JPH0518564A - Ice heat accumulator - Google Patents

Ice heat accumulator

Info

Publication number
JPH0518564A
JPH0518564A JP3170999A JP17099991A JPH0518564A JP H0518564 A JPH0518564 A JP H0518564A JP 3170999 A JP3170999 A JP 3170999A JP 17099991 A JP17099991 A JP 17099991A JP H0518564 A JPH0518564 A JP H0518564A
Authority
JP
Japan
Prior art keywords
heat exchanger
ice
pressure side
elimination
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3170999A
Other languages
Japanese (ja)
Inventor
Nobuhide Yoshida
信英 吉田
Yuji Nakazawa
優司 仲沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3170999A priority Critical patent/JPH0518564A/en
Publication of JPH0518564A publication Critical patent/JPH0518564A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To prevent clogging of a circulation passage and advancement of freezing to the upstream side. CONSTITUTION:A bypass passage 6 is provided in a return passage 4B. A dissolving heat exchanger 7 is interposed in the bypass passage 6. The dissolving heat exchanger 7 is driven by a subcooling dissolving means 10. A heat source is constituted of a refrigerant circuit 11, two threeway turnover valves 14 and 15, a seed ice generating means 22 and a seed supplying means 23. In this instance, the seed ice generating means 22 switches the three-way turnover valves, so that refrigerant flows from the dissolving heat exchanger to a capillary tube 19, whereby seed ice is generated. When volume of the seed ice generated reaches a prescribed value, the seed ice supplying means switches the three-way valves, so that the refrigerant flows from the capillary tube to the dissolving heat exchanger. Then the seed ice melts, peels off, flows through the bypass passage to the downstream side, whereby ice is generated in a cold accumulating material W in the return passage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、氷蓄熱装置に係り、凍
結防止および上流側への凍結進展防止対策に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device, and more particularly to measures for preventing freezing and preventing freezing progress to the upstream side.

【0002】[0002]

【従来の技術】近年、工業プラントやビルなどにおける
比較的大規模な空調システムには蓄熱空調システムが利
用されている。蓄熱空調システムには、冷熱の蓄積に氷
を用い、冷却面に氷を付着させずに氷を生成するダイナ
ミック方式があり、この方式の一つに過冷却制御型の氷
蓄熱装置が知られている。
2. Description of the Related Art In recent years, heat storage air-conditioning systems have been used for relatively large-scale air-conditioning systems in industrial plants and buildings. A heat storage air conditioning system has a dynamic system that uses ice to store cold heat and produces ice without adhering it to the cooling surface. One of these systems is a supercooling control type ice heat storage device. There is.

【0003】この過冷却制御型の氷蓄熱装置は、冷却装
置に接続された熱交換器と蓄氷槽との間で蓄氷槽の蓄冷
材を循環させる循環路を設け、熱交換器により蓄氷槽の
蓄冷材を冷却した後、過冷却状態を解消させてスラリ―
状の氷にするものである。
In this supercooling control type ice heat storage device, a circulation path for circulating the cold storage material of the ice storage tank is provided between the heat exchanger connected to the cooling device and the ice storage tank, and the ice heat storage device stores the heat. After cooling the cold storage material in the ice tank, the supercooled state is eliminated and the slurry
It is like ice.

【0004】過冷却状態を解消する構造には、例えば、
特開昭63−217171号公報に開示されているよう
に、上方に開口した蓄氷槽の上に樋状の流体通路を配設
して起き、該流体通路に循環路より蓄冷材を流通させ、
流通中に過冷却した後出口付近で蓄冷材に衝撃を与え、
これにより過冷却状態を解消させて氷を析出させ、蓄氷
槽に流下させるものがある。
A structure for eliminating the supercooled state is, for example,
As disclosed in Japanese Unexamined Patent Publication No. 63-217171, a gutter-shaped fluid passage is provided on an ice storage tank opened upward, and the cold storage material is circulated through the circulation passage through the fluid passage. ,
After supercooling during distribution, impact the regenerator material near the outlet,
In some cases, this causes the supercooled state to be eliminated and ice to be deposited, which then flows into the ice storage tank.

【0005】過冷却状態は不安定で、わずかの刺激によ
っても氷化が開始する。このため、上記の過冷却制御型
の氷蓄熱装置では、管路の閉塞を防止するために必ず循
環路の出口直前か循環路外で蓄冷材を過冷却し、さらに
過冷却状態を解消するようにしている。したがって、過
冷却解消部と熱交換器とは蓄氷槽に近接して配置されて
いる。
The supercooled state is unstable, and even a slight stimulus initiates icing. Therefore, in the above-described supercooling control type ice heat storage device, in order to prevent the blockage of the pipeline, the cool storage material is always supercooled immediately before the outlet of the circulation path or outside the circulation path, and the supercooling state is canceled. I have to. Therefore, the subcooling elimination portion and the heat exchanger are arranged close to the ice storage tank.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記装
置では、循環路をでてから過冷却状態を解消しているの
で、過冷却解消部や熱交換器の設置位置が蓄氷槽の付近
に限られることになり、設計上の自由度が小さいという
問題がある。
However, in the above apparatus, since the supercooled state is eliminated after the circulation path is exited, the installation position of the subcooling elimination section and the heat exchanger is limited to the vicinity of the ice storage tank. Therefore, there is a problem that the degree of freedom in design is small.

【0007】そこで、循環路の途中で過冷却状態を解消
して氷を生成し、流動可能な状態に保ったまま蓄冷材を
蓄氷槽まで送る試みが考えられる。この場合には、輸送
中に氷が管壁に付着して着氷層をつくり、着氷層がさら
に厚くなれば、管路を閉塞し、さらに上流側へ凍結が進
展するという問題がある。例えば、過冷却温度を超えて
冷却することにより過冷却状態を解消する場合には、冷
却面に氷が付着して粗大化しやすく、冷却面で管路を閉
塞すると共に過冷却生成用熱交換器にまで凍結が進展す
るという事態が発生していた。
Therefore, it is conceivable to try to remove the supercooled state in the middle of the circulation path to generate ice and send the cold storage material to the ice storage tank while keeping it in a flowable state. In this case, there is a problem that ice adheres to the pipe wall during transportation to form an ice accretion layer, and if the ice accretion layer becomes thicker, the pipe channel is blocked and freezing progresses further upstream. For example, when the supercooled state is eliminated by cooling the supercooled temperature, the ice tends to adhere to the cooling surface and coarsen, and the cooling surface closes the pipeline and the heat exchanger for supercooling generation. There was a situation in which the freeze progressed until.

【0008】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、管路の閉塞と上流側への凍結進展を
防止することにある。
The present invention has been made in view of the above point, and an object thereof is to prevent the blockage of the pipeline and the freezing progress to the upstream side.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に、請求項1に係る発明が講じた手段は、熱源部によ
り、バイパス路で種氷を生成して本流である循環路に流
通し、循環路で過冷却状態を解消するようにしたもので
ある。
Means for Solving the Problems In order to achieve the above object, the means of the invention according to claim 1 is that a heat source section produces seed ice in a bypass passage and distributes it to the main circulation passage. It is designed to eliminate the supercooled state in the circulation path.

【0010】具体的には、氷蓄熱装置は、スラリー状に
氷化された蓄冷材(W)を貯溜するための蓄氷槽(2)
と蓄冷材(W)を過冷却するための冷却手段(3)とが
順に循環路(4)により蓄冷材の循環可能に接続されて
いる。そして、上記冷却手段(3)より下流側の循環路
(4)には、該循環路(4)から分岐した後再び合流す
るバイパス路(6)が設けられる一方、上記冷却手段
(3)により過冷却された蓄冷材(W)の過冷却状態を
解消する過冷却解消手段(10)が設けられている。
Specifically, the ice heat storage device is an ice storage tank (2) for storing the cold storage material (W) that has been frozen into a slurry.
And a cooling means (3) for supercooling the regenerator material (W) are sequentially connected by a circulation path (4) so that the regenerator material can circulate. A circulation path (4) downstream of the cooling means (3) is provided with a bypass path (6) that branches from the circulation path (4) and then joins again, while the cooling means (3) is used. A supercooling elimination means (10) for eliminating the supercooled state of the supercooled regenerator material (W) is provided.

【0011】該過冷却解消手段(10)には、膨脹機構
(19)と、上記バイパス路(6)に設けられた過冷却
状態を解消する解消用熱交換器(7)とが、冷媒の高圧
側と低圧側との間に冷媒の流通可能に接続されてなる冷
媒回路(11)が設けられている。そして、上記膨脹機
構(19)と解消用熱交換器(7)とに対する、高圧側
から低圧側へ向かう冷媒の流通方向を切り換える切換機
構(A)が設けられている。さらに、高圧側からの冷媒
が膨脹機構(19)に流入して解消用熱交換器(7)か
ら低圧側へ流出するように上記切換機構(A)を切換作
動させて上記解消用熱交換器(7)を冷却器として作動
させ、種氷を生成させる種氷生成運転手段(22)が設
けられている。その上、上記解消用熱交換器(7)に付
着した種氷が所定量になると、上記高圧側からの冷媒が
解消用熱交換器(7)に流入して膨脹機構(19)から
低圧側へ流出するように上記切換機構(A)を切換作動
させて上記解消用熱交換器(7)を加熱器として作動さ
せ、種氷を融解剥離して下流側の循環路(4)へ流通さ
せる種氷供給運転手段(23)が設けられた構成とされ
ている。
In the supercooling elimination means (10), an expansion mechanism (19) and a elimination heat exchanger (7) provided in the bypass passage (6) for eliminating the supercooling state are provided for the refrigerant. A refrigerant circuit (11) is provided between the high pressure side and the low pressure side so that the refrigerant can flow therethrough. A switching mechanism (A) is provided for switching the flow direction of the refrigerant from the high pressure side to the low pressure side with respect to the expansion mechanism (19) and the elimination heat exchanger (7). Further, the switching mechanism (A) is operated to switch so that the refrigerant from the high pressure side flows into the expansion mechanism (19) and flows out from the elimination heat exchanger (7) to the low pressure side. Seed ice production operation means (22) is provided which operates (7) as a cooler to produce seed ice. Moreover, when the amount of seed ice adhering to the elimination heat exchanger (7) reaches a predetermined amount, the refrigerant from the high pressure side flows into the elimination heat exchanger (7) and the expansion mechanism (19) lower pressure side. The switching mechanism (A) is switched so as to flow out to the above, and the heat exchanger for elimination (7) is operated as a heater to melt and separate the seed ice and circulate it to the circulation path (4) on the downstream side. Seed ice supply operation means (23) is provided.

【0012】請求項2に係る発明が講じた手段は、循環
路に複数の分岐路を設けて、各分岐路に解消用熱交換器
を配設し、熱源部を膨脹機構を挟んでその上下流に解消
用熱交換器を配設した構成としておき、ある分岐路では
冷却する一方ある分岐路では加熱するようにし、一つの
氷蓄熱システムで氷の生成をしながら凍結した分岐路で
は着氷の融解を行うものである。
According to a second aspect of the present invention, a plurality of branch passages are provided in a circulation passage, a heat exchanger for elimination is arranged in each branch passage, and a heat source portion is sandwiched by an expansion mechanism. A heat exchanger for elimination is arranged downstream, so that one branch cools while one heats it, and one ice storage system produces ice while the frozen branch freezes. Is to melt.

【0013】具体的には、スラリー状に氷化された蓄冷
材(W)を貯溜するための蓄氷槽(2)と、蓄冷材
(W)を過冷却するための冷却手段(3)とが順に循環
路(4)により蓄冷材(W)が循環可能に接続されてい
る。上記冷却手段(3)より下流側の循環路(4)に
は、該循環路(4)を分岐して再び合流する複数の分岐
路(31),(32)が形成される一方、上記冷却手段
(3)により過冷却された蓄冷材(W)の過冷却状態を
解消する過冷却解消手段(10)が設けられている。
Specifically, an ice storage tank (2) for storing the cold storage material (W) iced into a slurry, and a cooling means (3) for supercooling the cold storage material (W). In this order, the regenerator material (W) is circulated through the circulation path (4). In the circulation path (4) downstream of the cooling means (3), a plurality of branch paths (31) and (32) are formed to branch the circulation path (4) and join again. A supercooling elimination means (10) for eliminating the supercooled state of the regenerator material (W) supercooled by the means (3) is provided.

【0014】該過冷却解消手段(10)は、少なくとも
1の分岐路(31)に過冷却解消用の第1熱交換器(3
4)が設けられ、他の分岐路(32)に過冷却解消用の
第2熱交換器(35)が設けられている。
The supercooling eliminating means (10) has a first heat exchanger (3) for eliminating supercooling in at least one branch passage (31).
4) is provided, and the second heat exchanger (35) for eliminating supercooling is provided in the other branch passage (32).

【0015】一方、該過冷却解消手段(10)は、上記
第1熱交換器(34)と、膨脹機構(19)と、上記第
2熱交換器(35)とが冷媒の高圧側と低圧側との間に
冷媒の流通可能に接続されて、上記第1熱交換器(3
4)または第2熱交換器(35)の一方が冷却器とし
て、他方が加熱器として作動するように接続されてなる
冷媒回路(11)が設けられている。そして、上記第1
熱交換器(34)と膨脹機構(19)と第2熱交換器
(35)とに対する、高圧側から低圧側へ向かう冷媒の
流通方向を切り換える切換機構(A)が設けられてい
る。その上、該切換機構(A)を、高圧側からの冷媒が
第1熱交換器(34)または第2熱交換器(35)の一
方から流入して他方から低圧側へ流出するようにして一
方を加熱器として他方を冷却器として作動させると共
に、該冷却器として作動する第1熱交換器(34)また
は第2の熱交換器(35)に付着した氷が所定量になる
と、高圧側から低圧側へ向かう冷媒の流通方向を逆転さ
せるように上記切換機構(A)を切換作動させる運転切
換手段(37)が設けられた構成としている。
On the other hand, in the supercooling elimination means (10), the first heat exchanger (34), the expansion mechanism (19), and the second heat exchanger (35) include a high pressure side and a low pressure side of the refrigerant. The first heat exchanger (3
4) or the second heat exchanger (35) is provided with a refrigerant circuit (11) connected to operate as a cooler and the other as a heater. And the first
A switching mechanism (A) for switching the flowing direction of the refrigerant from the high pressure side to the low pressure side with respect to the heat exchanger (34), the expansion mechanism (19) and the second heat exchanger (35) is provided. Moreover, the switching mechanism (A) is arranged so that the refrigerant from the high pressure side flows in from one of the first heat exchanger (34) and the second heat exchanger (35) and flows out from the other side to the low pressure side. When one side is operated as a heater and the other side is operated as a cooler, and a predetermined amount of ice adheres to the first heat exchanger (34) or the second heat exchanger (35) that operates as the cooler, the high pressure side The operation switching means (37) for switching the switching mechanism (A) so as to reverse the flow direction of the refrigerant flowing from the low pressure side to the low pressure side is provided.

【0016】[0016]

【作用】以上の構成により、請求項1に係る発明によれ
ば、冷却手段(3)により過冷却された蓄冷材(W)は
循環路(4)を流通するほか、バイパス路(6)に流入
して解消用熱交換器(7)を通過する。
With the above construction, according to the invention of claim 1, the regenerator material (W) supercooled by the cooling means (3) flows through the circulation path (4) and also into the bypass path (6). It flows in and passes through the elimination heat exchanger (7).

【0017】一方、種氷生成運転手段(22)が、冷媒
が膨脹機構(19)から解消用熱交換器(7)へ流通す
るように切換機構(A)を切り換え、上記解消用熱交換
器(7)を冷却器として作用させ、種氷を付着生成させ
る。そして、種氷が所定量になると、種氷供給運転手段
(23)が、冷媒が解消用熱交換器(7)から膨脹機構
(19)へ流通するように切換機構(A)を切り換え、
解消用熱交換器(7)を加熱器として作用させる。種氷
は融解剥離してバイパス路(6)から下流側の循環路
(4)へ流通し、循環路(4)中の蓄冷材(W)を氷化
することになる。したがって、循環路(4)を直接冷却
することなく、循環路(4)途中で氷が生成される。
On the other hand, the seed ice production operating means (22) switches the switching mechanism (A) so that the refrigerant flows from the expansion mechanism (19) to the elimination heat exchanger (7), and the elimination heat exchanger is changed. (7) acts as a cooler to attach and generate seed ice. Then, when the seed ice reaches a predetermined amount, the seed ice supply operating means (23) switches the switching mechanism (A) so that the refrigerant flows from the elimination heat exchanger (7) to the expansion mechanism (19),
The elimination heat exchanger (7) acts as a heater. The seed ice melts and separates, flows from the bypass path (6) to the circulation path (4) on the downstream side, and ices the cold storage material (W) in the circulation path (4). Therefore, ice is generated in the middle of the circulation path (4) without directly cooling the circulation path (4).

【0018】請求項2に係る発明によれば、各分岐路
(31),(32)には第1熱交換器(34)または第
2熱交換器(35)が配設されており、冷却手段(3)
によって過冷却された蓄冷材(W)が各分岐路(3
1),(32)の第1熱交換器(34)または第2熱交
換器(35)を流通した後再び循環路(4)に合流す
る。
According to the second aspect of the present invention, the first heat exchanger (34) or the second heat exchanger (35) is arranged in each of the branch passages (31) and (32), and cooling is performed. Means (3)
The regenerator material (W) supercooled by the
After flowing through the first heat exchanger (34) or the second heat exchanger (35) of 1) and (32), they join the circulation path (4) again.

【0019】一方、過冷却解消手段(10)は、第1熱
交換器(34)および第2熱交換器(35)に冷媒が流
通し、運転切換手段(37)が切換機構(A)を作動さ
せることにより、第1熱交換器(34)または第2熱交
換器(35)のうち冷媒の流通方向の上流側の熱交換器
が加熱器として、下流側が冷却器として作動することに
なる。
On the other hand, in the supercooling elimination means (10), the refrigerant flows through the first heat exchanger (34) and the second heat exchanger (35), and the operation switching means (37) operates the switching mechanism (A). By operating, the heat exchanger on the upstream side of the first heat exchanger (34) or the second heat exchanger (35) in the flow direction of the refrigerant operates as a heater, and the downstream side operates as a cooler. .

【0020】そして、冷却器として作動する第1熱交換
器(34)または第2熱交換器(35)に付着した氷が
所定量になると、運転切換手段(37)が切換機構
(A)を切換作動させて、加熱器であった熱交換器は冷
却器に、冷却器であった熱交換器は加熱器に切り換わ
る。つまり、第1熱交換器(34)または第2熱交換器
(35)の作動は加熱器と冷却器とに切り換えられるこ
とになる。加熱器に切り換わった熱交換器では冷却中に
付着した氷が融解剥離される一方、冷却器に切り換わっ
た熱交換器では氷が生成される。したがって、常に氷が
生成される一方、万が一ある分岐路(31),(32)
が閉塞してもいずれかの分岐路(31),(32)は蓄
冷材(W)が流通しているので、循環路(4)、さらに
は装置全体が閉塞することがなくなる。
When a predetermined amount of ice adheres to the first heat exchanger (34) or the second heat exchanger (35) that operates as a cooler, the operation switching means (37) activates the switching mechanism (A). Upon switching operation, the heat exchanger that was the heater switches to the cooler, and the heat exchanger that was the cooler switches to the heater. That is, the operation of the first heat exchanger (34) or the second heat exchanger (35) is switched to the heater and the cooler. In the heat exchanger switched to the heater, the ice adhered during cooling is melted and separated, while the heat exchanger switched to the cooler produces ice. Therefore, while ice is always generated, there are some branch roads (31), (32).
Since the cold storage material (W) circulates in any of the branch passages (31) and (32) even if the valve is closed, the circulation passage (4) and the entire device are not closed.

【0021】[0021]

【発明の効果】請求項1に係る発明によれば、本流であ
る循環路(4)を直接冷却せず、バイパス路(6)の解
消用熱交換器(7)で種氷を生成し、これを融解剥離し
て下流側の循環路(4)に流通させているので、循環路
(4)の閉塞や過冷却生成用熱交換器への凍結の進展を
防止することができる。その結果、循環路(4)の途中
において過冷却状態を解消して流動可能なスラリ―状に
保ったまま蓄冷材(W)を蓄氷槽(2)まで送ることが
でき、設計上の自由度を大きくすることができる。
According to the invention of claim 1, the circulation path (4), which is the main stream, is not directly cooled, but seed ice is generated in the heat exchanger (7) for elimination of the bypass path (6), Since this is melted and separated and is circulated in the circulation path (4) on the downstream side, it is possible to prevent the circulation path (4) from being blocked and the freezing to the heat exchanger for producing subcooling to be prevented. As a result, the cool storage material (W) can be sent to the ice storage tank (2) while the supercooled state is eliminated in the middle of the circulation path (4) and the fluid-like slurry is maintained, and the design is free. The degree can be increased.

【0022】請求項2に係る発明によれば、切換機構
(A)により、各解消用熱交換器(7)を加熱器と冷却
器とに交互に切換作動できるので、冷却器として作動中
に着氷が成長すれば加熱器に切り換えることができ、分
岐路(31),(32)の閉塞と過冷却生成用熱交換器
への凍結進展とを防止することができ、ひいては設計の
自由度を大きくすることができる。
According to the second aspect of the present invention, since the switching heat exchanger (7) can be alternately switched between the heater and the cooler by the switching mechanism (A), it can be operated as a cooler. If ice accretion grows, it can be switched to a heater, and it is possible to prevent clogging of the branch passages (31) and (32) and freezing progress to the heat exchanger for subcooling generation, and thus, design flexibility. Can be increased.

【0023】また、第1熱交換器と第2熱交換器とを直
列に接続ているので、一方の熱交換器の加熱に使用した
冷媒を他方の熱交換器の冷却に使用して熱の有効利用を
図ることができ、省エネルギを図ることができる。さら
に、各分岐路(31),(32)に蓄冷材(W)を分け
て過冷却状態を解消するので、確実に氷を生成すること
ができる。
Further, since the first heat exchanger and the second heat exchanger are connected in series, the refrigerant used for heating one heat exchanger is used for cooling the other heat exchanger to generate heat. It can be effectively used and energy can be saved. Furthermore, since the cool storage material (W) is divided into the respective branch paths (31) and (32) to eliminate the supercooled state, it is possible to reliably generate ice.

【0024】さらに、運転切換手段(37)により、着
氷量を検知して解消用熱交換器(7)の作動を冷却器か
ら加熱器へ切り換えるので、適確、確実に管路の閉塞等
を防止することができる。
Furthermore, the operation switching means (37) detects the amount of icing and switches the operation of the heat exchanger for elimination (7) from the cooler to the heater, so that the pipe line is closed accurately and surely. Can be prevented.

【0025】[0025]

【実施例】以下、本発明の実施例を図面に基づき説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0026】図1に請求項1に係る発明の第1実施例に
ついて、その氷蓄熱装置の構成を示す。氷蓄熱装置
(1)は、スラリ―状に氷化した蓄冷材(W)を貯溜す
るための蓄氷槽(2)を備え、該蓄氷槽(2)と冷却手
段としての過冷却生成用熱交換器(3)との間は、循環
路(4)により蓄冷材(W)の循環可能に接続されてい
る。該循環路(4)は、蓄氷槽(2)の底部から過冷却
生成用熱交換器(3)に蓄冷材(W)を供給する往管路
(4A)と、過冷却生成用熱交換器(3)から蓄氷槽
(2)の上部にスラリ―状の氷になった蓄冷材(W)を
戻す復管路(4B)とからなっており、往管路(4A)
に介設されたポンプ(5)により、循環路(4)で蓄氷
槽(2)の蓄冷材(W)を強制循環させている。
FIG. 1 shows the configuration of the ice heat storage device of the first embodiment of the invention according to claim 1. The ice heat storage device (1) is provided with an ice storage tank (2) for storing the cold storage material (W) that has been iced in a slurry form, and the ice storage tank (2) and a supercooling generation device as a cooling means. A circulation path (4) is connected to the heat exchanger (3) so that the regenerator material (W) can circulate. The circulation path (4) is connected with a forward passage (4A) for supplying the cold storage material (W) from the bottom of the ice storage tank (2) to the supercooling generation heat exchanger (3), and the supercooling generation heat exchange. It consists of a return conduit (4B) for returning the cold storage material (W), which has become ice in the form of slurry, from the container (3) to the upper part of the ice storage tank (2), and the forward conduit (4A).
The cold storage material (W) in the ice storage tank (2) is forcedly circulated in the circulation path (4) by the pump (5) provided in the.

【0027】過冷却生成用熱交換器(3)の冷却方式と
しては、冷媒により蓄冷材(W)を直接冷却する直接膨
脹式、あるいは冷却されたブラインにより蓄冷材(W)
を間接的に冷却する間接膨脹式のいずれであってもよ
い。蓄冷材(W)には、水又は水溶液が用いられてい
る。
As a cooling method of the heat exchanger (3) for producing subcooling, a direct expansion type in which the cold storage material (W) is directly cooled by a refrigerant, or a cold storage material (W) by cooled brine is used.
It may be any of indirect expansion type that indirectly cools. Water or an aqueous solution is used as the cold storage material (W).

【0028】さらに、過冷却生成用熱交換器(3)より
下流側の復管路(4B)にはバイパス路(6)が付設さ
れる一方、過冷却生成用熱交換器(3)により過冷却さ
れた蓄冷材(W)の過冷却状態を解消する過冷却解消手
段(10)が設けられている。
Further, a bypass line (6) is attached to the return conduit (4B) downstream of the subcooling generation heat exchanger (3), while the subcooling generation heat exchanger (3) is used. A supercooling elimination means (10) for eliminating a supercooled state of the cooled regenerator material (W) is provided.

【0029】上記バイパス路(6)は冷媒を復管路(4
B)から分岐して再び復管路(4B)に戻すようになっ
ている。該バイパス路(6)には、過冷却生成用熱交換
器(3)で過冷却された蓄冷材(W)の過冷却状態を解
消する解消用熱交換器(7)が設けられている。
The bypass passage (6) returns the refrigerant to the return pipe (4).
It branches from B) and returns to the return conduit (4B) again. The bypass passage (6) is provided with a elimination heat exchanger (7) for eliminating the supercooled state of the regenerator material (W) supercooled by the subcooling generation heat exchanger (3).

【0030】次に、本発明の特徴として、上記過冷却解
消手段(10)は、冷媒回路(11)と、切換機構
(A)としての第1三方切換弁(14)および第2三方
切換弁とを備えて構成されている。図1に示すように、
冷媒回路(11)の両端は第1三方切換弁(14)およ
び第2三方切換弁(15)を介して凝縮器(図示せず)
の下流側の高圧液ライン(16)と圧縮機(図示せず)
の吸入ポートに接続された吸入ライン(17)とに接続
され、高圧液ライン(16)と吸入ライン(17)との
間には解消用熱交換器(7)と膨脹機構としてのキャピ
ラリーチューブ(19)とが冷媒配管で冷媒の流通可能
に接続されている。そして、第1三方切換弁(14)と
第2三方切換弁(15)とは連動して高圧液ライン(1
6)から吸入ライン(17)への冷媒の流通方向を切り
換えるように構成されている。つまり、第1三方切換弁
(14)が高圧液ライン(16)からの冷媒をキャピラ
リーチューブ(19)に導入しているときには、第2三
方切換弁(15)は冷媒が解消用熱交換器(7)から吸
入ライン(17)へ流出するように作動する。一方、第
2三方切換弁(15)が高圧液ライン(16)からの冷
媒を解消用熱交換器(7)へ導入しているときには、第
1三方切換弁(14)は冷媒がキャピラリーチューブ
(19)から吸入ライン(17)へ流出するように作動
する。
Next, as a feature of the present invention, the subcooling elimination means (10) includes a refrigerant circuit (11) and a first three-way switching valve (14) and a second three-way switching valve as a switching mechanism (A). And is configured. As shown in Figure 1,
Both ends of the refrigerant circuit (11) are connected via a first three-way switching valve (14) and a second three-way switching valve (15) to a condenser (not shown).
High pressure liquid line (16) and compressor (not shown) downstream of the
Is connected to the suction line (17) connected to the suction port of, and a heat exchanger (7) for elimination and a capillary tube (expansion mechanism) between the high pressure liquid line (16) and the suction line (17). 19) is connected to the refrigerant pipe so that the refrigerant can flow therethrough. Then, the first three-way switching valve (14) and the second three-way switching valve (15) are interlocked with each other, and the high pressure liquid line (1
It is configured to switch the flow direction of the refrigerant from 6) to the suction line (17). That is, when the first three-way switching valve (14) introduces the refrigerant from the high-pressure liquid line (16) into the capillary tube (19), the second three-way switching valve (15) causes the refrigerant elimination heat exchanger ( Operates from 7) to the suction line (17). On the other hand, when the second three-way switching valve (15) is introducing the refrigerant from the high-pressure liquid line (16) to the heat exchanger for elimination (7), the first three-way switching valve (14) causes the refrigerant to flow into the capillary tube ( 19) to act as an outflow into the suction line (17).

【0031】さらに、過冷却解消手段(10)を構成す
る種氷生成運転手段(22)と種氷供給運転手段(2
3)とがコントローラ(25)に内蔵されている。種氷
生成運転手段(22)は、第1三方切換弁(14)およ
び第2三方切換弁(15)の双方を高圧液ライン(1
6)からの冷媒がキャピラリーチューブ(19)に流入
して解消用熱交換器(7)から吸入ライン(17)へ流
出するように切換作動させ、上記解消用熱交換器(7)
を冷却器として作動させて種氷を生成させるように構成
されている。
Further, the seed ice production operating means (22) and the seed ice supply operating means (2) constituting the supercooling elimination means (10).
3) and are incorporated in the controller (25). The seed ice production operating means (22) connects both the first three-way switching valve (14) and the second three-way switching valve (15) to the high pressure liquid line (1).
The refrigerant from 6) is switched so that the refrigerant flows into the capillary tube (19) and flows out from the elimination heat exchanger (7) to the suction line (17), and the elimination heat exchanger (7).
Is operated as a cooler to generate seed ice.

【0032】種氷供給運転手段(23)は、解消用熱交
換器(7)に付着した種氷が所定量になると、第1三方
切換弁(14)および第2三方切換弁(15)の双方を
高圧液ライン(16)からの冷媒が解消用熱交換器
(7)に流入してキャピラリーチューブ(19)から吸
入ライン(17)へ流出するように切換作動させ、上記
解消用熱交換器(7)を加熱器として作動させて種氷を
融解剥離して下流側の復環路(4B)へ流通させるよう
に構成されている。種氷が所定量になったか否かの検出
は、解消用熱交換器(7)の冷却面の温度変化や冷媒の
流れの抵抗が増加に起因する圧力損失の変化等を検出す
ることにより行う。
When the amount of seed ice adhering to the heat exchanger (7) for elimination reaches a predetermined amount, the seed ice supply operation means (23) operates the first three-way switching valve (14) and the second three-way switching valve (15). The both sides are switched so that the refrigerant from the high pressure liquid line (16) flows into the elimination heat exchanger (7) and flows out from the capillary tube (19) to the suction line (17), and the elimination heat exchanger described above. (7) is operated as a heater so that the seed ice is melted and separated, and is circulated to the downstream return path (4B). Whether or not the amount of seed ice has reached a predetermined amount is detected by detecting a change in temperature of the cooling surface of the elimination heat exchanger (7) or a change in pressure loss due to an increase in resistance of the refrigerant flow. .

【0033】次に、過冷却解消手段(10)の作動につ
いて説明する。
Next, the operation of the supercooling elimination means (10) will be described.

【0034】氷蓄熱装置(1)の運転中において、過冷
却生成用熱交換器(3)により過冷却された蓄冷材
(W)は下流側の復環路(4B)を流通するほか、バイ
パス路(6)に流入して解消用熱交換器(7)を通過す
る。
During operation of the ice heat storage device (1), the regenerator material (W) supercooled by the subcooling generation heat exchanger (3) flows through the downstream return path (4B) and also bypasses. It flows into the channel (6) and passes through the elimination heat exchanger (7).

【0035】一方、解消用熱交換器(7)を作動させる
過冷却解消手段(10)では、種氷生成運転手段(2
2)が、冷媒がキャピラリーチューブ(19)から解消
用熱交換器(7)へ流通するように第1三方切換弁(1
4)および第2三方切換弁(15)を切換作動させ、上
記解消用熱交換器(7)を冷却器として作用させ、種氷
を内部に付着生成させる。そして、種氷が所定量になる
と、種氷供給運転手段(23)が、冷媒が解消用熱交換
器(7)からキャピラリーチューブ(19)へ流通する
ように第1三方切換弁(14)および第2三方切換弁
(15)を切換作動させ、解消用熱交換器(7)を加熱
器として作用させる。種氷は融解剥離してバイパス路
(6)から下流側の復環路(4B)へ流通し、復環路
(4B)中の蓄冷材(W)を氷化することになる。
On the other hand, in the subcooling elimination means (10) for operating the elimination heat exchanger (7), the seed ice generation operation means (2)
2), so that the refrigerant flows from the capillary tube (19) to the elimination heat exchanger (7).
4) and the second three-way switching valve (15) are switched to operate, and the heat exchanger for elimination (7) acts as a cooler to deposit and generate seed ice. Then, when the seed ice reaches a predetermined amount, the seed ice supply operating means (23) causes the refrigerant to flow from the elimination heat exchanger (7) to the capillary tube (19) and the first three-way switching valve (14) and The second three-way switching valve (15) is switched to operate, and the elimination heat exchanger (7) acts as a heater. The seed ice melts and separates, flows from the bypass path (6) to the downstream return path (4B), and ices the cold storage material (W) in the return path (4B).

【0036】本実施例によれば、本流である復環路(4
B)を直接冷却せず、バイパス路(6)の解消用熱交換
器(7)で種氷を生成し、これを融解剥離して下流側の
復環路(4B)に流通させているので、本流である復環
路(4B)の閉塞や過冷却生成用熱交換器への凍結の進
展を防止することができる。その結果、復環路(4B)
の途中において過冷却状態を解消して流動可能なスラリ
―状に保ったまま蓄冷材(W)を蓄氷槽(2)まで送る
ことができ、設計上の自由度を大きくすることができ
る。
According to this embodiment, the mainstream return path (4
B) is not directly cooled but seed ice is generated by the heat exchanger (7) for elimination of the bypass passage (6), and the seed ice is melted and separated and circulated to the downstream return passage (4B). It is possible to prevent blockage of the main return path (4B) and progress of freezing to the supercooling generation heat exchanger. As a result, the return route (4B)
In the middle of, the cold storage material (W) can be sent to the ice storage tank (2) while the supercooled state is eliminated and the slurry is kept in a flowable slurry state, and the degree of freedom in design can be increased.

【0037】次に、図2に請求項2に係る発明の第2実
施例を示す。本実施例は、過冷却解消手段(10)の冷
媒回路をキャピラリーチューブ(19)の両側に解消用
熱交換器(7)を配設した構成とし、ある分岐路に設け
た解消用熱交換器は冷却器として作動させる一方、ある
分岐路に設けた解消用熱交換器は加熱器として作動させ
るようにし、一つの氷蓄熱システムで氷の生成と凍結し
た分岐路(32)の解凍とを同時にできるようにしたも
のである。
Next, FIG. 2 shows a second embodiment of the invention according to claim 2. In this embodiment, the refrigerant circuit of the supercooling elimination means (10) has a elimination heat exchanger (7) arranged on both sides of a capillary tube (19), and the elimination heat exchanger is provided in a certain branch passage. Is operated as a cooler, while the heat exchanger for elimination provided in a certain branch is operated as a heater so that ice production and thawing of the frozen branch (32) can be performed simultaneously by one ice heat storage system. It was made possible.

【0038】具体的には、過冷却生成用熱交換器(3)
より下流側の復管路(4B)には、該復管路(4B)が
分岐して再び合流する2本の第1分岐路(31)と第2
分岐路(32)とが設けられる一方、過冷却生成用熱交
換器(3)により過冷却された蓄冷材(W)の過冷却状
態を解消する過冷却解消手段(10)が設けられてい
る。
Specifically, the heat exchanger (3) for supercooling generation
The return conduit (4B) on the further downstream side has two first branch paths (31) and a second branch path (31) where the return conduit (4B) branches and merges again.
A branch passage (32) is provided, and a supercooling elimination means (10) for eliminating a supercooled state of the regenerator material (W) supercooled by the subcooling heat exchanger (3) is provided. .

【0039】該過冷却解消手段(10)は、第1実施例
と同様に、冷媒回路(11)と、切換機構(A)として
の第1三方切換弁(14)および第2三方切換弁(1
5)とを備えて構成されている。そして、冷媒回路(1
1)中には、第1三方切換弁(14)および第2三方切
換弁(15)を介して高圧液ライン(16)と吸入ライ
ン(17)とに接続されている。さらに、冷媒回路(1
1)の両端間には上記第1分岐路(31)に解消用熱交
換器(7)が介設されてなる第1熱交換器(34)と、
キャピラリーチューブ(19)と、第2分岐路(32)
に解消用熱交換器(7)が介設されてなる第2熱交換器
(35)とが順に冷媒配管で冷媒の流通可能に接続され
ている。
As in the first embodiment, the subcooling elimination means (10) includes a refrigerant circuit (11), a first three-way switching valve (14) as a switching mechanism (A) and a second three-way switching valve ( 1
5) and are comprised. Then, the refrigerant circuit (1
The inside of 1) is connected to the high pressure liquid line (16) and the suction line (17) through the first three-way switching valve (14) and the second three-way switching valve (15). In addition, the refrigerant circuit (1
A first heat exchanger (34) having a heat exchanger (7) for elimination in the first branch passage (31) between both ends of 1);
Capillary tube (19) and second branch (32)
The second heat exchanger (35) in which the elimination heat exchanger (7) is interposed is connected in order through the refrigerant pipe so that the refrigerant can flow.

【0040】さらに、過冷却解消手段(10)を構成す
る運転切換手段(37)がコントローラ(25)に内蔵
されている。
Further, the operation switching means (37) constituting the supercooling elimination means (10) is built in the controller (25).

【0041】運転切換手段(37)は、第1三方切換弁
(14)および第2三方切換弁(15)を、高圧側から
の冷媒が第1熱交換器(34)または第2熱交換器(3
5)の一方から流入して他方から低圧側へ流出するよう
にして一方を加熱器として他方を冷却器として作動させ
ている。さらに、該冷却器として作動する第1熱交換器
(34)または第2の熱交換器(35)に付着した氷が
所定量になると、高圧側から低圧側へ向かう冷媒の流通
方向を逆転させるように上記切換機構(A)を切換作動
させるように構成されている。
The operation switching means (37) includes a first three-way switching valve (14) and a second three-way switching valve (15), and the refrigerant from the high pressure side is either the first heat exchanger (34) or the second heat exchanger. (3
5) One side is operated as a heater and the other side is operated as a cooler so that it flows in from one side and flows out from the other side to the low pressure side. Further, when the amount of ice attached to the first heat exchanger (34) or the second heat exchanger (35) that operates as the cooler reaches a predetermined amount, the flow direction of the refrigerant from the high pressure side to the low pressure side is reversed. Thus, the switching mechanism (A) is configured to be switched.

【0042】したがって、本実施例における氷生成動作
においては、各分岐路(31),(32)には解消用熱
交換器(7)が配設されており、過冷却生成用熱交換器
(3)によって過冷却された蓄冷材(W)が、各分岐路
(31),(32)の解消用熱交換器(7)を流通した
後、再び復管路(4B)に合流する。一方、解消用熱交
換器(7)が第1熱交換器(34)または第2熱交換器
(35)として冷媒回路(11)に組み込まれて冷媒が
流通している。
Therefore, in the ice producing operation of the present embodiment, the heat exchanger for elimination (7) is arranged in each of the branch passages (31) and (32), and the heat exchanger for producing subcooling ( The regenerator material (W) supercooled by 3) flows through the elimination heat exchanger (7) of each of the branch passages (31) and (32), and then joins the return conduit (4B) again. On the other hand, the elimination heat exchanger (7) is incorporated in the refrigerant circuit (11) as the first heat exchanger (34) or the second heat exchanger (35), and the refrigerant flows therethrough.

【0043】そして、運転切換手段(37)が第1三方
切換弁(14)および第2三方切換弁(15)を作動さ
せることにより、第1熱交換器(34)または第2熱交
換器(35)のうち冷媒の流通方向の上流側の熱交換器
が加熱器として、下流側が冷却器として作動することに
なる。
Then, the operation switching means (37) actuates the first three-way switching valve (14) and the second three-way switching valve (15), so that the first heat exchanger (34) or the second heat exchanger ( In 35), the heat exchanger on the upstream side in the flow direction of the refrigerant operates as a heater and the downstream side operates as a cooler.

【0044】さらに、冷却器として作動する第1熱交換
器(34)または第2熱交換器(35)に付着した氷が
所定量になると、運転切換手段(37)が第1三方切換
弁(14)および第2三方切換弁(15)を切換作動さ
せて、加熱器であった熱交換器は冷却器に、冷却器であ
った熱交換器は加熱器に切り換わる。つまり、第1熱交
換器(34)または第2熱交換器(35)の作動は加熱
器と冷却器とに切り換えられることになる。加熱器に切
り換わった熱交換器では冷却中に付着した氷が融解剥離
される一方、冷却器に切り換わった熱交換器では氷が生
成される。したがって、常に氷が生成される一方、万が
一ある分岐路(31),(32)が閉塞してもいずれか
の分岐路(31),(32)は蓄冷材(W)が流通して
いるので、復環路(4B)、さらには装置全体が閉塞す
ることがなくなる。
Further, when the amount of ice adhering to the first heat exchanger (34) or the second heat exchanger (35) operating as a cooler reaches a predetermined amount, the operation switching means (37) causes the first three-way switching valve ( 14) and the second three-way switching valve (15) are switched to operate so that the heat exchanger that was the heater is switched to the cooler and the heat exchanger that is the cooler is switched to the heater. That is, the operation of the first heat exchanger (34) or the second heat exchanger (35) is switched to the heater and the cooler. In the heat exchanger switched to the heater, the ice adhered during cooling is melted and separated, while the heat exchanger switched to the cooler produces ice. Therefore, while ice is always generated, the cold storage material (W) circulates in any one of the branch paths (31) and (32) even if the branch paths (31) and (32) are closed. , The return path (4B) and the entire device are not blocked.

【0045】その結果、本実施例によれば、第1三方切
換弁(14)および第2三方切換弁(15)により、各
解消用熱交換器(7)を加熱器と冷却器とに交互に切換
作動できるので、冷却器として作動中の熱交換器に着氷
が成長すれば加熱器に切り換えることができ、分岐路
(31),(32)の閉塞と過冷却生成用熱交換器
(3)への凍結進展とを防止することができ、ひいては
設計の自由度を大きくすることができる。
As a result, according to the present embodiment, the elimination heat exchangers (7) are alternately arranged as the heater and the cooler by the first three-way switching valve (14) and the second three-way switching valve (15). When the ice accretion grows in the heat exchanger that is operating as a cooler, it can be switched to a heater, and the branch passages (31) and (32) can be closed and the supercooling heat exchanger ( It is possible to prevent the freezing to 3) and to increase the degree of freedom in design.

【0046】また、第1熱交換器(34)と第2熱交換
器(35)とを直列に接続しているので、一方の熱交換
器の加熱に使用した冷媒を他方の熱交換器の冷却に使用
して熱の有効利用を図ることができ、省エネルギを図る
ことができる。さらに、各分岐路(31),(32)に
蓄冷材(W)を少量づつ分けて過冷却状態を解消するの
で、確実に氷を生成することができる。
Further, since the first heat exchanger (34) and the second heat exchanger (35) are connected in series, the refrigerant used for heating one heat exchanger is used for the other heat exchanger. It can be used for cooling to make effective use of heat and energy can be saved. Furthermore, since the cold storage material (W) is divided into small amounts in the respective branch paths (31) and (32) to eliminate the supercooled state, it is possible to reliably generate ice.

【0047】さらに、運転切換手段(37)により、着
氷量を検知して解消用熱交換器(7)の作動を冷却器か
ら加熱器へ切り換えるので、適確、確実に管路の閉塞等
を防止することができる。
Furthermore, since the operation switching means (37) detects the amount of ice accretion and switches the operation of the heat exchanger for elimination (7) from the cooler to the heater, the pipe line is blocked appropriately and surely. Can be prevented.

【0048】次に、請求項2に係る発明の第3実施例を
説明する。本実施例は、切換機構(A)として、三方切
換弁に代え、四方切換弁を用いたものである。
Next, a third embodiment of the invention according to claim 2 will be described. In this embodiment, as the switching mechanism (A), a four-way switching valve is used instead of the three-way switching valve.

【0049】図3に、第2実施例の冷媒回路(11)を
用い、これに四方切換弁を配設した例を示す。この場合
には、冷媒回路(11)の両端は四方切換弁(40)を
介して高圧液ライン(16)と吸入ライン(17)とに
接続されており、四方切換弁(40)は高圧冷媒が第1
熱交換器(34)に導入される時には図中実線側に切り
換わり、第2熱交換器(35)に導入される時には図中
破線側に切り換わるようになっている。
FIG. 3 shows an example in which the refrigerant circuit (11) of the second embodiment is used and a four-way switching valve is arranged in it. In this case, both ends of the refrigerant circuit (11) are connected to the high-pressure liquid line (16) and the suction line (17) via the four-way switching valve (40), and the four-way switching valve (40) is a high-pressure refrigerant. Is the first
When it is introduced into the heat exchanger (34), it is switched to the solid line side in the figure, and when it is introduced into the second heat exchanger (35), it is switched to the broken line side in the figure.

【0050】本実施例によれば、1個の四方切換弁(4
0)で冷媒回路(11)の冷媒流通方向を切り換えるこ
とができ、コストの低減、配管の単純化を図ることがで
きる。
According to this embodiment, one four-way switching valve (4
It is possible to switch the refrigerant circulation direction of the refrigerant circuit (11) in 0), and it is possible to reduce the cost and simplify the piping.

【0051】なお、第1実施例の解消用熱交換器(7)
は複数台であってもよい。
The heat exchanger for elimination (7) of the first embodiment.
May be plural.

【0052】また、第2実施例の分岐路は3本以上であ
ってもよく、第2実施例の第1熱交換器(34)と第2
熱交換器(35)は、複数台であってもよい。
Further, the number of branch passages of the second embodiment may be three or more, and the first heat exchanger (34) and the second heat exchanger (34) of the second embodiment may be provided.
There may be a plurality of heat exchangers (35).

【0053】また、冷媒回路(11)は、高圧液ライン
(16)と吸入ライン(17)と圧縮機とを備えて閉回
路に構成された、独立の冷媒配管系統であってもよい。
Further, the refrigerant circuit (11) may be an independent refrigerant piping system having a high pressure liquid line (16), a suction line (17) and a compressor, which is a closed circuit.

【0054】また、膨脹機構は電動膨脹弁であってもよ
い。
The expansion mechanism may be an electric expansion valve.

【0055】また、第1実施例の種氷供給運転手段(2
3)および第2実施例の運転切換手段(37)におけ
る、所定量の種氷の検出または着氷の検出としては、タ
イマを用いて所定の剥離時間が経過すれば種氷または着
氷ができたと判断して検出信号を出力するものであって
もよい。
The seed ice supply operation means (2) of the first embodiment is also used.
3) and the operation switching means (37) of the second embodiment, the detection of a predetermined amount of seed ice or the detection of ice accretion can be performed by using a timer after the predetermined separation time has elapsed. It is also possible to output the detection signal by judging that the detection signal is output.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る第1実施例を示し、氷蓄熱装置の
構成を示す回路図である。
FIG. 1 is a circuit diagram showing a configuration of an ice heat storage device according to a first embodiment of the present invention.

【図2】本発明に係る第2実施例を示し、氷蓄熱装置の
構成を示す回路図である。
FIG. 2 is a circuit diagram showing a configuration of an ice heat storage device according to a second embodiment of the present invention.

【図3】本発明に係る第3実施例を示し、氷蓄熱装置の
構成を示す回路図である。
FIG. 3 is a circuit diagram showing a configuration of an ice heat storage device, showing a third embodiment according to the present invention.

【符号の説明】[Explanation of symbols]

2 蓄氷槽 3 冷却手段 4 循環路 6 バイパス路 7 解消用熱交換器 10 熱源部 11 冷媒回路 14 第1三方切換弁(切換機構) 15 第2三方切換弁(切換機構) 19 キャピラリーチューブ(膨脹機構) 22 種氷生成運転手段 23 種氷供給運転手段 31 第1分岐路(分岐路) 32 第2分岐路(分岐路) 34 第1熱交換器 35 第2熱交換器 37 運転切換手段 40 四方切換弁(切換機構) A 切換機構 W 蓄冷材 2 ice storage tanks 3 Cooling means 4 circuit 6 Bypass road 7 Dissipating heat exchanger 10 heat source 11 Refrigerant circuit 14 First three-way switching valve (switching mechanism) 15 Second three-way switching valve (switching mechanism) 19 Capillary tube (expansion mechanism) 22 Seed ice generation operation means 23 seed ice supply operation means 31 First branch road (branch road) 32 Second branch road (branch road) 34 First heat exchanger 35 Second heat exchanger 37 Operation switching means 40 4-way switching valve (switching mechanism) A switching mechanism W cold storage material

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スラリー状に氷化された蓄冷材(W)を
貯溜するための蓄氷槽(2)と蓄冷材(W)を過冷却す
るための冷却手段(3)とが順に循環路(4)により蓄
冷材の循環可能に接続され、 上記冷却手段(3)より下流側の循環路(4)には、該
循環路(4)から分岐した後再び合流するバイパス路
(6)が設けられる一方、 上記冷却手段(3)により過冷却された蓄冷材(W)の
過冷却状態を解消する過冷却解消手段(10)が設けら
れ、 該過冷却解消手段(10)は、 膨脹機構(19)と、上記バイパス路(6)に設けられ
た過冷却状態を解消する解消用熱交換器(7)とが、冷
媒の高圧側と低圧側との間に冷媒の流通可能に接続され
てなる冷媒回路(11)と、 上記膨脹機構(19)と解消用熱交換器(7)とに対す
る、高圧側から低圧側へ向かう冷媒の流通方向を切り換
える切換機構(A)と、 高圧側からの冷媒が膨脹機構(19)に流入して解消用
熱交換器(7)から低圧側へ流出するように上記切換機
構(A)を切換作動させて上記解消用熱交換器(7)を
冷却器として作動させ、種氷を生成させる種氷生成運転
手段(22)と、 上記解消用熱交換器(7)に付着した種氷が所定量にな
ると、上記高圧側からの冷媒が解消用熱交換器(7)に
流入して膨脹機構(19)から低圧側へ流出するように
上記切換機構(A)を切換作動させて上記解消用熱交換
器(7)を加熱器として作動させ、種氷を融解剥離して
下流側の循環路(4)へ流通させる種氷供給運転手段
(23)とを備えて構成されていることを特徴とする氷
蓄熱装置。
1. A circulation path in which an ice storage tank (2) for storing the cold storage material (W) iced into a slurry and a cooling means (3) for supercooling the cold storage material (W) are sequentially provided. The cool storage material is circulated by (4), and a bypass passage (6) branched from the circulation passage (4) and then joined again is connected to the circulation passage (4) downstream of the cooling means (3). On the other hand, a supercooling elimination means (10) for eliminating a supercooled state of the regenerator material (W) supercooled by the cooling means (3) is provided, and the supercooling elimination means (10) is an expansion mechanism. (19) and a heat exchanger for elimination (7) provided in the bypass passage (6) for eliminating a supercooled state are connected between the high pressure side and the low pressure side of the refrigerant so that the refrigerant can flow. High pressure to the refrigerant circuit (11) formed by the above, the expansion mechanism (19) and the heat exchanger (7) for elimination. From the switching mechanism (A) that switches the flow direction of the refrigerant flowing from the low pressure side to the low pressure side, the refrigerant from the high pressure side flows into the expansion mechanism (19) and flows out from the elimination heat exchanger (7) to the low pressure side. Seed ice production operation means (22) for producing a seed ice by switching the switching mechanism (A) to operate the elimination heat exchanger (7) as a cooler, and the elimination heat exchanger (7). When the amount of seed ice adhering to is a predetermined amount, the switching mechanism (A) is operated so that the refrigerant from the high pressure side flows into the elimination heat exchanger (7) and flows out from the expansion mechanism (19) to the low pressure side. And a seed ice supply operation means (23) for switching and operating the elimination heat exchanger (7) as a heater to melt and separate the seed ice and circulate it to the circulation path (4) on the downstream side. An ice heat storage device characterized by being configured.
【請求項2】 スラリー状に氷化された蓄冷材(W)を
貯溜するための蓄氷槽(2)と、 蓄冷材(W)を過冷却するための冷却手段(3)とが順
に循環路(4)により蓄冷材(W)が循環可能に接続さ
れ、 上記冷却手段(3)より下流側の循環路(4)には、該
循環路(4)を分岐して再び合流する複数の分岐路(3
1),(32)が形成される一方、 上記冷却手段(3)により過冷却された蓄冷材(W)の
過冷却状態を解消する過冷却解消手段(10)が設けら
れ、 該過冷却解消手段(10)は、少なくとも1の分岐路
(31)に過冷却解消用の第1熱交換器(34)が設け
られ、他の分岐路(32)に過冷却解消用の第2熱交換
器(35)が設けられる一方、 上記第1熱交換器(34)と、膨脹機構(19)と、上
記第2熱交換器(35)とが冷媒の高圧側と低圧側との
間に冷媒の流通可能に接続されて、上記第1熱交換器
(34)または第2熱交換器(35)の一方が冷却器と
して、他方が加熱器として作動するように接続されてな
る冷媒回路(11)と、 上記第1熱交換器(34)と膨脹機構(19)と第2熱
交換器(35)とに対する、高圧側から低圧側へ向かう
冷媒の流通方向を切り換える切換機構(A)と、 該切換機構(A)を、高圧側からの冷媒が第1熱交換器
(34)または第2熱交換器(35)の一方から流入し
て他方から低圧側へ流出するようにして一方を加熱器と
して他方を冷却器として作動させると共に、該冷却器と
して作動する第1熱交換器(34)または第2の熱交換
器(35)に付着した氷が所定量になると、高圧側から
低圧側へ向かう冷媒の流通方向を逆転させるように上記
切換機構(A)を切換作動させる運転切換手段(37)
とを備えて構成されていることを特徴とする氷蓄熱装
置。
2. An ice storage tank (2) for storing the cold storage material (W) iced into a slurry and a cooling means (3) for supercooling the cold storage material (W) are circulated in sequence. A regenerator material (W) is circulatory connected by a passage (4), and a plurality of circulation passages (4) branching from the cooling means (3) and rejoining the circulation passage (4). Fork road (3
1) and (32) are formed, a supercooling elimination means (10) for eliminating the supercooled state of the regenerator material (W) supercooled by the cooling means (3) is provided. In the means (10), at least one branch passage (31) is provided with a first heat exchanger (34) for eliminating supercooling, and another branch passage (32) is provided with a second heat exchanger for eliminating supercooling. (35) is provided, while the first heat exchanger (34), the expansion mechanism (19), and the second heat exchanger (35) are arranged between the high-pressure side and the low-pressure side of the refrigerant. A refrigerant circuit (11) connected so that it can flow, and one of the first heat exchanger (34) and the second heat exchanger (35) is connected so as to operate as a cooler and the other as a heater. And the high pressure side with respect to the first heat exchanger (34), the expansion mechanism (19) and the second heat exchanger (35). From the high pressure side to the switching mechanism (A) for switching the flow direction of the refrigerant flowing from the high pressure side to the low pressure side of the first heat exchanger (34) or the second heat exchanger (35). A first heat exchanger (34) or a second heat exchanger that operates as one heater and the other as a cooler such that one flows in from one side and flows out to the low pressure side from the other, and also operates as the cooler. When the amount of ice adhering to (35) reaches a predetermined amount, the operation switching means (37) for switching the switching mechanism (A) so as to reverse the flow direction of the refrigerant flowing from the high pressure side to the low pressure side.
An ice heat storage device comprising:
JP3170999A 1991-07-11 1991-07-11 Ice heat accumulator Withdrawn JPH0518564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3170999A JPH0518564A (en) 1991-07-11 1991-07-11 Ice heat accumulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3170999A JPH0518564A (en) 1991-07-11 1991-07-11 Ice heat accumulator

Publications (1)

Publication Number Publication Date
JPH0518564A true JPH0518564A (en) 1993-01-26

Family

ID=15915238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3170999A Withdrawn JPH0518564A (en) 1991-07-11 1991-07-11 Ice heat accumulator

Country Status (1)

Country Link
JP (1) JPH0518564A (en)

Similar Documents

Publication Publication Date Title
WO2003050458A1 (en) Commercial ice making apparatus and method
JPH0518564A (en) Ice heat accumulator
JPH08219599A (en) Refrigerating plant
JP2000356482A (en) Plate heat exchanger and ice thermal storage unit
JP3425080B2 (en) Harvest type ice making equipment
JP2009222379A (en) Automatic ice maker
KR20150060576A (en) Air conditioner
JPH0561539B2 (en)
JP3266334B2 (en) Heat storage tank for air conditioning
JP2000055408A (en) Method and apparatus for making ice sharbet
JP3023362B1 (en) Ice storage device
JPH10185249A (en) Ice storage apparatus
JP2806155B2 (en) Ice making equipment
JP2827078B2 (en) Ice water cooling system
JP3079998B2 (en) Ice storage device
JPH07117329B2 (en) Ice making equipment
US20070068188A1 (en) Ice maker circuit
JPH0810098B2 (en) Ice making equipment
JP2001021254A (en) Refrigeration system
JPH08247508A (en) Ice heat storage equipment
JPH0618066A (en) Ice making device
JPS5849840Y2 (en) Sludge freezing and thawing equipment
JPH09126502A (en) Ice heat storage apparatus
JPH10122610A (en) Ice storage device and its operating method
JPH06213525A (en) Ice heat accumulator and air conditioner using the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008