維強化樹脂層 5 レジンモルタル層 6 繊維強化樹脂層 8 管継手 9 芯型 11 段部形成用スペーサ 1 Pipe End 2 Steps 3 Pipe Wall 4 Fiber Reinforced Resin Layer 5 Resin Mortar Layer 6 Fiber Reinforced Resin Layer 8 Pipe Joint 9 Core Type 11 Stepped Spacer
Claims (2)
入される段部が形成され、該管端部も含めて管壁全体
が、2つの繊維強化樹脂層の間にレジンモルタル層が存
する3層構造となされたことを特徴とする推進管用繊維
強化樹脂複合管。1. A step portion into which a short tubular pipe joint is fitted is formed on an inner peripheral wall of a pipe end portion, and the entire pipe wall including the pipe end portion is between two fiber reinforced resin layers. A fiber-reinforced resin composite pipe for a propulsion pipe, which has a three-layer structure in which a resin mortar layer is present.
型に管継手よりもわずかに大きい段部形成用スペーサを
装着してから該芯型に繊維強化樹脂層、レジンモルタル
層、繊維強化樹脂層の3層を順次巻回積層するとともに
硬化させたのち、これを前記スペーサの軸方向中心部で
切断し、次いで該スペーサを抜去することを特徴とする
推進管用繊維強化樹脂複合管の製造方法。2. A core type, which rotates in the circumferential direction and moves in the axial direction, is provided with a step forming spacer slightly larger than a pipe joint, and then the fiber type reinforced resin layer, resin mortar layer, and fiber are attached to the core type. A fiber-reinforced resin composite pipe for a propulsion pipe, characterized in that three layers of a reinforced resin layer are sequentially wound and laminated and cured, and then this is cut at a central portion in the axial direction of the spacer, and then the spacer is removed. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04002919A JP3078079B2 (en) | 1992-01-10 | 1992-01-10 | Fiber reinforced resin composite pipe for propulsion pipe and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP04002919A JP3078079B2 (en) | 1992-01-10 | 1992-01-10 | Fiber reinforced resin composite pipe for propulsion pipe and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05187187A true JPH05187187A (en) | 1993-07-27 |
JP3078079B2 JP3078079B2 (en) | 2000-08-21 |
Family
ID=11542764
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP04002919A Expired - Lifetime JP3078079B2 (en) | 1992-01-10 | 1992-01-10 | Fiber reinforced resin composite pipe for propulsion pipe and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3078079B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105889647A (en) * | 2016-06-06 | 2016-08-24 | 浙江飞龙管业有限公司 | Anti-seismic and pressure-proof glass reinforced plastic composite pipe and manufacturing method thereof |
-
1992
- 1992-01-10 JP JP04002919A patent/JP3078079B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105889647A (en) * | 2016-06-06 | 2016-08-24 | 浙江飞龙管业有限公司 | Anti-seismic and pressure-proof glass reinforced plastic composite pipe and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3078079B2 (en) | 2000-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4483214A (en) | Method for the production of fibre reinforced articles | |
JPS581645B2 (en) | Manufacturing method of reinforced plastic tube | |
KR20150066995A (en) | Frp composite wrapped grooved-wall lining tubular structure, and method of manufacturing | |
JPS6292833A (en) | Manufacture of bent continuous fiber reinforced resin tube | |
JP4370587B2 (en) | Winding core manufacturing method | |
JPS5931925B2 (en) | Method and mold for forming a reinforced plastic tubular body having an annular groove | |
JP3078079B2 (en) | Fiber reinforced resin composite pipe for propulsion pipe and method for producing the same | |
JPH03251435A (en) | Frp pipe and its manufacture | |
JP3181383B2 (en) | Manufacturing method of fiber reinforced synthetic resin tube | |
JP3207297B2 (en) | Fiber reinforced synthetic resin pipe and method for producing the same | |
JPS60212310A (en) | Preparation of fiber reinforced resin pipe | |
JPH02200945A (en) | Fiber reinforcing resin alternate material for reinforcing bar and its manufacture | |
JPS5849102Y2 (en) | fishing rod | |
JP3197111B2 (en) | Manufacturing method of fiber reinforced synthetic resin tube | |
JPH04107129A (en) | Method for molding reinforced plastic pipe | |
JPH10244598A (en) | Manufacture of bent-tube of reinforced resin | |
JPS55128431A (en) | Manufacture of composite pipe | |
JP2566445Y2 (en) | Core for forming pipe fittings | |
JPH03251432A (en) | Manufacture of corrosion-resistant reinforced plastic tube | |
JPS5829722B2 (en) | Fukugo Kanno Seizouhou | |
JPS6047091B2 (en) | Manufacturing method of reinforced resin pipe with flanges | |
JP2002361640A (en) | Molding die for pipe with helical guide channel, method for molding pipe with helical guide channel using this molding die and pipe with helical guide channel molded by molding method | |
JPS63235786A (en) | Concrete group composite pipe and manufacture thereof | |
JPH09242940A (en) | High pressure resistant composite pipe and manufacture thereof | |
JPH0462143A (en) | Mandrel for molding fiber reinforced plastic hollow square material and method for preparing the square material |