JPH03251432A - Manufacture of corrosion-resistant reinforced plastic tube - Google Patents

Manufacture of corrosion-resistant reinforced plastic tube

Info

Publication number
JPH03251432A
JPH03251432A JP2050155A JP5015590A JPH03251432A JP H03251432 A JPH03251432 A JP H03251432A JP 2050155 A JP2050155 A JP 2050155A JP 5015590 A JP5015590 A JP 5015590A JP H03251432 A JPH03251432 A JP H03251432A
Authority
JP
Japan
Prior art keywords
resin
mold
tube
heat
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2050155A
Other languages
Japanese (ja)
Other versions
JPH0729385B2 (en
Inventor
Masahiro Tsukamoto
塚本 昌博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2050155A priority Critical patent/JPH0729385B2/en
Publication of JPH03251432A publication Critical patent/JPH03251432A/en
Publication of JPH0729385B2 publication Critical patent/JPH0729385B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

PURPOSE:To manufacture a tube with smooth inner wall surface, without pinholes and without corrosion of a glass fiber material as a reinforced material and upgrade the strength of the tube by forming a layer of given thickness composed of resin only on a section forming an innermost layer of the tube and then winding the reinforcing material and heat curing the resin. CONSTITUTION:Heat-curing resin 3 of desired quantity is fed from a feeding hose 18 onto a release sheet 24 and smoothed thereon by a spatula 19 to form continuously heat-curing resin layers 31 of uniform thickness. The heat-curing resin layers 31 move toward a curing oven 16 following the advancement of a mold surface 15 heated by a preheater 17 from the side of a mold 13 and cured starting from section facing the release sheet 24. The heat-curing resin layers 31 are arranged not to be entirely cured. Then, laminate welding is carried out in the order of glass paper 21, glass strand 22, resin concrete 25, glass strand 22 and glass paper 21, and then the heat-curing resin is heated in the curing oven 16 and cured to manufacture a reinforced plastic tube.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、耐食性に優れた強化プラスチック管の製造方
法に関する。
The present invention relates to a method for manufacturing a reinforced plastic pipe with excellent corrosion resistance.

【従来の技術】[Conventional technology]

近年、大口径の下水道等の管渠にも長尺のガラス繊維を
強化材とする内外強化樹脂層の間にレジンモルタル等の
中間層が設けられたサンドイッチ構造の複合管等が用い
られることがある。 この種の複合管は、金属管やコンクリート製管に比べて
軽量で耐食性にも優れている。
In recent years, composite pipes with a sandwich structure, in which an intermediate layer such as resin mortar is provided between inner and outer reinforced resin layers reinforced with long glass fibers, have been used for large-diameter sewer pipes, etc. be. This type of composite pipe is lighter and has better corrosion resistance than metal or concrete pipes.

【発明が解決しようとする課題】[Problem to be solved by the invention]

ところで、下水道を流下する水は生活排水に一部工業排
水等が含まれ、場所によっては水質が極めて悪いことが
あり、上記のような複合管でも充分な耐食性を示さない
ことがある。 すなわち、従来の製造方法で得られる複合管は、補強材
としてのガラス繊維材料が管内壁面の近傍にまで存在し
、内壁面にピンホールやクラックがある場合に流下する
水がこのピンホールやクラックを通って管壁内に連続し
て埋めこまれたガラス繊維材料に浸透して行くようにな
る。ガラス繊維は、耐薬品性に劣り、特にアルカリや酸
に対して弱いので、無限に劣化が進行し、内面強化樹脂
層の強度が著しく低下し、土庄等の外力で破損すること
があるという問題がある。 そこで、本出願人は、特公昭61−29254号公報に
みられるような複合管の製造方法を先に提案した。 この製造方法は、芯型上に不織布と短繊維群と樹脂とを
含む帯状体を、強圧して脱泡した後、樹脂を半硬化せし
めた状態で芯型上に巻回して内面保護層を形成し、その
のちに外面強化樹脂層を形成するようにしたものであっ
て、内面保護層が充分脱泡されてピンホールが非常に少
なくあらかじめ半硬化されていて、全体を一体硬化させ
るときにクラックの発生もないと言う優れた効果を奏す
るものである。 しかし、この製造方法によって得られる複合管において
も、内面保護層に不織布と短繊維が含まれているため、
完全にピンホールをなくすことができない上、完全に含
浸していたとしても樹脂とロービングとの界面に水みち
が存在し、薬液の浸透が避けられないものであった。 本発明は、このような事情に鑑みて、耐食性に優れた強
化プラスチック管の製造方法を提供することを目的とし
ている。
By the way, the water flowing down the sewer system includes domestic wastewater and some industrial wastewater, and the water quality may be extremely poor depending on the location, and even the above-mentioned composite pipe may not exhibit sufficient corrosion resistance. In other words, in composite pipes obtained by conventional manufacturing methods, the glass fiber material as a reinforcing material is present even near the inner wall surface of the pipe, and if there are pinholes or cracks on the inner wall surface, water flowing down can penetrate these pinholes or cracks. It penetrates through the glass fiber material continuously embedded in the tube wall. Glass fibers have poor chemical resistance, and are particularly vulnerable to alkalis and acids, so they continue to deteriorate indefinitely, significantly reducing the strength of the inner reinforced resin layer, and causing damage due to external forces such as tonosho. There is. Therefore, the present applicant first proposed a method for manufacturing a composite pipe as disclosed in Japanese Patent Publication No. 61-29254. In this manufacturing method, a strip containing a nonwoven fabric, a group of short fibers, and a resin is placed on a core mold to degas it by strong pressure, and then the resin is semi-cured and wound around the core mold to form an inner protective layer. The inner protective layer is fully defoamed and has very few pinholes, and is semi-cured in advance, so that when the whole is integrally cured, It has the excellent effect of not causing any cracks. However, even in the composite tube obtained by this manufacturing method, the inner protective layer contains nonwoven fabric and short fibers, so
Not only is it impossible to completely eliminate pinholes, but even if the resin and roving are completely impregnated, water channels exist at the interface between the resin and the roving, and penetration of the chemical solution is unavoidable. In view of these circumstances, the present invention aims to provide a method for manufacturing a reinforced plastic pipe with excellent corrosion resistance.

【課題を解決するための手段】[Means to solve the problem]

本発明は、このような目的を達成するために、離型処理
された筒状金型の周囲に所望厚の未硬化の熱硬化性樹脂
層を形成し、加熱された前記金型の熱により前記熱硬化
性樹脂層の表面側部分を未硬化状態に保持しながら前記
金型側の面から所定厚だけ硬化させたのち、その」−に
補強材および熱硬化性樹脂を巻回し再び加熱して未硬化
状態の熱硬化性樹脂を全て硬化させる耐食性強化プラス
チック管の製造方法を要旨としている。
In order to achieve such an object, the present invention forms an uncured thermosetting resin layer of a desired thickness around a cylindrical mold that has been subjected to a mold release treatment, and is made by forming an uncured thermosetting resin layer of a desired thickness around a cylindrical mold that has been subjected to a mold release treatment, and by the heat of the heated mold. After curing the thermosetting resin layer by a predetermined thickness from the surface facing the mold while keeping the surface side part in an uncured state, reinforcing material and thermosetting resin are wound around the layer and heated again. The gist of this paper is a method for manufacturing corrosion-resistant reinforced plastic pipes in which all of the uncured thermosetting resin is cured.

【作  用】[For production]

上記の構成によれば、金型周面に形成された所望厚の未
硬化状態の熱硬化性樹脂層を金型側から加熱して外気に
曝されている表面側を未硬化状態にとどめ、金型側の面
から所定の厚みだけ硬化状態にして、先ず、管最内層に
あたる部分に所定の厚みの樹脂のみの層を形成する。つ
ぎに、補強材および熱硬化性樹脂をさらに巻回するので
あるが、最内層にあたる部分の樹脂がすでに硬化してお
り、補強材としてのガラス繊維などが最内層に入りこま
せないように巻回できる。そして、そののちに全部の樹
脂を硬化させて管を完成することができる。
According to the above configuration, an uncured thermosetting resin layer of a desired thickness formed on the peripheral surface of the mold is heated from the mold side to keep the surface side exposed to the outside air in an uncured state, First, a predetermined thickness of a resin-only layer is formed on the innermost layer of the tube by curing it by a predetermined thickness from the mold side surface. Next, the reinforcing material and thermosetting resin are further wound, but since the resin in the innermost layer has already hardened, care must be taken to prevent the reinforcing material, such as glass fiber, from entering the innermost layer. It can be turned. After that, all the resin can be cured to complete the tube.

【実 施 例】【Example】

以下に、本発明を、その実施例をあられす図面を参照し
つつ詳しく説明する。 第1図は本発明にかかる耐食性強化プラスチック管の製
造方法を実施するのに用いられる製造装置の1例をあら
れす。 図にみるように、この製造装置1は、Fロストホルム式
の成形装置であって、装置本体11から水平に延出され
た回転軸12を中心にして回転する一側が開放された円
筒形の金型(マンドレル)13を備え、この金型13に
無端のスチールベルト14が螺旋状に巻回されていて、
金型13の回転によりスチールベルト14によって形成
される型面15が前進するようになっている。そして、
金型13の開放端に達したスチールベルト14は、金型
13の中心を通って元の位置に戻り再び金型13に巻回
されるようになっている。 また、金型13は、その開放端部が硬化炉16内に臨む
ようにされている。一方、金型13の装置本体11側に
は、第2図にみるように、内側に予熱ヒータ17が、外
側に熱硬化樹脂供給ホース18およびヘラ19が、それ
ぞれ設けられている。 予熱ヒータ17は、装置本体11から一定長さの予熱ゾ
ーンの間にだけ設けられていて、その部分の金型13を
内側から予熱するようになっている。 なお、図中、3は熱硬化性樹脂、21はガラスペーパー
、22はガラスストランド、23はレジンコンクリート
供給手段、24は離型シートであって、ガラスペーパー
21およびガラスストランド22は、いずれもあらかじ
め熱硬化性樹脂が含浸されている。 この製造装置1は、上記のようになっており、つぎのよ
うにして強化プラスチック管を連続して得ることができ
るようになっている。 すなわち、金型13を回転させてスチールベルト14に
よって形成された型面15を硬化炉16方向へ前進させ
なから離型シート24を螺旋状に巻回する。そして、所
望量の熱硬化性樹脂3を供給ホース18からこの離型シ
ート24の上に供給するとともに、ヘラ19によって均
らし均一な厚みの熱硬化性樹脂層31を連続的に形成す
る。熱硬化性樹脂層31は、型面15の前進にともない
硬化炉16方向へ徐々に移動するが、予熱ゾーンにある
間は予熱ヒータ17によって金型13側から加熱され、
離型シート24に面している部分から徐々に硬化する。 しかし、予熱ゾーンでは、熱硬化性樹脂層31が全て硬
化することがないように設定されており、少なくとも外
気に接している面が未硬化の状態で残っている状態で予
熱ゾーンを通過するようにされている。なお、硬化する
部分の厚みは、樹脂の供給量、マンドレルの成形長さ、
ヒーター温度、成形速度等を調整することにより自由に
変更することができる。 つぎに、補強材としてのガラスペーパー21゜ガラスス
トランド22およびレジンコンクリート供給手段23か
ら供給されるレジンコンクリート25が、それぞれガラ
スペーパー21.ガラスストランド22.レジンコンク
リート25.ガラスストランド22.ガラスペーパー2
1の順に積層巻回されたのち、硬化炉16において再び
加熱され未硬化状態の熱硬化性樹脂が硬化させられるこ
とにより強化プラスチック管を連続的に得ることができ
る。なお、離型シート24は、成形後除去するようにな
っている。 得られた強化プラスチック管は、最内層が樹脂のみから
なり、その原因となる繊維状物や充填物等を含まないた
め、ピンホールが皆無である。しかも、樹脂のみである
ので内壁面の見栄えもよいものである。 この製造方法において用いられる樹脂としては、特に限
定されないが、不飽和ポリエステル樹脂、ビニルエステ
ル樹脂、エポキシ樹脂等が挙げられ、このうち、耐薬品
性に優れていることから、ビニルエステル樹脂が特に好
ましい。 なお、最内層を形成する樹脂と、強化材とともに巻回さ
れる樹脂とは、同じ樹脂でもよいし、異なる樹脂を用い
るようにしてもよい。例えば、最内層を形成する樹脂と
して速硬性の樹脂を用いるようにすれば、成形ラインが
短くてすむと言う利点がある。 (実施例1) 第1図に示す製造装置を用いて直径80cmのFRPM
管を成形した。 なお、製造条件は、以下のようであった。 予熱ヒーターの長さ        50cmヒーター
の表面温度       100°C成形速度    
        20m/h使用樹脂    不飽和ポ
リエステル樹脂(硬化剤1phrを含む 日本油脂(m製パーメックN) 使用補強材   ガラスペーパー (200g/rri
’ )ガラスロービング(2200番手) 得られた管は、内壁面に光沢があり、目視ではピンホー
ル、ボイド等は1つも発見されなかった。 また、カットして管断面を観察すると内壁面から1mm
の深さまで樹脂のみの層が形成されていた。 (比較例1) 管の最内層を樹脂とガラスチョップ(太さ13μm、長
さ5cm)とポリエステル不織布(100g/ m)よ
りなる半硬化シートを強圧して脱泡した後、金型上に成
形した以外は実施例1と同様にして管を成形した。 得られた管の内壁面は、光沢があったが、チョップの模
様が透けてみえており見栄えがよくなかった。また、カ
ットして管断面を観察すると最内層まで強化繊維材料が
存在していた。 (比較例2) 管の最内層を樹脂とガラスマット(300g/ m)で
成形したこと以外は実施例と同様にして管を成形した。 得られた管の内壁面は、ピンホールが部分的にみられマ
ットも透けてみえて見栄えもよくなかった。また、カッ
トして管断面を観察すると最内層まで強化繊維材料が存
在していた。 第3図にみるような治具4に、上記実施例1、比較例1
,2で得られた管5をそれぞれ30cm幅に輪切りにし
て取り付け5%偏平させて土中に埋設された状態を再現
するとともに、管内壁面を23℃±1°Cの10重量%
硫酸溶液6に曝し、管内壁面に白く亀裂が入るまでの時
間をそれぞれ測定した。その結果、実施例1で得られた
管は、6070時間経過したのちも亀裂が発生しなかっ
たのに対し、比較例1は3000時間で、比較例2は7
00時間で白く亀裂が発生した。 本発明にかかる耐食性強化プラスチック管の製造方法は
、上記の実施例に限定されない。 上記の実施例では、トロストホルム式の成形装置を用い
て連続的に強化プラスチック管を成形するようにしてい
たが、バッチ式で成形しても構わない。また、金型の表
面に予め離型処理がほどこされていれば、離型シートを
使用しなくても構わない。さらに、上記の実施例では、
得られた強化プラスチック管が、レジンコンクリート層
を中間層に有するFRPM管であったが、レジンコンク
リート層のない通常のFRP管も得ることができる。
Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 shows an example of manufacturing equipment used to carry out the method for manufacturing a corrosion-resistant reinforced plastic pipe according to the present invention. As shown in the figure, this manufacturing apparatus 1 is an F-Rostholm type molding apparatus, and is a cylindrical mold with one side open that rotates around a rotating shaft 12 extending horizontally from an apparatus main body 11. A mold (mandrel) 13 is provided, and an endless steel belt 14 is spirally wound around the mold 13.
As the mold 13 rotates, a mold surface 15 formed by a steel belt 14 moves forward. and,
The steel belt 14 that has reached the open end of the mold 13 passes through the center of the mold 13, returns to its original position, and is wound around the mold 13 again. Further, the mold 13 is configured such that its open end faces into the hardening furnace 16. On the other hand, on the side of the device body 11 of the mold 13, as shown in FIG. 2, a preheater 17 is provided on the inside, and a thermosetting resin supply hose 18 and a spatula 19 are provided on the outside. The preheating heater 17 is provided only between a preheating zone of a certain length from the device main body 11, and preheats the mold 13 in that portion from the inside. In addition, in the figure, 3 is a thermosetting resin, 21 is glass paper, 22 is a glass strand, 23 is a resin concrete supply means, and 24 is a mold release sheet, and both the glass paper 21 and the glass strand 22 are preliminarily prepared. Impregnated with thermosetting resin. This manufacturing apparatus 1 is configured as described above, and can continuously produce reinforced plastic tubes in the following manner. That is, the mold release sheet 24 is spirally wound without rotating the mold 13 to advance the mold surface 15 formed by the steel belt 14 toward the curing furnace 16. Then, a desired amount of thermosetting resin 3 is supplied from the supply hose 18 onto the release sheet 24 and leveled with a spatula 19 to continuously form a thermosetting resin layer 31 of uniform thickness. The thermosetting resin layer 31 gradually moves toward the curing furnace 16 as the mold surface 15 advances, but while it is in the preheating zone, it is heated from the mold 13 side by the preheating heater 17.
It gradually hardens from the part facing the release sheet 24. However, in the preheating zone, the thermosetting resin layer 31 is set so that it is not completely cured, and the thermosetting resin layer 31 is set so that it passes through the preheating zone with at least the surface in contact with the outside air remaining uncured. It is being done. The thickness of the hardened part depends on the amount of resin supplied, the molding length of the mandrel,
It can be changed freely by adjusting the heater temperature, molding speed, etc. Next, the glass paper 21.degree. glass strand 22 as a reinforcing material and the resin concrete 25 supplied from the resin concrete supply means 23 are applied to the glass paper 21.degree. Glass strand 22. Resin concrete 25. Glass strand 22. glass paper 2
After being laminated and wound in the order of No. 1, the thermosetting resin is heated again in the curing furnace 16 to harden the unhardened thermosetting resin, thereby making it possible to continuously obtain a reinforced plastic tube. Note that the release sheet 24 is designed to be removed after molding. The obtained reinforced plastic tube has no pinholes because the innermost layer is made only of resin and does not contain any fibrous materials or fillers that would cause such problems. Moreover, since it is made only of resin, the appearance of the inner wall surface is also good. The resin used in this manufacturing method is not particularly limited, but includes unsaturated polyester resins, vinyl ester resins, epoxy resins, etc. Among these, vinyl ester resins are particularly preferred because of their excellent chemical resistance. . Note that the resin forming the innermost layer and the resin wound together with the reinforcing material may be the same resin, or may be different resins. For example, if a fast-curing resin is used as the resin forming the innermost layer, there is an advantage that the molding line can be shortened. (Example 1) FRPM with a diameter of 80 cm was manufactured using the manufacturing equipment shown in Fig. 1.
A tube was formed. The manufacturing conditions were as follows. Preheating heater length: 50cm Heater surface temperature: 100°C Molding speed
20m/h Resin used: Unsaturated polyester resin (Nihon Oil & Fats Co., Ltd. (M-made Permec N) containing 1phr of hardening agent) Reinforcement material used: Glass paper (200g/rri
) Glass roving (number 2200) The obtained tube had a glossy inner wall surface, and no pinholes, voids, etc. were found by visual inspection. In addition, when cut and observing the cross section of the tube, it is found that 1 mm from the inner wall surface.
A layer of only resin was formed to a depth of . (Comparative Example 1) The innermost layer of the tube was defoamed by applying strong pressure to a semi-cured sheet made of resin, glass chop (thickness 13 μm, length 5 cm) and polyester nonwoven fabric (100 g/m), and then molded onto a mold. A tube was molded in the same manner as in Example 1 except for the following steps. The inner wall surface of the obtained tube was glossy, but the chop pattern was visible and did not look good. Furthermore, when the tube was cut and the cross section was observed, reinforcing fiber material was present up to the innermost layer. (Comparative Example 2) A tube was molded in the same manner as in Example except that the innermost layer of the tube was molded from resin and glass mat (300 g/m). The inner wall surface of the obtained tube did not have a good appearance, with pinholes partially visible and the mat visible through it. Furthermore, when the tube was cut and the cross section was observed, reinforcing fiber material was present up to the innermost layer. In the jig 4 as shown in FIG. 3, the above Example 1 and Comparative Example 1
The tubes 5 obtained in , 2 were each cut into 30 cm wide rings and attached, flattened by 5% to reproduce the state of being buried in the soil, and the inner wall surface of the tube was heated to 10% by weight at 23°C ± 1°C.
Each tube was exposed to sulfuric acid solution 6, and the time until white cracks appeared on the inner wall surface of the tube was measured. As a result, the tube obtained in Example 1 showed no cracking even after 6070 hours, whereas Comparative Example 1 did not crack after 3000 hours, and Comparative Example 2 had no cracks after 70 hours.
White cracks appeared in 00 hours. The method for manufacturing a corrosion-resistant reinforced plastic pipe according to the present invention is not limited to the above embodiments. In the above embodiment, the reinforced plastic tube was continuously molded using a Trostholm type molding apparatus, but it may also be molded in a batch type. Furthermore, if the surface of the mold has been subjected to mold release treatment in advance, there is no need to use a mold release sheet. Furthermore, in the above example,
Although the obtained reinforced plastic pipe was an FRPM pipe having a resin concrete layer as an intermediate layer, a normal FRP pipe without a resin concrete layer can also be obtained.

【発明の効果】【Effect of the invention】

本発明にかかる耐食性強化プラスチック管の製造方法は
、以上のように、まず、離型処理された筒状金型の周囲
に形成した熱硬化性樹脂層を、その表面側部分を未硬化
状態に保持しながら前記金型側の面から所定厚だけ硬化
させて管最内層に樹脂のみの層を形成したのち、その上
に補強材および熱硬化性樹脂を巻回するようにしたので
、管内壁面が平滑でピンホールなどがなく、補強材とし
てのガラス繊維材料の腐食による管の強度劣化のない優
れた強化プラスチック管を提供することができる。
As described above, the method for manufacturing a corrosion-resistant reinforced plastic tube according to the present invention is as follows: First, a thermosetting resin layer formed around a cylindrical mold that has been subjected to mold release treatment is left in an uncured state on the surface side. While holding the tube, it was cured to a predetermined thickness from the surface on the mold side to form a resin-only layer on the innermost layer of the tube, and then the reinforcing material and thermosetting resin were wound on top of it, so that the inner wall surface of the tube It is possible to provide an excellent reinforced plastic pipe that is smooth and free of pinholes, and that does not suffer from deterioration in the strength of the pipe due to corrosion of the glass fiber material used as a reinforcing material.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる製造方法を実施するのに用いら
れる製造装置の1例をあられす側面図、第2図はその最
内層を形成する熱硬化性樹脂の供給手段部分をあられす
縦断面図、第3図は得られた強化プラスチックの耐薬品
試験の状態を説明する説明図である。 13・・・金型 21・・・ガラスペーパー(補強材)
22・・・ガラスストランド(補強材) 24・・・離
型シート 25・・・レジンコンクリート 3・・・熱
硬1 2
FIG. 1 is a side view of an example of a manufacturing device used to carry out the manufacturing method according to the present invention, and FIG. 2 is a vertical cross-sectional view of the supply means for the thermosetting resin forming the innermost layer. The plan view and FIG. 3 are explanatory views for explaining the state of the chemical resistance test of the obtained reinforced plastic. 13...Mold 21...Glass paper (reinforcing material)
22...Glass strand (reinforcing material) 24...Release sheet 25...Resin concrete 3...Thermosetting 1 2

Claims (1)

【特許請求の範囲】[Claims] (1)離型処理された筒状金型の周囲に所望厚の未硬化
の熱硬化性樹脂層を形成し、加熱された前記金型の熱に
より前記熱硬化性樹脂層の表面側部分を未硬化状態に保
持しながら前記金型側の面から所定厚だけ硬化させたの
ち、その上に補強材および熱硬化性樹脂を巻回し再び加
熱して未硬化状態の熱硬化性樹脂を全て硬化させる耐食
性強化プラスチック管の製造方法。
(1) Form an uncured thermosetting resin layer of a desired thickness around a cylindrical mold that has been subjected to mold release treatment, and the surface side portion of the thermosetting resin layer is heated by the heat of the heated mold. After curing a predetermined thickness from the mold side surface while keeping it in an uncured state, the reinforcing material and thermosetting resin are wound on top of it and heated again to harden all of the uncured thermosetting resin. A method for producing corrosion-resistant reinforced plastic pipes.
JP2050155A 1990-02-28 1990-02-28 Method for manufacturing corrosion resistant reinforced plastic pipe Expired - Lifetime JPH0729385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2050155A JPH0729385B2 (en) 1990-02-28 1990-02-28 Method for manufacturing corrosion resistant reinforced plastic pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2050155A JPH0729385B2 (en) 1990-02-28 1990-02-28 Method for manufacturing corrosion resistant reinforced plastic pipe

Publications (2)

Publication Number Publication Date
JPH03251432A true JPH03251432A (en) 1991-11-08
JPH0729385B2 JPH0729385B2 (en) 1995-04-05

Family

ID=12851296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2050155A Expired - Lifetime JPH0729385B2 (en) 1990-02-28 1990-02-28 Method for manufacturing corrosion resistant reinforced plastic pipe

Country Status (1)

Country Link
JP (1) JPH0729385B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102873856A (en) * 2012-10-12 2013-01-16 杭州中环化工设备有限公司 Manufacturing method and forming die of glass reinforced plastic pipeline and container
US8576964B2 (en) 2011-08-05 2013-11-05 Kabushiki Kaisha Toshiba Radio receiver
CN113997591A (en) * 2021-11-16 2022-02-01 航天特种材料及工艺技术研究所 Three-dimensional reticular structure resin-based heat-proof layer and preparation method and application thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8576964B2 (en) 2011-08-05 2013-11-05 Kabushiki Kaisha Toshiba Radio receiver
CN102873856A (en) * 2012-10-12 2013-01-16 杭州中环化工设备有限公司 Manufacturing method and forming die of glass reinforced plastic pipeline and container
CN102873856B (en) * 2012-10-12 2015-08-19 杭州中环化工设备有限公司 The preparation method of GRP pipe and glass steel container and mould
CN113997591A (en) * 2021-11-16 2022-02-01 航天特种材料及工艺技术研究所 Three-dimensional reticular structure resin-based heat-proof layer and preparation method and application thereof
CN113997591B (en) * 2021-11-16 2023-04-25 航天特种材料及工艺技术研究所 Three-dimensional reticular structure resin-based heat-resistant layer and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0729385B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US4339291A (en) Manufacture of bitumen pipes
US4483214A (en) Method for the production of fibre reinforced articles
CN109054296B (en) High-strength carbon fiber composite reinforcement material with resin ribs on surface and preparation method thereof
JPH03251432A (en) Manufacture of corrosion-resistant reinforced plastic tube
US4260445A (en) Process for producing thick reinforced plastic articles
US4075300A (en) Method for producing cast-in-place pipe employing permanent pipe mold
JPH06136883A (en) Tendon for prestressed concrete and usage and manufacture thereof
JP2001214573A (en) Reinforcement for construction and its manufacturing method
JP3142394B2 (en) Reinforced plastic pipe and method of manufacturing the same
JPS6139184Y2 (en)
JPS5931382Y2 (en) Manufacturing equipment for reinforced resin deformed tubes
JPS613732A (en) Molding method of filament winding
JPH03251434A (en) Corrosion-resistant reinforcing plastic tube and its manufacture
JPS55128431A (en) Manufacture of composite pipe
JPH04301432A (en) Manufacture of corrosion-resistant reinforced plastic pipe
JPS6129254B2 (en)
JPH1044254A (en) Molding with multi-layer structure and its preparation
JPH05200884A (en) Fiber reinforced synthetic resin body and its manufacture
JPH0367638A (en) Preparation of frp pipe
JP3078079B2 (en) Fiber reinforced resin composite pipe for propulsion pipe and method for producing the same
JPH08150613A (en) Fiber reinforced resin concrete hume pipe and its production
JPH0699552A (en) Corrosion-resistant fiber-reinforced resin pipe
JPH0225776B2 (en)
RU2191313C1 (en) Method of pipe manufacture
JP3240127B2 (en) Manufacturing method of refractory double-layer pipe

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

EXPY Cancellation because of completion of term