JPH0518677B2 - - Google Patents

Info

Publication number
JPH0518677B2
JPH0518677B2 JP60180977A JP18097785A JPH0518677B2 JP H0518677 B2 JPH0518677 B2 JP H0518677B2 JP 60180977 A JP60180977 A JP 60180977A JP 18097785 A JP18097785 A JP 18097785A JP H0518677 B2 JPH0518677 B2 JP H0518677B2
Authority
JP
Japan
Prior art keywords
less
toughness
weld metal
wire
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60180977A
Other languages
Japanese (ja)
Other versions
JPS6240996A (en
Inventor
Masaru Namura
Shigeru Ookita
Yukihiko Horii
Masakuni Wakabayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18097785A priority Critical patent/JPS6240996A/en
Publication of JPS6240996A publication Critical patent/JPS6240996A/en
Publication of JPH0518677B2 publication Critical patent/JPH0518677B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は低温用鋼用潜弧ワイヤに関し、更に詳
しくは低温用鋼の潜弧溶接において、優れた低温
靱性を有するTi−B系溶接金属を得ることがで
きる潜弧ワイヤに関するものである。 (従来の技術) 近年、海底エネルギーの開発にあたり、石油掘
削装置等の重要構造物の建造が活発に行われてい
る。そして、年々構造物は大型化し、且つ寒冷地
で使用される構造物が増加している。このような
背景の下に、高能率で優れた品質の溶接技術の開
発が要望されている。各種構造用鋼の溶接には主
に被覆アーク溶接法。ガスシールド溶接法および
潜弧溶接が適用されている。このうち、潜弧溶接
法はとりわけ、溶接電流を高くする事ができ、多
電極溶接法も適用しやすいので、極めて高能率な
方法として、多方面で利用されている。 ところで、代表的な溶接金属の低温靱性を改善
する方法として、溶接学会誌Vol.50.No.2(昭和56
年2月号)の174〜181頁に示されているように
Ti−Bを添加して溶接金属を均一で微細なアシ
ユキユラーフエライト(以後AFとしるす)組織
にする方法が広く用いられている。さらに、最近
の石油情勢により、従来の−40℃から−60℃とよ
り低温でしかも45KJ/cm以上の両面一層、両面
多層溶接の大入熱溶接においても良好な低温靱性
が得られることを要求するフアブリケータが多く
なつてきた。 (発明が解決しようとする問題点) 上記の大入熱溶接の場合、Ti−B系溶接材料
を用いても次のパスで再熱された部分(以後再熱
部としるす)で靱性が出しにくく、本発明者らの
検討によれば再熱部の靱性低下の主な原因は高炭
素マルテンサイト(以後M*としるす)の生成に
よるところが大きいと思われた。従つてマルテン
サイトの生成を助長する溶接金属中のC量を低く
することが有効であると考えられた。事実、C量
の低い潜弧溶接ワイヤを使用することにより、溶
接金属中のC量を低くすることが再熱部の靱性は
良好になることをみいだした。しかし、単純にC
量を低くしただけでは溶接のままの部分(以後
AWとしるす)や1050℃以上に再熱された部分
(以後粗粒化域としるす)はかえつて靱性が低下
するためこれについてはさらに改良の余地があ
る。 本発明は以上の如き実状に鑑み、低温用鋼の潜
弧溶接に際しAW部でも再熱部でも優れた低温靱
性を有するTi−B系溶融金属が得られる潜弧溶
接ワイヤを提供することを目的とするものであ
る。 (問題点を解決するための手段) 本発明者らは溶接継手全体にわたつて、低温靱
性の良好な化学成分の溶接金属を得ることができ
るような低温用鋼溶接用潜弧溶接ワイヤの開発を
目的として、これらの溶接金属を種々観察した。
その結果、靱性低下の主な原因は、Cを低めるこ
とにより通常はCの脱酸反応により低められてい
るO量が増加し、Bが酸化したり、Si,Mnも酸
化し、Tiの酸化物の形態が変わる等して、Ti−
Bを有効に作用させることができなくなり、初析
フエライト(以後PFとしるす)の析出が増加し、
且つAFの析出が困難になるためであることをみ
いだした。したがつて、Ti−Bを有効に作用さ
せるためには溶接金属中のOを低く抑えなければ
ならない。このための方法を検討した結果、これ
らのワイヤ中に脱酸剤を添加することが有効で脱
酸剤の効果を種々検討した結果Alが最も適して
いることが判明した。これは、脱酸力が適性であ
るばかりでなく、AFの生成にはAlとTi,Mnの
結晶型酸化物が有効な酸化物として作用するため
で、さらに、靱性が改善されているものと思われ
る。 本発明はかかる知見に基づきなされたものであ
つて、その要旨は、 重量%でC:0.07%以下、Si:0.05%未満、
Al:0.002〜0・50%を必須成分とし、P:0.020
%以下、S:0.020%以下、N:0.0050%以下、
O:0.0150%以下に制限し、且つMn:0.5〜3.0
%、Ni:0.5〜12%、Cu:0.02〜3.0%、Mo:0.1
〜2%の内1種以上を含有し、またはこれにさら
にTi:0.05〜0.5%、B:0.005〜0.1%の内1種以
上を含有し、残部がFe及び不可避的不純物であ
り、且つ、CEが0.2〜1.0であることを特徴とする
低温用鋼用Ti−B系潜弧溶接ワイヤにある。 ただし、CEはIIWの炭素当量で CE=C+1/6Mn+1/15(Cu+Ni)+1/5
(Cr+Mo+V) (ただし、重量%で計算を行う。) である。 即ち、本発明ワイヤはTi−Bタイプのフラツ
クス即ち、Ti酸化物とB酸化物を含んだフラツ
クスとの組合せにより、最も効果を上げることが
できるが、Ti酸化物を含有しないフラツクスと
組合せる場合にはワイヤ中にTi,Bの一方また
は両方を添加する。 (作用) 最初に本発明ワイヤの基本成分について述べ
る。 まず、Cは低ければ低いほど良いが少なくとも
0.07%以下でなければ溶接金属中のM*の析出を
十分に抑えることはできない。 次に、Siは脱酸剤として作用しOを低め靱性を
向上させるが、多すぎると靱性を劣化させるので
0.05%未満にしなければならない。 またAlはTi,Mn,Si,Bより脱酸力が強く、
REM,Mg,Caより脱酸力が弱い。このため、
AlはREM等のようにアーク中で全部が酸化せ
ず、かなりの部分が溶融池に移行してから溶融池
の酸素と反応し、酸化するので溶接金属中のO量
を低く抑えるとともに、溶融池におけるBの酸化
を防止し、AFの生成に有効なAl−Ti−Mn系酸
化物を生成することでTi−Bの効果がより一層
発揮され、さらに靱性を良好にすることができる
が溶接金属中でAlが多すぎるとAlのみが酸化を
生じずAFができないことから靱性を劣化させ、
また、酸化したAlが溶接金属中に過度に歩留ま
つて返つて0量を増加させることを勘案とする適
正範囲は0.002〜0.50%である。 一方、Pは粒界に偏析し、結晶粒間の結合力を
弱め靱性を劣化させるのでできるだけ低く制限し
なければならないが0.020%以下であれば有害と
ならない。 次にSもPと同様に靱性を劣化させるので
0.020%以下に制限する必要がある。 また、Nは靱性に特に有害で少なくとも0.0050
%以下に抑えなければならない。 さらにOは溶接金属中ではTi酸化物を形成し
AFを生成するためにある程度必要であるが、そ
のOは溶融池で溶融スラグより十分に供給される
のでワイヤ中に添加する必要はなく、且つ、ワイ
ヤ中のOが多いと添加した成分がアーク中で酸化
損耗するのでできるだけ低く制限する必要があ
り、少なくとも0.0150%以下にしなければならな
い。 以上が本発明の基本成分であるが本発明におい
ては溶接金属の焼き入れ性を適性に保持し、均一
微細なミクロ組織を生成させて低温靱性を向上さ
せるためにMn,Ni,Cu,Moの内1種以上を添
加しなければならない。 まず、Mnは脱酸と溶接金属の焼き入れ性を適
度に与えAFの析出を促し溶接金属の靱性を向上
させるのに必要でその適正範囲は0.5〜3.0%であ
る。0.5%未満の添加ではAFの生成が十分でなく
3.0%を超えて添加すると上部ベーナイト(以後
UBとしるす)が生成し靱性が劣化する。 次にNiは溶接金属に焼き入れ性を適度に与え
且つフエライトの地を強化し、溶接金属の塑性変
形能を増加して、靱性を向上させるのに必要な成
分でその適正範囲は0.5〜12%である。0.5%未満
ではその効果が少なく、12%超えて添加すると溶
接金属に高温割れの危険が大きくなる。 またCuはM*の生成を助長せずに焼き入れ性
を保持し靱性を向上させるのに適した成分でその
適正範囲は0.02〜3.0%である。0.02%未満の添加
ではその効果が少なく3.0%を超えて添加すると
溶接金属に高温割れの危険が大きくなる。 さらにMoは特に大入熱溶接において溶接金属
の焼き入れ性を保持するのに有効な成分でその適
正範囲は0.1〜2.0%である。0.1%未満ではその効
果が十分ではなく、2.0%を超えて添加するとUB
が生成して靱性を劣化させる。 さらに、溶接金属の焼き入れ性が不足すると
PFが析出し又、焼き入れ性が過大となるとUBが
析出し靱性が劣化する。焼き入れ性はIIWの炭素
当量であるCEによつてあらわされ、CEが0.2〜
1.0の範囲でなければならない。すなわち、CEが
0.2未満では溶接金属の焼き入れ性が不足してPF
が生成し、またCEが1.0を超えるとUBが生成し
靱性が劣化する。 だたし、CEはIIWの炭素当量で CE=C+1/6Mn+1/15(Cu+Ni)+1/5
(Cr+Mo+V) (ただし、重量%で計算を行う。) 即ち、Tiはアークや溶融プール中で酸化還元
反応によつて一部はマトリツクス中に溶解し残り
は酸化物となるが、この酸化物がAFの生成核と
なり靱性を向上させるので0.05%以上添加する必
要がある。しかしマトリツクス中に溶解したTi
が多すぎると却つて靱性を劣化させるのでTiの
添加量は0.5%以下でなければならない。 また、Bもアークや溶融プール中で酸化還元反
応によつて酸化物とマトリツクス中に溶解した形
で溶接金属中に存在するが、さらに一部は鋼中の
NとBNを形成することによつてNを無害化して
靱性を向上させるので0.005%以上添加する。ま
た、マトリツクス中に溶解したBも粒界に偏析し
てPFの生成を抑制することにより靱性を向上さ
せるが過剰になると、M*の生成を助長するので
適正範囲は0.1%以下でなければならない。 以上の成分組成を有するワイヤとTi酸化物及
びB酸化物を含有するフラツクス(ワイヤ中に
TiあるいはBが添加されている場合には必ずし
も含有する必要はない)を共に用いることにより
C:0.07%以下、Si:0.1〜0.3%、A:0.002〜
0.05%、P:0.020%以下、S:0.020%以下、
N:0.005%以下、O:0.012〜0.045%であり、且
つMn:0.5〜2.5%、Ni:0.2〜6.5%、Cu:0.02〜
1.2%、Mo:0.03〜0.7%の内1種以上を含有し、
且つCEが0.2〜0.6の成分組成である溶接金属を得
ることが可能となり、かかる溶接金属のAW部、
再熱部は共に−60℃における衝撃試験においても
優れた低温靱性を示す。但し、CEは前記の式と
同じIIWの炭素当量式で求めるものである。 なお、このワイヤは原料となる金属を溶解した
後、鋳造、鍛造、圧延後、1.0〜7.0mm程度に伸
線、メツキして製造することができる。 次に実施例をもつてさらに本発明の効果を具体
的に述べる。 (実施例) 本発明と比較例のワイヤの化学成分を第1表に
示す。
(Industrial Application Field) The present invention relates to a latent arc wire for low-temperature steel, and more specifically, in latent arc welding of low-temperature steel, it is possible to obtain a Ti-B weld metal having excellent low-temperature toughness. It concerns wires. (Prior Art) In recent years, in the development of undersea energy, construction of important structures such as oil drilling rigs has been actively carried out. Structures are becoming larger year by year, and more and more structures are being used in cold regions. Against this background, there is a demand for the development of highly efficient and excellent quality welding technology. Covered arc welding is mainly used for welding various structural steels. Gas shield welding and submerged arc welding are applied. Among these methods, the submerged arc welding method is particularly effective in increasing the welding current and is easy to apply to the multi-electrode welding method, so it is used in many fields as an extremely highly efficient method. By the way, as a typical method for improving the low-temperature toughness of weld metal, the Welding Society Journal Vol. 50. No. 2 (1973)
As shown on pages 174-181 of the February issue of
A widely used method is to add Ti-B to give the weld metal a uniform and fine ashular ferrite (hereinafter referred to as AF) structure. Furthermore, due to the recent petroleum situation, it is required that good low-temperature toughness can be obtained even in high heat input welding, which is lower than the conventional -40℃ to -60℃ and more than 45KJ/cm for double-sided single-layer and double-sided multilayer welding. More and more fabricators are doing this. (Problem to be solved by the invention) In the case of the above-mentioned high heat input welding, even if Ti-B welding material is used, the toughness is not increased in the part that is reheated in the next pass (hereinafter referred to as the reheated part). However, according to the studies conducted by the present inventors, the main cause of the decrease in toughness in the reheating section was thought to be largely due to the formation of high carbon martensite (hereinafter referred to as M*). Therefore, it was considered effective to lower the amount of C in the weld metal, which promotes the formation of martensite. In fact, it has been found that by using a submerged arc welding wire with a low C content, the toughness of the reheated zone can be improved by lowering the C content in the weld metal. However, simply C
If only the amount is lowered, the parts that remain welded (hereinafter referred to as
There is room for further improvement in this regard, as the toughness actually decreases in areas that have been reheated (hereinafter referred to as AW) and above 1050°C (hereinafter referred to as coarse-grained regions). In view of the above-mentioned circumstances, an object of the present invention is to provide a latent arc welding wire capable of producing Ti-B molten metal having excellent low-temperature toughness in both the AW part and the reheating part during latent arc welding of low-temperature steel. That is. (Means for Solving the Problems) The present inventors have developed a submerged arc welding wire for low-temperature steel welding that can obtain a weld metal with good chemical composition and low-temperature toughness throughout the welded joint. For this purpose, various observations were made on these weld metals.
As a result, the main cause of the decrease in toughness is that by lowering C, the amount of O, which is normally lowered by the deoxidation reaction of C, increases, resulting in oxidation of B, oxidation of Si and Mn, and oxidation of Ti. Ti-
It becomes impossible for B to act effectively, and the precipitation of pro-eutectoid ferrite (hereinafter referred to as PF) increases.
We also found that this is because the precipitation of AF becomes difficult. Therefore, in order for Ti-B to work effectively, O in the weld metal must be kept low. As a result of examining methods for this purpose, it was found that it is effective to add a deoxidizing agent to these wires, and after examining various effects of the deoxidizing agent, it was found that Al was the most suitable. This is because the crystalline oxides of Al, Ti, and Mn not only have adequate deoxidizing power but also act as effective oxides in the production of AF, and also have improved toughness. Seem. The present invention was made based on this knowledge, and the gist thereof is as follows: C: 0.07% or less, Si: less than 0.05%,
Al: 0.002 to 0.50% is an essential component, P: 0.020
% or less, S: 0.020% or less, N: 0.0050% or less,
O: limited to 0.0150% or less, and Mn: 0.5 to 3.0
%, Ni: 0.5-12%, Cu: 0.02-3.0%, Mo: 0.1
~2%, or further contains one or more of Ti: 0.05~0.5%, B: 0.005~0.1%, the remainder being Fe and inevitable impurities, and A Ti-B submerged arc welding wire for low-temperature steel, characterized by a CE of 0.2 to 1.0. However, CE is the carbon equivalent of IIW, CE = C + 1/6Mn + 1/15 (Cu + Ni) + 1/5
(Cr+Mo+V) (However, the calculation is performed in weight%.) That is, the wire of the present invention can be most effective when used in combination with a Ti-B type flux, that is, a flux containing Ti oxide and B oxide, but when combined with a flux that does not contain Ti oxide. One or both of Ti and B is added to the wire. (Function) First, the basic components of the wire of the present invention will be described. First of all, the lower C is, the better, but at least
Unless it is 0.07% or less, precipitation of M* in the weld metal cannot be sufficiently suppressed. Next, Si acts as a deoxidizing agent and lowers O and improves toughness, but too much Si deteriorates toughness.
Must be less than 0.05%. Also, Al has stronger deoxidizing power than Ti, Mn, Si, and B.
It has weaker deoxidizing power than REM, Mg, and Ca. For this reason,
Unlike REM, Al is not completely oxidized in the arc, but a considerable portion moves to the molten pool and then reacts with oxygen in the molten pool and oxidizes. Therefore, while keeping the amount of O in the weld metal low, the molten metal By preventing the oxidation of B in the pond and producing Al-Ti-Mn-based oxides that are effective in generating AF, the effect of Ti-B can be further demonstrated and the toughness can be further improved. If there is too much Al in the metal, only Al will not oxidize and AF will not be possible, which will deteriorate the toughness.
In addition, the appropriate range is 0.002 to 0.50%, taking into consideration that oxidized Al may be excessively retained in the weld metal and increase the zero amount. On the other hand, P segregates at grain boundaries, weakens the bond between grains, and deteriorates toughness, so it must be limited to as low as possible, but if it is below 0.020%, it is not harmful. Next, like P, S also deteriorates toughness.
It is necessary to limit it to 0.020% or less. Also, N is particularly harmful to toughness and has a content of at least 0.0050
% or less. Furthermore, O forms Ti oxide in the weld metal.
Although a certain amount of O is required to generate AF, it is not necessary to add it to the wire because it is sufficiently supplied from the molten slag in the molten pool. Since oxidation loss occurs in the interior, it is necessary to limit it to as low as possible, and it must be at least 0.0150% or less. The above are the basic components of the present invention. In the present invention, Mn, Ni, Cu, and Mo are used to maintain appropriate hardenability of the weld metal, generate a uniform fine microstructure, and improve low-temperature toughness. One or more of these must be added. First, Mn is necessary for deoxidizing and providing appropriate hardenability of the weld metal, promoting the precipitation of AF, and improving the toughness of the weld metal, and its appropriate range is 0.5 to 3.0%. Addition of less than 0.5% does not produce enough AF.
When added in excess of 3.0%, upper bainite (hereinafter referred to as
UB) is formed and the toughness deteriorates. Next, Ni is a necessary component to impart appropriate hardenability to the weld metal, strengthen the ferrite base, increase the plastic deformability of the weld metal, and improve toughness, and its appropriate range is 0.5 to 12 %. If it is less than 0.5%, the effect will be small, and if it is added in excess of 12%, there will be a greater risk of hot cracking in the weld metal. Further, Cu is a component suitable for maintaining hardenability and improving toughness without promoting the formation of M*, and its appropriate range is 0.02 to 3.0%. Addition of less than 0.02% will have little effect, and addition of more than 3.0% will increase the risk of hot cracking in the weld metal. Furthermore, Mo is an effective component for maintaining the hardenability of weld metal especially in high heat input welding, and its appropriate range is 0.1 to 2.0%. If it is less than 0.1%, the effect is not sufficient, and if it is added more than 2.0%, UB
is generated and deteriorates toughness. Furthermore, if the hardenability of the weld metal is insufficient,
If PF precipitates and the hardenability becomes excessive, UB precipitates and the toughness deteriorates. Hardenability is expressed by CE, which is the carbon equivalent of IIW, and CE is 0.2~
Must be in the range 1.0. That is, if CE
If it is less than 0.2, the hardenability of the weld metal will be insufficient and PF will occur.
is generated, and if CE exceeds 1.0, UB is generated and toughness deteriorates. However, CE is the carbon equivalent of IIW, and CE=C+1/6Mn+1/15 (Cu+Ni)+1/5
(Cr + Mo + V) (However, the calculation is performed in weight%.) In other words, part of Ti dissolves into the matrix due to redox reaction in the arc or molten pool, and the rest becomes an oxide, but this oxide Since it becomes a nucleus for AF generation and improves toughness, it is necessary to add 0.05% or more. However, Ti dissolved in the matrix
If it is too large, the toughness will deteriorate, so the amount of Ti added must be 0.5% or less. In addition, B also exists in the weld metal in the form of dissolved oxides and matrix through redox reactions in the arc and molten pool, but some of it also forms N and BN in the steel. Since it makes N harmless and improves toughness, it is added at least 0.005%. In addition, B dissolved in the matrix also segregates at grain boundaries and suppresses the formation of PF, thereby improving toughness, but in excess, it promotes the formation of M*, so the appropriate range must be 0.1% or less. . A wire having the above component composition and a flux containing Ti oxide and B oxide (in the wire
If Ti or B is added, it is not necessary to include them), C: 0.07% or less, Si: 0.1 to 0.3%, A: 0.002 to
0.05%, P: 0.020% or less, S: 0.020% or less,
N: 0.005% or less, O: 0.012 to 0.045%, and Mn: 0.5 to 2.5%, Ni: 0.2 to 6.5%, Cu: 0.02 to
Contains one or more of 1.2%, Mo: 0.03 to 0.7%,
In addition, it is possible to obtain a weld metal whose composition has a CE of 0.2 to 0.6, and the AW part of such weld metal,
Both reheated parts show excellent low-temperature toughness in impact tests at -60°C. However, CE is determined using the IIW carbon equivalent formula, which is the same as the above formula. Note that this wire can be manufactured by melting raw metal, casting, forging, rolling, drawing and plating to about 1.0 to 7.0 mm. Next, the effects of the present invention will be specifically described with reference to Examples. (Example) Table 1 shows the chemical components of the wires of the present invention and comparative examples.

【表】 なお、W2を除くワイヤには微量以上のCuが
含まれているがこれは通常のワイヤには防錆と通
電性を良くするために銅メツキが施されているた
めである。W2には実験的に銅メツキを施さなか
つた。また、ワイヤ径はいずれも4.8mmである。 フラツクスはNB−55Eを両面一層溶接に、NB
−55Lを両面多層溶接に使用した。これらのフラ
ツクスはいずれも市販のTi−B系のボンドフラ
ツクスであり、また、F1はTi,Bを含まない
フラツクスである。これらのフラツクスの成分組
成を第2表に示す。
[Table] Note that wires other than W2 contain more than a trace amount of Cu, but this is because ordinary wires are copper-plated to prevent rust and improve conductivity. No copper plating was experimentally applied to W2. Furthermore, the wire diameter is 4.8 mm in both cases. The flux is NB-55E with single layer welding on both sides, NB
-55L was used for double-sided multilayer welding. All of these fluxes are commercially available Ti-B bond fluxes, and F1 is a flux that does not contain Ti or B. The compositions of these fluxes are shown in Table 2.

【表】 供試鋼板を第3表に示す。【table】 The test steel plates are shown in Table 3.

【表】 P1,P2はいずれも制御圧延鋼でP1は50キ
ロ鋼、P2は60キロ鋼である。 第4表は溶接条件を示している。
[Table] Both P1 and P2 are controlled rolled steel, P1 is 50 kg steel and P2 is 60 kg steel. Table 4 shows welding conditions.

【表】 第1図に試験片の採取位置を示す。図において
aは両面一層溶接部、bは両面多層溶接部よりの
試験片採取要領をそれぞれ示し、1はAW部の衝
撃試験片、2は再熱部の衝撃試験片、3は化学分
析用の試料を示す。 第5表に試験結果を示す。
[Table] Figure 1 shows the sampling locations of the test pieces. In the figure, a shows the procedure for collecting specimens from a double-sided single-layer weld, and b shows the procedure for collecting specimens from a double-sided multi-layer weld. 1 is an impact test piece of the AW part, 2 is an impact test piece of the reheated part, and 3 is a specimen for chemical analysis. Show the sample. Table 5 shows the test results.

【表】【table】

【表】 本発明によるワイヤを使用したものはいずれも
良好な値を示しているのに対し、WR1のワイヤ
を使用したものはC量が高くAも添加されてい
ないので、再熱部にM*を生成し、再熱部を含む
部分の衝撃値が、WR2のワイヤを使用したもの
はAが添加されていないので溶接金属中のO量
が増加し、PFが析出してAW部の靱性値が劣化
している。WR3のワイヤを使用したものはCE
が高すぎてUBが生成してAW部、再熱部共に靱
性が劣化している。また、WR4のワイヤを使用
したものはAが高すぎてAW部、再熱部共に靱
性が劣化している。 (発明の効果) 以上の実施例からも明らかなごとく本発明によ
れば溶接金属に極めて優れた低温靱性を与えるこ
とができる溶接ワイヤの提供が可能となり、産業
上の効果は極めて顕著である。
[Table] All the wires using the wire according to the present invention show good values, whereas the wire using WR1 has a high C content and no A added, so there is no M in the reheating section. *, and the impact value of the part including the reheated part is WR2. Since A is not added to the wire, the amount of O in the weld metal increases, PF precipitates, and the toughness of the AW part decreases. The value has deteriorated. Those using WR3 wire are CE
is too high, UB is generated, and the toughness of both the AW section and the reheated section is degraded. In addition, in the case of using WR4 wire, A was too high and the toughness of both the AW part and the reheated part deteriorated. (Effects of the Invention) As is clear from the above examples, according to the present invention, it is possible to provide a welding wire that can impart extremely excellent low-temperature toughness to weld metal, and the industrial effects are extremely significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aは両面一層溶接部bは両面多層溶接部
からの試験片採取要領をそれぞれ示す図である。 1……AW部の衝撃試験片の採取位置、2……
再熱部試験片の採取位置、3……化学分析用試料
の採取位置。
FIG. 1A is a diagram showing the procedure for collecting test specimens from a double-sided single-layer welded part and a double-sided multilayer welded part. 1...Sampling position of impact test piece of AW section, 2...
Collection position of reheating section test piece, 3...position of collection of sample for chemical analysis.

Claims (1)

【特許請求の範囲】 1 重量%でC:0.07%以下、Si:0.05%未満、
Al:0.002〜0.50%を必須成分とし、 P:0.020%以下、S:0.020%以下、N:
0.0050%以下、O:0.0150%以下に制限し、 且つMn:0.5〜3.0%、Ni:0.5〜12%、Cu:
0.02〜3.0%、Mo:0.1〜2%の内1種以上を含有
し、残部がFe及び不可避的不純物であり、且つ、
CEが0.2〜1.0であることを特徴とする低温用鋼用
Ti−B系潜弧溶接ワイヤ。 ただし、CEはIIWの炭素当量で CE=C+1/6Mn+1/15(Cu+Ni)+1/5
(Cr+Mo+V) (ただし、重量%で計算を行う。) 2 重量%でC:0.07%以下、Si:0.05%未満、
Al:0.002〜0.50%を必須成分とし、 P:0.020%以下、S:0.020%以下、N:
0.0050%以下、O:0.0150%以下に制限し、 且つMn:0.5〜3.0%、Ni:0.5〜12%、Cu:
0.02〜3.0%、Mo:0.1〜2%の内1種以上を含有
し、且つTi:0.05〜0.5%、B:0.005〜0.1%の内
1種以上を含有し、残部がFe及び不可避的不純
物であり、且つ、CEが0.2〜1.0であることを特徴
とする低温用鋼用Ti−B系潜弧溶接ワイヤ。た
だし、CEはIIWの炭素当量で CE=C+1/6Mn+1/15(Cu+Ni)+1/5
(Cr+Mo+V) (ただし、重量%で計算を行う。)
[Claims] 1% by weight: C: 0.07% or less, Si: less than 0.05%,
Al: 0.002 to 0.50% is an essential component, P: 0.020% or less, S: 0.020% or less, N:
0.0050% or less, O: 0.0150% or less, and Mn: 0.5-3.0%, Ni: 0.5-12%, Cu:
0.02 to 3.0%, Mo: 0.1 to 2%, the remainder is Fe and inevitable impurities, and
For low temperature steel characterized by a CE of 0.2~1.0
Ti-B based submerged arc welding wire. However, CE is the carbon equivalent of IIW, CE = C + 1/6Mn + 1/15 (Cu + Ni) + 1/5
(Cr+Mo+V) (However, the calculation is done in weight%.) 2 In weight%, C: 0.07% or less, Si: less than 0.05%,
Al: 0.002 to 0.50% is an essential component, P: 0.020% or less, S: 0.020% or less, N:
0.0050% or less, O: 0.0150% or less, and Mn: 0.5-3.0%, Ni: 0.5-12%, Cu:
0.02 to 3.0%, Mo: 0.1 to 2%, and Ti: 0.05 to 0.5%, B: 0.005 to 0.1%, and the remainder is Fe and unavoidable impurities. A Ti-B based submerged arc welding wire for low-temperature steel, characterized in that the wire has a CE of 0.2 to 1.0. However, CE is the carbon equivalent of IIW, CE = C + 1/6Mn + 1/15 (Cu + Ni) + 1/5
(Cr+Mo+V) (However, calculation is performed in weight%.)
JP18097785A 1985-08-20 1985-08-20 Submerged arc welding wire for low-temperature steel Granted JPS6240996A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18097785A JPS6240996A (en) 1985-08-20 1985-08-20 Submerged arc welding wire for low-temperature steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18097785A JPS6240996A (en) 1985-08-20 1985-08-20 Submerged arc welding wire for low-temperature steel

Publications (2)

Publication Number Publication Date
JPS6240996A JPS6240996A (en) 1987-02-21
JPH0518677B2 true JPH0518677B2 (en) 1993-03-12

Family

ID=16092585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18097785A Granted JPS6240996A (en) 1985-08-20 1985-08-20 Submerged arc welding wire for low-temperature steel

Country Status (1)

Country Link
JP (1) JPS6240996A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657128B2 (en) * 1998-09-30 2005-06-08 株式会社神戸製鋼所 Welding material for submerged arc welding and submerged arc welding method
JP2008264812A (en) * 2007-04-18 2008-11-06 Kobe Steel Ltd Groove filler for submerged-arc welding
KR100957982B1 (en) * 2007-12-24 2010-05-17 주식회사 포스코 Steel for Welding Structure having Welded Joint with Superior CTOD Properties in Weld Heat Affected Zone
JP5457920B2 (en) * 2010-04-09 2014-04-02 株式会社神戸製鋼所 Weld metal with excellent low temperature toughness and drop characteristics
CN102294554A (en) * 2010-06-22 2011-12-28 宝山钢铁股份有限公司 80kg grade gas shielded welding wire with high impact property at 40 DEG C below zero and wire rod
JP5766500B2 (en) * 2011-05-06 2015-08-19 株式会社神戸製鋼所 Submerged arc welding material and submerged arc welding method
JP6191393B2 (en) * 2013-10-28 2017-09-06 新日鐵住金株式会社 Submerged arc welding metal with excellent cryogenic toughness, and wire and flux for forming submerged arc welding
KR101795970B1 (en) * 2016-10-11 2017-11-09 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
JP6848479B2 (en) * 2017-01-26 2021-03-24 日本製鉄株式会社 Corrosion-resistant steel weld metal and solid wire for submerged arc welding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911658A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911658A (en) * 1982-07-12 1984-01-21 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS6240996A (en) 1987-02-21

Similar Documents

Publication Publication Date Title
JP4903918B1 (en) Ultra high strength welded joint and manufacturing method thereof
JP5202862B2 (en) High-strength welded steel pipe with weld metal having excellent cold cracking resistance and method for producing the same
JP4564245B2 (en) Super high strength welded joint with excellent low temperature cracking property of weld metal and method for producing high strength welded steel pipe
JP5157606B2 (en) TIG welding method of high strength steel using flux cored wire
JP2008093715A (en) High yield strength and high toughness flux-cored wire for gas-shielded arc welding
JP5097499B2 (en) Flux-cored wire for gas shielded arc welding for low alloy heat resistant steel
JP5928726B2 (en) Covered arc welding rod
JP2001009589A (en) Austenitic/ferrite two phase stainless steel welding material, and high chromium steel welding method using it
JP2011212691A (en) Flux-cored welding wire for small diameter multi-electrode submerged arc welding
CN110434507B (en) Underwater additive repairing metal wire for ocean engineering
JPH0518677B2 (en)
JP4896691B2 (en) Solid wire for gas shielded arc welding
JP3504518B2 (en) Welding material for martensitic stainless steel, welded joint and method for producing the same
JPH0566238B2 (en)
JP4625415B2 (en) Solid wire for gas shielded arc welding
CN102057070A (en) Steel plate excellent in sour resistance and steel pipe for linepipes
JP3354460B2 (en) Covered arc welding method for high strength steel
JP2711071B2 (en) Bond flux for submerged arc welding
JP2011206828A (en) Flux-cored welding wire for fine diameter wire multiple electrode submerged arc welding
JP4438210B2 (en) Laser welding joint of steel and laser welding method
JPS62114796A (en) Submerged arc welding method by which high-toughness weld metal is obtained
JP7502588B2 (en) Weld metal for high energy density beam welded joint, high energy density beam welded joint, welded structure, steel pipe, steel material for high energy density beam welded joint and manufacturing method thereof
JP7502589B2 (en) Weld metal of high energy density beam welded joint, high energy density beam welded joint, welded structure and steel pipe
JP3254032B2 (en) Covered arc welding rod for rail enclosed arc welding
JP2005023429A (en) High toughness uoe steel pipe for use at low temperature