JPH10122610A - Ice storage device and its operating method - Google Patents

Ice storage device and its operating method

Info

Publication number
JPH10122610A
JPH10122610A JP8275994A JP27599496A JPH10122610A JP H10122610 A JPH10122610 A JP H10122610A JP 8275994 A JP8275994 A JP 8275994A JP 27599496 A JP27599496 A JP 27599496A JP H10122610 A JPH10122610 A JP H10122610A
Authority
JP
Japan
Prior art keywords
ice
water
tank
supercooled
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8275994A
Other languages
Japanese (ja)
Other versions
JP3773605B2 (en
Inventor
Mitsuru Moriya
充 守屋
Seiji Nakagawa
清二 中川
Akihiko Okamura
明彦 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP27599496A priority Critical patent/JP3773605B2/en
Publication of JPH10122610A publication Critical patent/JPH10122610A/en
Application granted granted Critical
Publication of JP3773605B2 publication Critical patent/JP3773605B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Abstract

PROBLEM TO BE SOLVED: To prevent supercooled water from entering an ice water transporting pipe in an ice storage device. SOLUTION: A circulating pipe 9 for cold water 3 fed to a supercooler 10 at a temperature not lower than an icing point is provided with a bypass pipe 14. In the case wherein an icing operation releasing action in a supercooling releasing tank 12 is not operated well, right before supercooled water 3a enters a ice water transporting pipe 13, cold water of temperature exceeding an icing point is fed from the bypass pipe so as to heat the supercooled water 3a so as to generate a temperature difference across the releasing tank 12, a supercooled state releasing action is generated in the releasing tank 12 and the icing is prevented within the transporting pipe 13.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、夜間の余剰電力又
は他の動力を用いて氷水を作り、該氷水の冷熱を、食品
の冷蔵、昼間の冷房等に利用するようにした氷蓄冷装置
及びその運転方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice refrigerating apparatus for producing ice water by using surplus electric power or other motive power at night, and utilizing the cold heat of the ice water for refrigeration of food, cooling in daytime, and the like. It relates to the driving method.

【0002】[0002]

【従来の技術】氷蓄冷装置においては、過冷却器で過冷
却される冷水の過冷度が過大になると、過冷却器中又は
その下流で氷結が生じて運転を停止しなければならなく
なる。
2. Description of the Related Art In an ice regenerator, if the degree of supercooling of cold water supercooled by a subcooler becomes excessive, icing occurs in the subcooler or downstream thereof, and the operation must be stopped.

【0003】しかし、過冷度が小の場合は、過冷度が適
正又は大のものに比べて過冷却解除を自発的に生じさせ
ることが困難で、解除のスタートに大きいエネルギーが
必要であり、この場合、過冷却水が過冷却解除槽に放出
された段階では解除すなわち相変化が生ぜず、小径の氷
水搬送管中に至って漸く解除がスタートすることがあ
る。このような現象が生じると、氷水搬送管の内面から
管内全体にわたって氷が析出されて氷結状態になり、氷
水の流通が阻止されるため運転を停止せざるを得なくな
る。
However, when the degree of supercooling is small, it is more difficult to spontaneously release the supercooling than when the degree of supercooling is appropriate or large, and a large amount of energy is required to start the release. In this case, at the stage where the supercooled water is discharged to the subcooling release tank, the release, that is, the phase change does not occur, and the release may be started gradually after reaching the small-diameter ice water transport pipe. When such a phenomenon occurs, ice is precipitated from the inner surface of the ice water transport pipe to the entire inside of the pipe and becomes frozen, and the flow of ice water is prevented, so that the operation must be stopped.

【0004】特に製氷運転の開始時には、過冷却解除槽
における槽内面又は別に設けることがある衝突板で形成
される衝突面には氷が析出されておらず、水面にも氷が
浮遊していないから、該衝突面や水面には、流入する過
冷却水に解除のきっかけを作る種結晶すなわち氷核が存
在していない。このため、過冷却水は、解除をスタート
させるのに充分なエネルギーを得ることができず、氷水
搬送管に流入したのちに氷結が生じることがある。
[0004] In particular, at the start of the ice making operation, no ice is deposited on the inner surface of the tank in the subcooling release tank or on a collision surface formed by a collision plate which may be separately provided, and ice is floating on the water surface. Therefore, no seed crystal, ie, an ice nucleus, which triggers release of the supercooled water flowing into the collision surface or the water surface does not exist. For this reason, the supercooled water cannot obtain enough energy to start the release, and icing may occur after flowing into the ice water transport pipe.

【0005】従来、過冷却器の下流の搬送管中で氷結が
生じるのを防止する手段としては、例えば特開平6−1
8066号公報の技術が公知である。該技術は、過冷却
器出口の水温を検出して、該水温が氷結発生温度範囲に
入ると、過冷却器の冷却能力を低下させて水温を氷点近
傍に維持させ、所定時間経過後冷却能力を回復させるよ
うにしている。しかし、この従来技術は、過冷却器の冷
却能力を制御するものであるから、制御のための手段が
複雑にならざるを得ないものであり、また、過冷却器の
下流に過冷却解除槽を設けた装置において、該過冷却解
除槽の下流で氷結するのを防止するためには、そのまま
使用することはできない。
Conventionally, as means for preventing icing from occurring in a transfer pipe downstream of a subcooler, for example, Japanese Patent Laid-Open No.
The technique of JP 8066 is known. This technology detects the water temperature at the outlet of the subcooler, and when the water temperature falls within the freezing occurrence temperature range, lowers the cooling capacity of the supercooler to maintain the water temperature near the freezing point, and after a predetermined time elapses, the cooling capacity Is trying to recover. However, since this conventional technique controls the cooling capacity of the subcooler, the control means must be complicated, and a subcooling release tank is provided downstream of the subcooler. In order to prevent icing downstream of the supercooling release tank, the apparatus provided with the above cannot be used as it is.

【0006】[0006]

【発明が解決しようとする課題】本発明は、過冷却器の
下流に過冷却解除槽を設ける形式の技術において、過冷
却水の過冷度が小の場合、又は運転開始時で過冷却解除
槽内に氷が生成されていない場合に、過冷却水の過冷却
解除が氷水搬送管中で生じないようにすることを課題と
する。
SUMMARY OF THE INVENTION The present invention relates to a technique in which a subcooling release tank is provided downstream of a subcooler, wherein the supercooling is released when the degree of supercooling of the supercooling water is small or at the start of operation. It is an object to prevent the supercooling water from being released from the supercooled water in the ice water transport pipe when no ice is generated in the tank.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の手段の一つは、請求項1に記載したとおりの、氷水を
貯蔵する蓄氷槽と、該蓄氷槽中の冷水を再循環して過冷
却する過冷却器と、該過冷却器から放出される過冷却水
を受入れる過冷却解除槽と、該過冷却解除槽で生成した
氷水を蓄氷槽に送る氷水搬送管とを備える氷蓄冷装置に
おいて、前記氷水搬送管の上流側に、該氷水搬送管を通
る過冷却水を加熱する加熱装置を設けたことを特徴とす
る氷蓄冷装置である。
According to one aspect of the present invention, there is provided an ice storage tank for storing ice water, and recirculation of cold water in the ice storage tank. A supercooler for supercooling the supercooled water, a subcooling release tank for receiving the supercooled water discharged from the subcooler, and an ice water transport pipe for sending ice water generated in the subcooling release tank to the ice storage tank. The ice cool storage device according to claim 1, wherein a heating device for heating supercooled water passing through the ice water transfer tube is provided upstream of the ice water transfer tube.

【0008】該手段によれば、氷水搬送管に流入する過
冷却水が、氷水搬送管の上流側に設けた加熱装置で加熱
されると、過冷却解除槽内で過冷却解除が生じる比率が
高まる現象が生じ、同時に前記加熱により過冷却水も昇
温するので、氷水搬送管内での氷結が防止される。
According to this means, when the supercooled water flowing into the ice water transport pipe is heated by the heating device provided on the upstream side of the ice water transport pipe, the rate at which the supercool release is generated in the supercool release tank is reduced. A phenomenon of increasing the temperature occurs, and at the same time, the temperature of the supercooled water rises due to the heating, so that icing in the ice water transport pipe is prevented.

【0009】また、第2の解決手段は、請求項2に記載
したとおり、請求項1において、前記加熱装置の熱源と
して蓄氷槽内の冷水を用い、該冷水を注入管を介して氷
水搬送管内の過冷却水に合流させて該過冷却水を加熱す
ることを特徴とする氷蓄冷装置である。この手段によれ
ば、蓄氷槽内の冷水は氷点を超えた温度を有するから、
該冷水を氷水搬送管に流入する過冷却水に少量混合する
ことで、該過冷却水は、加熱されて氷が発生しない。
According to a second aspect of the present invention, as described in the second aspect, in the first aspect, chilled water in an ice storage tank is used as a heat source of the heating device, and the chilled water is transferred through an injection pipe. An ice regenerator characterized by joining supercooled water in a pipe and heating the supercooled water. According to this means, since the cold water in the ice storage tank has a temperature above the freezing point,
By mixing a small amount of the cold water with the supercooled water flowing into the ice water transfer pipe, the supercooled water is heated and no ice is generated.

【0010】第3の解決手段は、請求項3に記載したと
おり、請求項2において、過冷却器と過冷却解除槽の組
を複数組並設し、そのうちの一つの組を休止させ、蓄氷
槽内の冷水を休止した組の過冷却解除槽を経て氷水搬送
管内の過冷却水に合流させて該過冷却水を加熱すること
を特徴とする複数の過冷却系のうちの一つを休止させる
ことで加熱源が得られるから加熱用の水の通路を設ける
必要がない。
According to a third aspect of the present invention, as set forth in the third aspect, in the second aspect, a plurality of sets of a subcooler and a subcooling release tank are arranged in parallel, and one of the sets is stopped and stored. One of a plurality of supercooling systems characterized by heating the supercooled water by joining the supercooled water in the ice water transport pipe through the set of supercooled release tanks in which the cold water in the ice tank is suspended. Since the heating source can be obtained by stopping the operation, it is not necessary to provide a water passage for heating.

【0011】第4の解決手段は、請求項5に記載したと
おり、請求項1,2,3又は4の氷蓄冷装置において、
過冷却器の始動直後で過冷却解除槽内に氷が存在しない
時期に、前記加熱装置を作動させることを特徴とする氷
蓄冷装置運転方法である。この手段によれば、過冷却器
の運転開始時に、過冷却解除槽内に氷核が生じていない
ために発生し易い氷水搬送管内の氷結が防止される。
According to a fourth aspect of the present invention, there is provided an ice cold storage device according to the first, second, third or fourth aspect.
A method for operating an ice regenerator, characterized in that the heating device is operated immediately after the start of the subcooler, when there is no ice in the subcooling release tank. According to this means, at the start of the operation of the subcooler, icing in the ice water transfer pipe, which is likely to occur because no ice nuclei are generated in the subcooling release tank, is prevented.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して発明の実施
の形態を説明する。図1において1は本発明の氷蓄冷装
置、2はその蓄氷槽で該蓄氷槽2内には、冷水3と小片
の氷4が混合した氷水5が貯蔵されており、冷水3がポ
ンプ6で外部に設けた負荷機器7に送られて食品の冷蔵
用又は冷房用に供される。
Embodiments of the present invention will be described below with reference to the drawings. In FIG. 1, 1 is an ice regenerator of the present invention, 2 is an ice storage tank, in which ice water 5 in which cold water 3 and small pieces of ice 4 are mixed is stored, and the cold water 3 is pumped. At 6, it is sent to a load device 7 provided outside for use in refrigeration or cooling of food.

【0013】また、夜間など余剰電力があるときは、冷
凍機11を含む過冷却系1aが作動され、冷水3は、循
環ポンプ8、循環パイプ9を通って過冷却器10に送ら
れ、冷凍機11で冷却されたブラインにより過冷却さ
れ、例えば−2.0℃の過冷却水3aとなって過冷却解
除槽12に放出され、該槽12の衝突面12aに衝突す
る。これにより過冷却が解除され、氷4が析出されて冷
水3中に小片の氷4が混在する氷水5となり、氷水搬送
管13を通って蓄氷槽2に戻される。
When there is surplus electric power such as at night, the supercooling system 1a including the refrigerator 11 is operated, and the cold water 3 is sent to the supercooler 10 through the circulation pump 8 and the circulation pipe 9, and is cooled. It is supercooled by the brine cooled by the machine 11, becomes supercooled water 3 a of, for example, −2.0 ° C., is discharged to the subcooling release tank 12, and collides with the collision surface 12 a of the tank 12. As a result, the supercooling is released, and the ice 4 precipitates out to become ice water 5 in which small pieces of ice 4 are mixed in the cold water 3, and is returned to the ice storage tank 2 through the ice water transport pipe 13.

【0014】以上の構成は従来知られたものであるが、
図1の実施の形態は、循環パイプ9の途中と氷水搬送管
13の上流側を連通するバイパス状の注入管14と止め
弁15を設けたことを特徴とするものであり、過冷却水
3aの過冷度が−0.1℃程度の小の場合は、過冷却解
除が困難なため、止め弁15を操作して合流部16から
過冷却水3a中に例えば+2.5℃の冷水を混合して該
過冷却水3aを加熱し、0℃の冷水として蓄氷槽2内に
戻すようになっている。この場合、氷水搬送管13の上
流側の部分は、過冷却水3aの温度を上昇させる部分で
あるから、過冷却水3aに対する加熱部17と言うこと
ができる。
The above configuration is conventionally known,
The embodiment shown in FIG. 1 is characterized in that a bypass-shaped injection pipe 14 and a stop valve 15 communicating between the middle of the circulation pipe 9 and the upstream side of the ice water transport pipe 13 are provided, and the supercooled water 3a is provided. If the degree of supercooling is as small as about −0.1 ° C., it is difficult to release the supercooling. The supercooled water 3a is heated by mixing and returned to the ice storage tank 2 as 0 ° C. cold water. In this case, the portion on the upstream side of the ice water transport pipe 13 is a portion for increasing the temperature of the supercooled water 3a, and thus can be referred to as a heating unit 17 for the supercooled water 3a.

【0015】この装置1において、過冷却系1aが始動
されると、冷水3は、過冷却器10で徐々に冷却され過
冷却水3aとなって過冷却解除槽12に放出されるが、
当初は過冷却水3aの過冷度が小であるから、前述した
ように解除に大きいエネルギが必要で、始動時には衝突
面12aに氷18が析出することがなく、冷水3中で氷
4が発生することもない。したがって、過冷却水3a
は、氷核が存在しない所を流れることになり過冷却解除
は生じない。
In this apparatus 1, when the supercooling system 1a is started, the chilled water 3 is gradually cooled by the subcooler 10 to become the supercooled water 3a and discharged to the subcooling release tank 12.
Since the degree of supercooling of the supercooled water 3a is small at first, a large amount of energy is required for release as described above, and the ice 18 does not precipitate on the collision surface 12a at the time of starting. It does not occur. Therefore, the supercooled water 3a
Flows through the area where no ice nuclei exist, and no supercooling is released.

【0016】しかし、過冷度が小であっても過冷却のま
ま送られて氷水搬送管13内に入ると、該搬送管13内
で不測の過冷却解除が生じることがあるが、本発明は、
これを防止するための手段を探究した結果、氷水搬送管
13の入口近傍で過冷却水3aを加熱し、その上流側と
下流側で下流側が僅かに高温になる温度差を生じさせる
と、下流側の温度が氷点以下であっても上流側の過冷却
解除槽12内で解除が発生する比率が高まり、氷水搬送
管13内では氷結し難いことが判った。なお、下流側が
氷点以上になるように加熱すれば下流側での氷結は当然
生じない。
However, even if the degree of subcooling is small, if the supercooled air is sent into the ice water transport pipe 13 and unexpectedly released in the transport pipe 13, the present invention is not limited to this. Is
As a result of exploring means for preventing this, the supercooled water 3a is heated near the inlet of the ice water transport pipe 13, and a temperature difference is generated between the upstream side and the downstream side where the downstream side has a slightly higher temperature. Even if the temperature on the side is below the freezing point, the rate of occurrence of release in the subcooling release tank 12 on the upstream side is increased, and it is found that freezing is hard to occur in the ice water transport pipe 13. If the downstream side is heated to a temperature above the freezing point, freezing on the downstream side does not occur naturally.

【0017】始動後この状態の運転を暫時続けると、過
冷解除槽12に入る過冷却水3aの過冷度も大になるた
め該解除槽12内での解除が生じ始め、解除槽12内に
氷4,18が生じて衝突による解除作用も促進され、解
除槽12内で全量が解除されるようになる。この状態に
なると止め弁15を閉じて冷水3の混合を止め、定常運
転にする。
If the operation in this state is continued for a while after the start, the degree of supercooling of the supercooling water 3a entering the subcooling release tank 12 becomes large, so that the release in the release tank 12 starts to occur. Then, ice 4 and 18 are generated, and the releasing action due to the collision is promoted, so that the whole amount is released in the releasing tank 12. In this state, the stop valve 15 is closed to stop the mixing of the chilled water 3, and a steady operation is performed.

【0018】前記の過冷却水3aが−0.1℃、冷水が
+2.5℃の場合、過冷却水3aを氷点まで加熱するた
めに注入管14から下流側へ注入する冷水3の量は、熱
の移動量からみて全循環量の4%である。
When the supercooled water 3a is at -0.1.degree. C. and the cold water is at + 2.5.degree. C., the amount of the cold water 3 injected downstream from the injection pipe 14 to heat the supercooled water 3a to the freezing point is as follows. In view of the amount of heat transfer, this is 4% of the total circulation amount.

【0019】しかし、加熱部17内ので加熱された後の
水温がマイナスであっても、該加熱部17より上流の加
熱されない部分の水温との間に温度差が生じれば、上流
側で過冷却解除作用が生じ易いことが判った。
However, even if the temperature of the water after being heated in the heating unit 17 is negative, if a temperature difference occurs between the temperature of the unheated portion upstream of the heating unit 17 and the temperature of the water, the excess temperature will It was found that the cooling release action easily occurred.

【0020】図2は過冷却解除作用の実験装置で、内径
70mmの過冷却解除槽12の底部をテーパー状にし、
その下端に内径25mmの氷水搬送管13と加熱水の注
入管14を接続し、氷水搬送管13の末端を吹出口13
aとして図外の受水槽内に開放したものであり、Pは、
過冷却解除槽12内とその下流側の解除槽外部分との境
界点である。T1,T2,T3は、温度測定位置及びその
位置における測定温度(℃)で、T1は解除槽内の過冷
却水温度、T2は加熱水混合後の水温度、T3は加熱水温
度で、過冷却解除槽12には過冷却水3aを毎分18l
供給した。
FIG. 2 shows an experimental device for the supercooling release action. The bottom of the supercooling release tank 12 having an inner diameter of 70 mm is tapered.
An ice water transfer pipe 13 having an inner diameter of 25 mm and a heating water injection pipe 14 are connected to the lower end thereof, and the end of the ice water transfer pipe 13 is connected to an outlet 13.
a is opened in a water receiving tank (not shown), and P is
This is a boundary point between the inside of the supercooling release tank 12 and the portion outside the release tank on the downstream side. T 1 , T 2 , T 3 are temperature measurement positions and measured temperatures (° C.) at the positions, T 1 is the temperature of the supercooled water in the release tank, T 2 is the water temperature after mixing the heated water, and T 3 is the temperature of the mixed water. At the temperature of the heating water, the supercooling release tank 12 is filled with the supercooled water 3a at a rate of 18 l / min.
Supplied.

【0021】図3は図2の実施装置で実験した結果を示
すグラフで、縦軸に実験回数N、横軸に温度差T2−T1
をとり、過冷却解除が解除槽12内で発生した数を斜線
入りの棒、解除槽12外で発生した数を縦縞の棒で示
し、また全数に対する解除槽12内で発生した数の比率
を白抜きの棒で示した。図3(A)は、加熱をしないT
2−T1=0の場合の解除回数及び解除比率であり、
(B)は加熱によって生じた温度差が、0℃を超えて
0.2℃まで、0.2℃を超えて0.3℃まで、のよう
に0.1℃ごとに0.6℃まで区分けして、解除の発生
場所及び発生回数を示し、(C)は前記(B)の全数及
び解除槽12内で解除したものの比率を示す。
FIG. 3 is a graph showing the results of an experiment performed by the apparatus of FIG. 2, in which the vertical axis represents the number of experiments N, and the horizontal axis represents the temperature difference T 2 −T 1.
The number of occurrences of supercooling release in the release tank 12 is indicated by hatched bars, the number of occurrences outside the release tank 12 is indicated by vertical stripes, and the ratio of the number of occurrences in the release tank 12 to the total number is shown. Indicated by open bars. FIG. 3A shows T without heating.
2 -The number of times of release and the release ratio when T 1 = 0,
(B) shows that the temperature difference caused by heating is more than 0 ° C to 0.2 ° C, more than 0.2 ° C to 0.3 ° C, and so on every 0.1 ° C to 0.6 ° C. The location and the number of occurrences of release are shown separately, and (C) shows the total number of (B) and the ratio of those released in the release tank 12.

【0022】図3(A)から明らかなように、T2−T1
=0の場合の解除槽内解除率は20%であるのに対し、
加熱したものは図3(C)に示すように解除槽内解除率
は55%であり、本実験例ではT2−T1が0.3℃以下
であれば全数が解除槽12内で解除している。
As apparent from FIG. 3A, T 2 -T 1
The release rate in the release tank when = 0 is 20%,
As shown in FIG. 3 (C), the release rate of the heated ones is 55% in the release tank. In this experimental example, if T 2 -T 1 is 0.3 ° C. or less, all the pieces are released in the release tank 12. doing.

【0023】次に図4の実施の形態にあっては、氷蓄冷
装置1に2組の過冷却系20,21が設けられ、各管路
は止め弁22,23,24によって開閉され、各過冷却
系20,21は独立して作動できるようになっている。
この装置1では一方の過冷却系20が始動するとき、他
方の過冷却系21では、冷凍機11が運転されず、該一
方の過冷却系20から出る過冷却水3aの過冷度が小の
時期に、他方の過冷却系21では過冷却器10内を冷水
3がそのまま流れるようにされ、該冷水3は、合流部1
6から氷水搬送管13に注入され、過冷却系20の過冷
却解除槽12を出る過冷却水3aを加熱する。この実施
の形態における氷水搬送管13内の氷結防止作用は、図
1の場合と同じであり、合流部16で下流側が高くなる
温度差が生じると過冷却解除槽12内での解除比率が高
くなる。
Next, in the embodiment of FIG. 4, two sets of supercooling systems 20, 21 are provided in the ice regenerator 1, and the respective pipelines are opened and closed by stop valves 22, 23, 24. The supercooling systems 20 and 21 can operate independently.
In this apparatus 1, when one of the subcooling systems 20 is started, the refrigerator 11 is not operated in the other subcooling system 21, and the degree of subcooling of the supercooled water 3a flowing out of the one subcooling system 20 is small. In the subcooling system 21, the cold water 3 is allowed to flow through the subcooler 10 as it is, and the cold water 3
6 heats the supercooled water 3a that is injected into the ice water transport pipe 13 and exits the subcooling release tank 12 of the supercooling system 20. The icing prevention action in the ice water transport pipe 13 in this embodiment is the same as that in FIG. 1. If a temperature difference occurs in which the downstream side increases at the junction 16, the release ratio in the supercooling release tank 12 increases. Become.

【0024】前記の各実施の形態において、氷水搬送管
13内の過冷却水3aの加熱のために、冷水3を混合す
る手段を用いているが、このような手段によらず加熱部
17を別の加熱手段で加熱してもよい。例えば冷凍機1
1のコンデンサで発生する熱を利用して外部から加熱す
るようにしてもよい。
In each of the above-described embodiments, means for mixing the cold water 3 is used for heating the supercooled water 3a in the ice water transport pipe 13. It may be heated by another heating means. For example, refrigerator 1
The heat generated by the first condenser may be used to heat the condenser from the outside.

【0025】[0025]

【発明の効果】以上の説明から明らかなように、請求項
1の手段によれば、過冷却解除槽から氷水搬送管に過冷
却水が入る状態のとき、該氷水搬送管内の過冷却水を加
熱して過冷却解除槽内の過冷却水との間に温度差を生じ
させると、該解除槽内での解除が促進され氷水搬送管内
での氷結が防止できる効果がある。
As is apparent from the above description, according to the first aspect of the present invention, when the supercooled water enters the ice water transfer pipe from the supercool release tank, the supercooled water in the ice water transfer pipe is removed. When heating is performed to cause a temperature difference between the supercooled water in the supercooling release tank and the supercooled water, the release in the release tank is promoted, and there is an effect that icing in the ice water transport pipe can be prevented.

【0026】また、請求項2の手段によれば、氷水搬送
管内に入る過冷却水に氷蓄冷装置中の冷水を入れること
だけで加熱することができ、構成が極めて簡単で作用の
切換えも速かになされる利点がある。
According to the second aspect of the present invention, the heating can be performed only by adding the cold water in the ice regenerator to the supercooled water entering the ice water conveying pipe, and the structure is extremely simple and the operation can be switched quickly. There are benefits to crabs.

【0027】請求項3の手段によれば、複数の過冷却系
を切換え使用するようにした装置において、休止中の過
冷却系を加熱のための冷水供給用に利用できるから、設
備に費用がかからない利点がある。
According to the third aspect of the present invention, in a device in which a plurality of supercooling systems are switched and used, the suspended supercooling system can be used for supplying cold water for heating, so that equipment costs are reduced. There is no advantage.

【0028】請求項4の手段によれば、過冷却水に対す
る過冷却解除作用が低いのは、過冷却系の始動直後であ
るから、この時期だけ加熱装置を作動させればよく、制
御が簡単になる利点がある。
According to the fourth aspect of the present invention, the supercooling release effect on the supercooled water is low immediately after the start of the supercooling system. There are advantages.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施の形態の配置図FIG. 1 is a layout diagram of a first embodiment of the present invention.

【図2】 本発明の作用を実証した実験装置の概略図FIG. 2 is a schematic diagram of an experimental device that has demonstrated the operation of the present invention.

【図3】 図2の実験装置で得られた数値のグラフFIG. 3 is a graph of numerical values obtained by the experimental apparatus of FIG.

【図4】 本発明の第2の実施の形態の配置図FIG. 4 is a layout diagram of a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 氷蓄冷装置 1a,20,21 過冷却
系 2 蓄氷槽 3 冷水 3a 過冷却水 4,18 氷 5 氷水 9 循環パ
イプ 10 過冷却器 11 冷凍
機 12 過冷却解除槽 13 氷水
搬送管 14 バイパス管 16 合流
部 17 加熱部
DESCRIPTION OF SYMBOLS 1 Ice regenerator 1a, 20, 21 Supercooling system 2 Ice storage tank 3 Cold water 3a Supercooled water 4,18 Ice 5 Ice water 9 Circulation pipe 10 Supercooler 11 Refrigerator 12 Supercool release tank 13 Ice water conveyance pipe 14 Bypass pipe 16 Confluence 17 Heating

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 氷水を貯蔵する蓄氷槽と、該蓄氷槽中の
冷水を再循環して過冷却する過冷却器と、該過冷却器か
ら放出される過冷却水を受入れる過冷却解除槽と、該過
冷却解除槽で生成した氷水を蓄氷槽に送る氷水搬送管と
を備える氷蓄冷装置において、前記氷水搬送管の上流側
に、該氷水搬送管を通る過冷却水を加熱する加熱装置を
設けたことを特徴とする氷蓄冷装置。
1. An ice storage tank for storing ice water, a supercooler for recirculating cold water in the ice storage tank to supercool, and a supercool release for receiving supercooled water discharged from the supercooler. In an ice regenerator including a tank and an ice water transfer pipe that sends ice water generated in the supercool release tank to an ice storage tank, the supercooled water passing through the ice water transfer pipe is heated upstream of the ice water transfer pipe. An ice cool storage device comprising a heating device.
【請求項2】 請求項1において、前記加熱装置の熱源
として蓄氷槽内の冷水を用い、該冷水を注入管を介して
氷水搬送管内の過冷却水に合流させて該過冷却水を加熱
することを特徴とする氷蓄冷装置。
2. The supercooled water according to claim 1, wherein cold water in an ice storage tank is used as a heat source of the heating device, and the cold water is combined with supercooled water in an ice water transport pipe via an injection pipe to heat the supercooled water. An ice regenerator characterized by the following.
【請求項3】 請求項2において、過冷却器と過冷却解
除槽の組を複数組並設し、そのうちの一つの組を休止さ
せ、蓄氷槽内の冷水を休止した組の過冷却解除槽を経て
氷水搬送管内の過冷却水に合流させて該過冷却水を加熱
することを特徴とする氷蓄冷装置。
3. The supercooling release of a set in which a plurality of sets of a supercooler and a subcooling release tank are arranged in parallel, one of which is stopped and the cold water in the ice storage tank is stopped. An ice regenerator characterized by heating the supercooled water by joining the supercooled water in an ice water transport pipe through a tank.
【請求項4】 請求項1,2又は3の氷蓄冷装置におい
て、過冷却器の始動直後で過冷却解除槽内に氷が存在し
ない時期に、前記加熱装置を作動させることを特徴とす
る氷蓄冷装置運転方法。
4. The ice regenerator according to claim 1, wherein the heating device is operated immediately after the subcooler is started and when there is no ice in the subcooling release tank. Cool storage device operation method.
JP27599496A 1996-10-18 1996-10-18 Ice cold storage device and operation method thereof Expired - Lifetime JP3773605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27599496A JP3773605B2 (en) 1996-10-18 1996-10-18 Ice cold storage device and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27599496A JP3773605B2 (en) 1996-10-18 1996-10-18 Ice cold storage device and operation method thereof

Publications (2)

Publication Number Publication Date
JPH10122610A true JPH10122610A (en) 1998-05-15
JP3773605B2 JP3773605B2 (en) 2006-05-10

Family

ID=17563298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27599496A Expired - Lifetime JP3773605B2 (en) 1996-10-18 1996-10-18 Ice cold storage device and operation method thereof

Country Status (1)

Country Link
JP (1) JP3773605B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009287787A (en) * 2008-05-27 2009-12-10 Takasago Thermal Eng Co Ltd Ice-water slurry supplying method and ice heat storage device
JP2014016155A (en) * 2013-10-28 2014-01-30 Takasago Thermal Eng Co Ltd Ice-water slurry supply method and ice thermal storage device

Also Published As

Publication number Publication date
JP3773605B2 (en) 2006-05-10

Similar Documents

Publication Publication Date Title
CN106288571A (en) A kind of subcooled water characteristics of dynamic ice slurry manufactures system
CN206160587U (en) Subcooled water developments ice thick liquid manufacturing system
JPH10122610A (en) Ice storage device and its operating method
JP3051717B2 (en) Cooling system
US5247811A (en) Production and heat storage system for low-temperature chilled water
JP3304010B2 (en) Ice storage refrigerator and operation method
JP3412371B2 (en) Freezing prevention system for ice storage type chiller
JP2000507683A (en) Refrigeration capacity accumulator
JP4399309B2 (en) Ice heat storage device
JP2824353B2 (en) Subcooled ice making system
JP2004085008A (en) Hydrate slurry manufacturing system and its operation method
JP2768020B2 (en) Ice storage device
JP3023362B1 (en) Ice storage device
RU2326791C1 (en) Hardware liquid cooling system
JPH10238828A (en) Ice heat reserve system and ice heat reserve cooling method using the system
JPH10185249A (en) Ice storage apparatus
JPH04263721A (en) Ice heat accumulator
JP3252209B2 (en) Ice storage type cooling equipment
JP2597057B2 (en) Subcooled ice heat storage device
JP2897534B2 (en) Rust prevention equipment for refrigeration cycle
JP4274605B2 (en) Ice heat storage system
JPH04306471A (en) Ice heat accumulating device
JP2827524B2 (en) Ice storage device
JPH08247508A (en) Ice heat storage equipment
JPH0252959A (en) Refrigerator

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100224

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110224

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120224

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130224

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140224

Year of fee payment: 8

EXPY Cancellation because of completion of term