JPH0518441B2 - - Google Patents

Info

Publication number
JPH0518441B2
JPH0518441B2 JP60203110A JP20311085A JPH0518441B2 JP H0518441 B2 JPH0518441 B2 JP H0518441B2 JP 60203110 A JP60203110 A JP 60203110A JP 20311085 A JP20311085 A JP 20311085A JP H0518441 B2 JPH0518441 B2 JP H0518441B2
Authority
JP
Japan
Prior art keywords
iron oxide
treatment
iron
nco
hydrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60203110A
Other languages
Japanese (ja)
Other versions
JPS6263406A (en
Inventor
Seigo Maruo
Arata Koyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP60203110A priority Critical patent/JPS6263406A/en
Publication of JPS6263406A publication Critical patent/JPS6263406A/en
Publication of JPH0518441B2 publication Critical patent/JPH0518441B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は、磁気記録媒体の記録素子として好適
な鉄系金属磁性粉末の製造方法に関する。 〔発明の技術的背景とその問題点〕 オーデイオ用、ビデオ用、コンピユーター用等
の磁気テープ、磁気デイスク、磁気シートなどの
磁気記録媒体は、近年記録容量の高密度化による
小型化、高性能化の指向が一段と強まつてきてお
り、これとあいまつて近時磁気記録媒体用磁性材
料として、従来の酸化鉄系磁性粉末に比し、高保
磁力、高飽和磁化が一層期待し得る鉄又は鉄系合
金類の鉄系金属磁性粉末が特に注目されつつあ
る。 ところで、前記鉄系金属磁性粉末は、通常、ゲ
ーサイト針状晶粒子のような含水酸化鉄粒子また
は、これを加熱脱水して得られる酸化鉄粒子を水
素などの還元性ガス雰囲気中で加熱して金属鉄に
まで還元することによつて得られるものである。
しかして前記還元反応は、加熱温度に大きく律速
されるため高温加熱処理では、還元は速やかに完
了する反面、得られる金属鉄粒子の形状が崩れた
り、粒子間の焼結が起つたりして磁気特性がいち
じるしく損なわれ易い。また、低温加熱処理で
は、前記問題は回避し得る反面、還元速度が大巾
に低下し、工業的にきわめて不利とならざるを得
ない。 このために前記の粒子形状の崩れや粒子間焼結
を起すことなく還元反応を比較的短時間に完了さ
せるべく種々の提案がなされている。例えば、含
水酸化鉄または酸化鉄の粒子表面を、ケイ酸ナト
リウムなどのケイ酸塩系の処理剤や、アルコキシ
ド系シラン化合物よりなる有機系処理剤で被覆処
理したものを加熱還元処理する方法がよく知られ
ている。しかしながら、前記被覆処理方法は、前
記被覆処理剤として例えば、ケイ酸塩を使用する
と、被覆処理剤が被覆層の沈澱形成時に水酸化鉄
や酸化鉄の粒子表面や粒子表面以外で生成したケ
イ酸ゲルが急速にゲル化され易く、このために均
一な連続被覆層の形成がむづかしく焼結粒子の形
成や粒子形状の崩れがさけられなかつたりする。 また、前記ケイ酸塩による処理においては、沈
澱形成のために使用する酸などの中和剤や、その
中和生成物が金属鉄磁性粉末中に残留し易く、ま
た有機系被覆処理剤として例えば、アルコキシク
ロルシランのようなものを使用する場合において
も均一で強固な被覆層の形成がむづかしく、さら
に加熱還元時に塩化水素ガスを発生し、粒子形状
の崩れをもたらすとともに、金属鉄磁性粉末中に
塩素分の残留がさけらず、塗料化時のゲル化やド
ロツプアウトさらにはヘツドの腐食などの原因と
なつたりする。いづれにしても前記の種々の方法
によつても還元時の粒子形状の崩れや粒子間焼結
の抑制効果が十分もたらされず、その結果得られ
る鉄系金属磁性粉末の磁気特性が損なわれるなど
未だ解決を要する問題点が少なくない。 〔発明の目的〕 本発明の目的は、前記問題点を解決し、含水酸
化鉄または酸化鉄の粒子形状性を損なうことな
く、かつ粒子間焼結を惹起することなしに高記録
密度用磁気記録媒体に好適な優れた特性の鉄系金
属磁性粉末を効率よく製造する方法を提供するこ
とにある。 〔発明の構成〕 本発明者等は、かねてより前記問題点を解決す
べく種々検討をすすめる中で、含水酸化鉄または
酸化鉄の粒子表面における活性水素化合物とイソ
シアネート基との強い反応性に着目し、さらに検
討をすすめた結果、イソシアネート基を有するシ
リル化剤を用いて含水酸化鉄または酸化鉄を主体
として含む金属化合物粉末を被覆処理すると、そ
の一部または全部が反応して該粒子表面にきわめ
て均一なシロキサン化合物の被覆層が形成され、
ひきつづく或いは150〜850℃の温度で加熱処理し
た後の加熱還元処理において粒子相互の焼結を抑
制するとともに、粒子形状崩れのない磁気特性の
優れた鉄系金属磁性粉末を甚だ効率よく製造し得
ることの知見を得、本発明を完成したものであつ
て、本発明は、含水酸化鉄または酸化鉄を主体と
して含む金属化合物の粒子表面に、シリルイソシ
アネート化合物を被覆し、該化合物をシロキサン
化合物とした後、加熱還元処理するか、もしくは
150〜850℃の温度で加熱処理した後、加熱還元処
理することを特徴とする鉄系金属磁性粉末の製造
方法である。 本発明の方法において、使用する出発物質とし
ては、含水酸化鉄または酸化鉄としては、種々の
ものを使用し得るが、含水酸化鉄の代表的なもの
としてはオキシ水酸化鉄であり、例えばα−FeO
(OH)、β−FeO(OH)、γ−FeO(OH)などを
挙げることができる。また、酸化鉄としては、例
えばα−Fe2O3、Fe3O4、γ−Fe2O3、γ−Fe2O3
を部分還元して得られるようなベルトライド化合
物などを挙げることができ、さらに前記の含水酸
化鉄または酸化鉄に磁性特性等の性能を改善する
ために例えば、Co、Ni、Ti、Cr、Mnなど鉄以
外の金属成分を付加したものを使用することもで
きる。 なお、前記の金属成分は、例えば含水酸化鉄の
生成時に共沈させたり、または含水酸化鉄の粒子
表面に吸着させたり、あるいはそれらの水酸化物
等を被覆したり、さらには前記金属成分を含んだ
含水酸化物を脱水、還元、酸化等の処理をおこな
うことによつてドーピングすることができる。な
お、これらの含水酸化鉄または酸化鉄の粒子形状
は、代表的には針状のものであるが、それ以外
種々の形状のものを使用することができ、例えば
紡錘状、米粒状、棒状、平板状サイコロ状などを
挙げることができる。 本発明の方法において、被覆処理に使用するシ
リルイソシアネート化合物としては、一般式
AnSi(NCO)4-o(A:炭素数が1〜22のアルキル
基、アルコキシ基、アルケニル基またはアリール
基、または水素、n:O又は3以下の整数であつ
て、nが2または3のときはアルキル基、アルコ
キシ基、アルケニル基またはアリール基は同一の
ものであつても異なつたものであつてもよい)で
示される種々のものを使用し得るが、それらの具
体例としては、例えば、Si(NCO)4、CH3Si
(NCO)3、(CH32Si(NCO)2、(CH33SiNCO、
C4H9OSi(NCO)3、C13H17OSi(NCO)、C13H17Si
(NCO)3、CH=CHSi(NCO)3、CH2=CHSi
(NCO)2CH3
[Technical Field of the Invention] The present invention relates to a method for producing iron-based metal magnetic powder suitable as a recording element of a magnetic recording medium. [Technical background of the invention and its problems] In recent years, magnetic recording media such as magnetic tapes, magnetic disks, and magnetic sheets for audio, video, and computers have become smaller and have improved performance due to increased recording capacity. In conjunction with this, iron or iron-based materials, which are expected to have higher coercive force and higher saturation magnetization than conventional iron oxide-based magnetic powders, have recently become more popular as magnetic materials for magnetic recording media. Iron-based metal magnetic powders such as alloys are attracting particular attention. By the way, the above-mentioned iron-based metal magnetic powder is usually produced by heating hydrated iron oxide particles such as goethite needle crystal particles or iron oxide particles obtained by heating and dehydrating them in a reducing gas atmosphere such as hydrogen. It is obtained by reducing iron to metallic iron.
However, since the rate of the reduction reaction is largely determined by the heating temperature, in high-temperature heat treatment, although the reduction is completed quickly, the shape of the resulting metal iron particles may collapse or sintering between particles may occur. Magnetic properties are easily impaired. Furthermore, while low-temperature heat treatment can avoid the above-mentioned problems, the reduction rate is greatly reduced, which is extremely disadvantageous industrially. For this reason, various proposals have been made to complete the reduction reaction in a relatively short time without causing the aforementioned particle shape collapse or interparticle sintering. For example, the surface of hydrated iron oxide or iron oxide particles is often coated with a silicate-based treatment agent such as sodium silicate or an organic treatment agent consisting of an alkoxide-based silane compound, and then subjected to heat reduction treatment. Are known. However, in the above-mentioned coating treatment method, when a silicate is used as the coating treatment agent, the coating treatment agent may cause silicic acid generated on the particle surface of iron hydroxide or iron oxide or other than the particle surface during precipitation formation of the coating layer. The gel tends to gel rapidly, which makes it difficult to form a uniform continuous coating layer, and the formation of sintered particles and deformation of the particle shape are unavoidable. In addition, in the treatment with the silicate, neutralizing agents such as acids used for precipitate formation and their neutralization products tend to remain in the metal iron magnetic powder, and organic coating agents such as Even when using materials such as alkoxychlorosilane, it is difficult to form a uniform and strong coating layer, and furthermore, hydrogen chloride gas is generated during heating and reduction, resulting in deformation of the particle shape and the formation of a metallic iron magnetic powder. Unavoidable residual chlorine content in the paint can cause gelation, dropouts, and corrosion of the head when it is made into a paint. In any case, even with the various methods described above, the effect of suppressing the collapse of particle shape and interparticle sintering during reduction is not sufficiently brought about, and as a result, the magnetic properties of the obtained iron-based metal magnetic powder are impaired. There are many problems that need to be resolved. [Object of the Invention] An object of the present invention is to solve the above-mentioned problems and to produce magnetic recording for high recording density without impairing the particle shape of hydrated iron oxide or iron oxide and without causing interparticle sintering. It is an object of the present invention to provide a method for efficiently producing iron-based metal magnetic powder with excellent characteristics suitable for media. [Structure of the Invention] While conducting various studies to solve the above-mentioned problems, the present inventors focused on the strong reactivity between active hydrogen compounds and isocyanate groups on the surface of hydrated iron oxide or iron oxide particles. However, as a result of further investigation, we found that when hydrated iron oxide or metal compound powder mainly containing iron oxide is coated with a silylating agent having an isocyanate group, some or all of the silylating agent reacts with the particle surface. An extremely uniform coating layer of siloxane compound is formed,
In addition to suppressing mutual sintering of particles in heat reduction treatment after heat treatment at a temperature of 150 to 850°C, it is possible to extremely efficiently produce iron-based metal magnetic powder with excellent magnetic properties without deformation of particle shape. The present invention has been completed based on the knowledge that silyl isocyanate compound is coated on the particle surface of hydrous iron oxide or a metal compound mainly containing iron oxide, and the compound is coated with a siloxane compound. After that, heat reduction treatment or
This is a method for producing iron-based metal magnetic powder, characterized by heat treatment at a temperature of 150 to 850°C, followed by heat reduction treatment. In the method of the present invention, various starting materials can be used as hydrous iron oxide or iron oxide, but a typical example of hydrous iron oxide is iron oxyhydroxide, such as α −FeO
(OH), β-FeO(OH), γ-FeO(OH), etc. In addition, examples of iron oxides include α-Fe 2 O 3 , Fe 3 O 4 , γ-Fe 2 O 3 , γ-Fe 2 O 3
For example, in order to improve performance such as magnetic properties to the above-mentioned hydrated iron oxide or iron oxide, for example, Co, Ni, Ti, Cr, Mn can be added. It is also possible to use materials to which metal components other than iron are added, such as. The above-mentioned metal components may be co-precipitated during the production of hydrated iron oxide, adsorbed onto the surface of hydrated iron oxide particles, coated with their hydroxides, etc. Doping can be achieved by subjecting the contained hydrated oxide to treatments such as dehydration, reduction, and oxidation. Note that the particle shape of these hydrous iron oxides or iron oxides is typically needle-shaped, but various other shapes can be used, such as spindle-shaped, rice grain-shaped, rod-shaped, Examples include flat plate and dice shapes. In the method of the present invention, the silyl isocyanate compound used for coating treatment has the general formula
AnSi(NCO) 4-o (A: an alkyl group, alkoxy group, alkenyl group, or aryl group having 1 to 22 carbon atoms, or hydrogen, n: O or an integer of 3 or less, where n is 2 or 3) (In some cases, the alkyl group, alkoxy group, alkenyl group or aryl group may be the same or different.) Specific examples thereof include, for example. , Si(NCO) 4 , CH 3 Si
(NCO) 3 , (CH 3 ) 2 Si(NCO) 2 , (CH 3 ) 3 SiNCO,
C 4 H 9 OSi (NCO) 3 , C 13 H 17 OSi (NCO), C 13 H 17 Si
(NCO) 3 , CH=CHSi(NCO) 3 , CH 2 =CHSi
(NCO) 2 CH 3 ,

【式】(NCO)3などを挙 げることができる。 本発明の方法において、前記シリルイソシアネ
ート化合物を、含水酸化鉄または酸化鉄の粒子表
面に被覆処理するには、種々の方法によつておこ
なうことができるが、例えば(1)含水酸化鉄または
酸化鉄を水または有機系の水性媒液中に懸濁させ
て水性懸濁液を形成し、これにシリルイソシアネ
ート化合物の溶液を添加したり、(2)含水酸化鉄ま
たは酸化鉄をシリルイソシアネート化合物を溶解
した有機溶液中に懸濁させたり、あるいは(3)含水
酸化鉄または酸化鉄の粉末にシリルイソシアネー
ト化合物の溶液を噴霧したりすることによつて、
シリルイソシアネート化合物の一部または全部が
含水酸化鉄または酸化鉄の粒子表面における水酸
基等の活性水素の存在によりきわめて容易に反応
し、該粒子表面にシリル基が付加した均一で強固
なシロキサン化合物被覆層が形成される。なお、
前記被覆処理は、常温下でおこなつてもよいが、
必要に応じ加熱下でおこなつてもよい。また前記
(3)のように含水酸化鉄または酸化鉄の粉末にシリ
ルイソシアネート化合物を直接接触させる場合に
は、被覆処理に先だつて水または水蒸気により含
水酸化鉄または酸化鉄の粒子表面に水酸基の量を
増大させるように予備処理をおこなつてもよい。 本発明の方法において、シリルイソシアネート
化合物の処理量は、含水酸化鉄または酸化鉄の粒
子径などによつて異なり、一概に言えないが、含
水酸化鉄または酸化鉄のFe重量基準に対して、
シリルイソシアネート化合物をSi重量基準で0.1
〜20%望ましくは0.5〜10%である。前記範囲よ
り処理量分が少なきにすぎると、所望の効果が得
られず、一方、多きにすぎてもコスト的に有利で
なく、また得られる鉄系金属磁性粉末の特性、例
えば飽和磁化が低下するなど好ましくない影響を
及ぼしたりする。 前記のようにして被覆処理された含水酸化鉄ま
たは酸化鉄の粒子は、必要に応じ過、水洗を経
て処理系から回収し、次いで加熱還元処理に付さ
れる。 前記において出発物質として例えば含水酸化鉄
を使用し、これに当該被覆処理する場合には、被
覆処理後150〜850℃で加熱脱水してα−Fe2O3
を形成してから加熱還元処理するのが望ましい。
出発物質として酸化鉄を使用する場合でも、被覆
処理後150〜850℃で加熱処理した後、加熱還元処
理してもよい。 前記加熱還元処理は、よく知られている種々の
方法によつておこなうことができるが、通常還元
性ガスとして例えば水素ガス中で300〜550℃の加
熱温度条件下で1〜20時間処理することによつ
て、酸化物金属の実質的全部を金属に還元するこ
とができる。 なお、前記加熱還元処理に先立つて150〜850℃
で加熱処理する場合は、前記被覆層が強固なケイ
素化合物層となり易く加熱還元処理における粒子
焼結や粒子形状崩れを抑制する上で一層好まし
い。 以下に実施例を挙げて本発明をさらに説明す
る。 実施例 1 α−FeOOHの針状粒子(長軸0.3μ、軸比10)
25gを、1の水に分散させてなるスラリーを撹
拌しながら40℃に保持した。前記スラリーにSi
(NCO)4の酢酸エチル溶液(10g/)の262ml
を1時間かけて徐々に滴下し、滴下後さらに同温
度で1時間撹拌して熟成した。ついで、過、水
洗した後乾燥した。 ついで、前記の被覆処理を施した含水酸化鉄粒
子を、マツフル炉中で大気圧下で750℃で2時間
加熱してα−Fe2O3とした。 しかる後、前記のようにして得られたα−
Fe2O37gを、ステンレス製ボードに入れ、管状
炉中で毎分2の水素気流下、450℃で4時間加
熱還元した。得られた還元物は、窒素気流中で冷
却後トルエン中に浸漬し、ついで乾燥して本発明
方法による試料(A)とした。 実施例 2 実施例1において、Si(NCO)4の酢酸エチル溶
液に代えて、CH3Si(NCO)3の酢酸エチル溶液
(10g/)、226mlを使用したこと以外は、実施
例1の場合と同様に処理して本発明方法による試
料(B)を得た。 実施例 3 実施例1で使用したα−FeOOH粉末25gを、
少量の水で湿潤して湿ケーキを調製した。ついで
Si(NCO)4の酢酸エチル溶液(52.4g/)、50ml
を該湿ケーキに添加しよく混練後乾燥したこと以
外は、実施例1の場合と同様に処理して本発明方
法による試料(C)を得た。 実施例 4 実施例3において、Si(NCO)4の酢酸エチル溶
液に代えて、CH3Si(NCO)3の酢酸エチル溶液
(45.2g/)、50mlを使用したこと以外は実施例
1の場合と同様に処理して本発明方法による試料
(D)を得た。 比較例 1 実施例1において、Si(NCO)4の酢酸エチル溶
液に代えてCH3Si(OCH33のエタノール溶液(10
g/)、182mlを使用したこと以外は実施例1の
場合と同様に処理した。試料(E) 比較例 2 実施例1において、Si(NCO)4の酢酸エチル溶
液に代えて、CH2=CHSi(OCH33の水溶液(10
g/、但し微量の酢酸を添加してPH4に調整し
たもの)、197mlを使用したこと以外は実施例1の
場合と同様に処理した。試料(F) 比較例 3 実施例3において、Si(NCO)4の酢酸エチル溶
液に代えて、n−C10H21Si(OCH33エタノール
溶液(68g/)、50mlを使用したこと以外は実
施例1の場合と同様に処理した。試料(G) 比較例 4 実施例1で使用したα−FeOOHスラリーに、
NaOH水溶液を加えてPH13にした後、40℃撹拌
下に水ガラス水溶液(Siとして30g/)を16ml
添加した。ついで、CO2ガスを吹込みほぼ1時間
かけてPH7まで中和した。さらに1時間撹拌下熟
成した後、過、水洗、乾燥した。しかる後、実
施例1の場合と同様にして加熱脱水処理つづいて
加熱還元処理をおこなつた。試料(H) 比較例 5 前記実施例1において、α−FeOOH針状粒子
表面にSi(NCO)4被覆処理をおこなわないこと以
外は、実施例1の場合と同様に処理した。試料(I) 前記の実施例および比較例で得られた各試料粉
末について常法により振動型磁力計(VSM)を
使用し、保磁力(Hc)、飽和磁化(σs、10KOeの
磁場における値)、角形比(Rs)を測定した。そ
の結果を次表に示す。
Examples include [Formula] (NCO) 3 . In the method of the present invention, coating the surface of particles of hydrated iron oxide or iron oxide with the silyl isocyanate compound can be carried out by various methods, such as (1) coating of hydrated iron oxide or iron oxide particles. to form an aqueous suspension in water or an organic aqueous medium, to which a solution of the silyl isocyanate compound is added, or (2) hydrated iron oxide or iron oxide is dissolved in the silyl isocyanate compound. (3) by spraying a solution of the silyl isocyanate compound onto hydrated iron oxide or iron oxide powder;
Part or all of the silyl isocyanate compound reacts very easily due to the presence of active hydrogen such as hydroxyl groups on the surface of hydrated iron oxide or iron oxide particles, resulting in a uniform and strong siloxane compound coating layer with silyl groups added to the surface of the particles. is formed. In addition,
The coating treatment may be performed at room temperature,
This may be carried out under heating if necessary. Also mentioned above
When the silyl isocyanate compound is brought into direct contact with hydrated iron oxide or iron oxide powder as in (3), the amount of hydroxyl groups is increased on the surface of hydrated iron oxide or iron oxide particles using water or steam prior to coating treatment. Preliminary processing may be performed to In the method of the present invention, the amount of the silyl isocyanate compound to be treated varies depending on the particle size of the hydrated iron oxide or iron oxide, and cannot be definitively stated, but it is based on the weight of Fe of the hydrated iron oxide or iron oxide.
Silyl isocyanate compound 0.1 based on Si weight
~20%, preferably 0.5-10%. If the processing amount is too small than the above range, the desired effect will not be obtained, while if it is too large, it will not be advantageous in terms of cost, and the characteristics of the obtained iron-based metal magnetic powder, such as saturation magnetization, will be affected. This may have undesirable effects such as a decrease in The hydrated iron oxide or iron oxide particles coated as described above are recovered from the treatment system through filtration and washing as necessary, and then subjected to a heat reduction treatment. In the above, for example, when hydrated iron oxide is used as the starting material and is subjected to the coating treatment, it is heated and dehydrated at 150 to 850°C to form α-Fe 2 O 3 etc. after the coating treatment, and then heated and reduced. It is desirable to do so.
Even when iron oxide is used as a starting material, it may be heat-treated at 150 to 850° C. after coating, and then heat-reduced. The thermal reduction treatment can be carried out by various well-known methods, but it is usually carried out in a reducing gas such as hydrogen gas at a heating temperature of 300 to 550°C for 1 to 20 hours. substantially all of the oxide metal can be reduced to metal. Note that the temperature is 150 to 850°C prior to the heat reduction treatment.
When the heat treatment is carried out, the coating layer tends to become a strong silicon compound layer, which is more preferable in terms of suppressing particle sintering and particle shape deformation during the heat reduction treatment. The present invention will be further explained below with reference to Examples. Example 1 Acicular particles of α-FeOOH (long axis 0.3μ, axial ratio 10)
A slurry prepared by dispersing 25 g of 1 in water was maintained at 40°C while stirring. Si in the slurry
262 ml of ethyl acetate solution (10 g/) of (NCO) 4
was gradually added dropwise over 1 hour, and after the addition, the mixture was further stirred at the same temperature for 1 hour to ripen. Then, it was filtered, washed with water, and then dried. Then, the hydrated iron oxide particles subjected to the coating treatment were heated at 750° C. for 2 hours under atmospheric pressure in a Matsufuru furnace to form α-Fe 2 O 3 . After that, the α-
7 g of Fe 2 O 3 was placed in a stainless steel board and heated and reduced in a tube furnace at 450° C. for 4 hours under a hydrogen flow of 2 times per minute. The obtained reduced product was cooled in a nitrogen stream, immersed in toluene, and then dried to obtain a sample (A) according to the method of the present invention. Example 2 The same as in Example 1 except that 226 ml of an ethyl acetate solution of CH 3 Si(NCO) 3 (10 g/) was used instead of the ethyl acetate solution of Si(NCO) 4 in Example 1. A sample (B) according to the method of the present invention was obtained by processing in the same manner as above. Example 3 25g of α-FeOOH powder used in Example 1 was
A wet cake was prepared by moistening with a small amount of water. Then
Si(NCO) 4 in ethyl acetate solution (52.4g/), 50ml
A sample (C) according to the method of the present invention was obtained in the same manner as in Example 1, except that the mixture was added to the wet cake, thoroughly kneaded, and then dried. Example 4 The same as in Example 1 except that in Example 3 , 50 ml of an ethyl acetate solution of CH 3 Si(NCO) 3 (45.2 g/) was used instead of the ethyl acetate solution of Si(NCO) 4 A sample obtained by the method of the present invention was processed in the same manner as
I got (D). Comparative Example 1 In Example 1, an ethanol solution of CH 3 Si (OCH 3 ) 3 (10
The process was carried out in the same manner as in Example 1, except that 182 ml of the sample was used. Sample (E) Comparative Example 2 In Example 1, an aqueous solution of CH 2 = CHSi(OCH 3 ) 3 (10
The process was carried out in the same manner as in Example 1, except that 197 ml of the solution (197 ml) was used. Sample (F) Comparative Example 3 Example 3 except that 50 ml of n-C 10 H 21 Si(OCH 3 ) 3 ethanol solution (68 g/) was used instead of the Si(NCO) 4 ethyl acetate solution. was treated in the same manner as in Example 1. Sample (G) Comparative Example 4 The α-FeOOH slurry used in Example 1 was
After adjusting the pH to 13 by adding NaOH aqueous solution, add 16 ml of water glass aqueous solution (30 g/Si) under stirring at 40℃.
Added. Then, CO 2 gas was blown into the solution to neutralize it to pH 7 over about an hour. After further aging with stirring for 1 hour, the mixture was filtered, washed with water, and dried. Thereafter, in the same manner as in Example 1, a heating dehydration treatment followed by a heating reduction treatment was performed. Sample (H) Comparative Example 5 The same treatment as in Example 1 was carried out, except that the surface of the α-FeOOH acicular particles was not coated with Si(NCO) 4 . Sample (I) Using a vibrating magnetometer (VSM) in a conventional manner for each sample powder obtained in the above examples and comparative examples, coercive force (Hc) and saturation magnetization (σs, value in a magnetic field of 10 KOe) were measured. , the squareness ratio (Rs) was measured. The results are shown in the table below.

〔発明の効果〕〔Effect of the invention〕

本発明の方法は、含水酸化鉄または酸化鉄の粒
子表面に、シリルイソシアネート化合物の被覆層
よりなる保護被膜が均一かつ強固に形成し得るた
め、従来の被覆処理剤を使用する場合にみられる
不具合をともなうことなく、粒子相互の焼結が抑
制されかつ粒子形状崩れのない磁気特性の優れた
鉄系金属磁性粉末をきわめて容易に製造すること
ができる。
The method of the present invention can uniformly and firmly form a protective film consisting of a coating layer of a silyl isocyanate compound on the surface of particles of hydrated iron oxide or iron oxide, so that problems that occur when using conventional coating treatment agents can be avoided. It is possible to extremely easily produce an iron-based metal magnetic powder with excellent magnetic properties in which mutual sintering of particles is suppressed and the particle shape does not collapse without causing any sintering.

Claims (1)

【特許請求の範囲】[Claims] 1 含水酸化鉄または酸化鉄を主体として含む金
属化合物の粒子表面に、シリルイソシアネート化
合物を被覆し、該化合物をシロキサン化合物とし
た後、加熱還元処理するか、もしくは150〜850℃
の温度で加熱処理した後加熱還元処理することを
特徴とする鉄系金属磁性粉末の製造方法。
1. After coating the particle surface of hydrated iron oxide or a metal compound mainly containing iron oxide with a silyl isocyanate compound to convert the compound into a siloxane compound, heat reduction treatment or heating at 150 to 850°C
A method for producing iron-based metal magnetic powder, which comprises heat treatment at a temperature of , followed by heat reduction treatment.
JP60203110A 1985-09-13 1985-09-13 Production of iron system metal magnetic powder Granted JPS6263406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60203110A JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60203110A JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Publications (2)

Publication Number Publication Date
JPS6263406A JPS6263406A (en) 1987-03-20
JPH0518441B2 true JPH0518441B2 (en) 1993-03-12

Family

ID=16468561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60203110A Granted JPS6263406A (en) 1985-09-13 1985-09-13 Production of iron system metal magnetic powder

Country Status (1)

Country Link
JP (1) JPS6263406A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376960A (en) * 1976-12-20 1978-07-07 Hitachi Maxell High magnetic metal powder manufacturing process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5376960A (en) * 1976-12-20 1978-07-07 Hitachi Maxell High magnetic metal powder manufacturing process

Also Published As

Publication number Publication date
JPS6263406A (en) 1987-03-20

Similar Documents

Publication Publication Date Title
US3702270A (en) Method of making a magnetic powder
JPH0146445B2 (en)
EP0056257A1 (en) Method for production of metal magnetic particles
KR890001485B1 (en) Process for producing cobalt containing ferromagnetic iron oxid
JPH0518441B2 (en)
JPS6217364B2 (en)
JPS5980901A (en) Manufacture of ferromagnetic metal powder
GB2058845A (en) Method of producing fine metal particles
KR890000702B1 (en) Production for cobalt containing magnetic iron oxide power
JP3246943B2 (en) Stabilization method of acicular ferromagnetic metal powder consisting essentially of iron
JPH02175806A (en) Manufacture of metal magnetic powder for magnetic recorder
JP3242102B2 (en) Magnetic powder and method for producing the same
JPH0832564B2 (en) Method for producing needle-shaped alpha-iron oxide (III)
US4348430A (en) Process for producing magnetic particles for magnetic recording medium
JPS6349722B2 (en)
JPS62197324A (en) Production of feromagnetic iron oxide powder
JP3171223B2 (en) Method for producing acicular magnetic particle powder
JP2805162B2 (en) Method for producing metal magnetic powder for magnetic recording
JP3087804B2 (en) A granulated product for iron alloy magnetic particles for magnetic recording, a method for producing the same, and a method for producing iron alloy magnetic particles for magnetic recording using the granulated product.
JPH01309903A (en) Method for stabilizing ferromagnetic iron powder
JPS5847844B2 (en) Manufacturing method of magnetic iron powder
JPS5947004B2 (en) Manufacturing method of ferromagnetic metal fine particles
JPH0472361B2 (en)
JPS6034244B2 (en) Manufacturing method of ferromagnetic powder
JPS61159502A (en) Production of magnetic metallic powder