JPH0472361B2 - - Google Patents

Info

Publication number
JPH0472361B2
JPH0472361B2 JP57042372A JP4237282A JPH0472361B2 JP H0472361 B2 JPH0472361 B2 JP H0472361B2 JP 57042372 A JP57042372 A JP 57042372A JP 4237282 A JP4237282 A JP 4237282A JP H0472361 B2 JPH0472361 B2 JP H0472361B2
Authority
JP
Japan
Prior art keywords
powder
iron oxide
metal
silicon compound
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57042372A
Other languages
Japanese (ja)
Other versions
JPS58159305A (en
Inventor
Toshinobu Sueyoshi
Shigeo Hirai
Katsunori Tashimo
Akinari Hayashi
Masahiro Amamya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP57042372A priority Critical patent/JPS58159305A/en
Publication of JPS58159305A publication Critical patent/JPS58159305A/en
Publication of JPH0472361B2 publication Critical patent/JPH0472361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70605Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys
    • G11B5/70615Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material metals or alloys containing Fe metal or alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は鉄を主体とする金属磁性粉末の製造
方法に関する。 鉄を主体とする金属磁性粉末は、通常、オキシ
水酸化鉄ないしは酸化鉄を主体として含む針状の
粉末粒子を水素ガス等で加熱還元することによつ
てつくられ、従来の酸化物系磁性粉末より磁気特
性に優れたものとして知られているが、加熱還元
時に粉末粒子相互間で焼結が生じたり粒子の形崩
れが起こり易く、粒度の不均一や針状性が損なわ
れることによつて磁気特性が劣化し易い。 このため、従来から加熱還元前の粉末粒子をケ
イ素化合物水溶液中に分散させたりして粒子表面
にケイ素化合物を被着させるなどの方法で、加熱
還元時の粒子相互間の焼結や形崩れを抑制するこ
とが行なわれているが、未だ充分に満足できる結
果は得られていない。 この発明者らはかかる現状に鑑み種々検討を行
つた結果、多価アルコール中に、針状酸化鉄粉末
と金属塩とを分散溶解した後、これを加熱して針
状酸化鉄粉末の粒子内に金属を導入し、同時に還
元によつて針状マグネタイトを生成し、次いでケ
イ素化合物を添加溶解して粉末粒子の表面にケイ
素化合物を被着させるか、あるいは多価アルコー
ル中に、針状酸化鉄粉末と金属塩とを分散溶解す
る際、ケイ素化合物を添加溶解し、これを加熱し
て針状酸化鉄粉末の粒子内に金属を導入し、同時
に還元によつて針状マグネタイトを生成するとと
もに粉末粒子の表面にケイ素化合物を被着させる
と、加熱還元時の粒子の焼結や形崩れが充分に抑
制されて磁気特性に優れた鉄を主体とする金属磁
性粉末が得られることを見いだし、この発明をな
すに至つた。 この発明においてケイ素化合物の添加溶解は、
針状酸化鉄粉末と金属塩とを多価アルコール中に
分散溶解する際に行なつても、あるいは針状酸化
鉄粉末と金属塩とを分散溶解した多価アルコール
溶液を加熱して針状酸化鉄粉末の粒子内に金属を
導入した後行なつてもよい。このように多価アル
コールが存在すると多価アルコールによつて金属
を導入した針状酸化鉄粉末が極めて良好に分散さ
れているため、ケイ素化合物がこの良好に分散さ
れた粉末粒子の表面に均一かつ良好に被着し、そ
の結果、加熱還元時の粒子の焼結や形崩れが充分
に抑制される。なお、ケイ素化合物の添加溶解
を、針状酸化鉄粉末と金属塩とを多価アルコール
中に分散溶解する際に行なう場合には、多価アル
コール中にケイ素化合物を溶解させ、さらにその
中に針状酸化鉄粉末を分散させたものと、多価ア
ルコール中に金属塩を溶解したものとを混合攪拌
して行なうのが好ましいが、多価アルコール中に
ケイ素化合物を溶解させ、さらにその中に針状酸
化鉄粉末を分散させた後これに金属塩を加えて溶
解させてもよく、この場合ケイ素化合物に代えて
ケイ素化合物を水に溶解したケイ素化合物水溶液
を使用し、このケイ素化合物水溶液に針状酸化鉄
粉末を分散させた後、これを多価アルコール中に
加え、しかる後前記と同様に多価アルコール中に
金属塩を溶解したものを加えるか、あるいは金属
塩を直接加えて溶解させてもよい。このようにケ
イ素化合物を、針状酸化鉄粉末と金属塩とを多価
アルコール中に分散溶解する際に添加溶解させる
とこのケイ素化合物によつて多価アルコール中に
良好に分散された針状酸化鉄粉末がさらに一段と
良好に分散し、その結果、その後の加熱処理によ
り金属が均一かつ良好に針状酸化鉄粉末の粒子内
に導入される。 このようなケイ素化合物としては、たとえば、
オルトケイ酸ナトリウム、メタケイ酸ナトリウ
ム、メタケイ酸カリウム、種々の組成の水ガラス
等の水溶性ケイ酸塩などが好的なものとして使用
される。使用量は金属を導入した針状酸化鉄粉末
に対して0.5〜20重量%の範囲内で使用するのが
好ましく、少なすぎると所期の効果が得られず、
多すぎると得られる磁性粉末の飽和磁化(σs)が
低下するおそれがある。 原料となる針状酸化鉄粉末としては、α−
FeOOH粉末、α−Fe2O3粉末、γ−Fe2O3粉末、
Fe3O4粉末およびこれらの中間型の粉末などが使
用され、針状性の良いものが好ましく使用され
る。 また、多価アルコールとしては沸点が150℃以
上の、たとえばエチレングリコール、ポリエチレ
ングリコール、プロピレングリコール、グリセリ
ンなどが好適なものとして使用され、この種の多
価アルコールは針状酸化鉄粉末をアルコールで処
理した状態で良好に分散する。また針状酸化鉄粉
末および金属塩をこの種の多価アルコール中に分
散溶解した後、150℃以上の温度で加熱処理する
と多価アルコールの作用でα−FeOOH,α−
Fe2O3,γ−Fe2O3などの針状酸化鉄粉末は還元
されてマグネタイト粉末になり、同時に粉末粒子
内に金属が導入拡散される。このような多価アル
コールは針状酸化鉄粉末に対して容積比(針状酸
化鉄粉末対多価アルコール)で1対5〜1対50の
範囲内で好ましく使用される。 多価アルコール中に溶解される金属塩として
は、たとえばCo,Ni,Mn,Cr,Zn,Pb,Sn,
Alなどの種々の金属のハロゲン化物、水酸化物、
炭酸塩、硫酸塩などの無機塩の他、有機金属塩等
が好適なものとして使用され、一般に磁気的特性
が好適なものとして使用され、一般に磁気的特性
(保磁力、飽和磁化)を最適化させるためにはCo
およびNi等の金属塩が、また熱的安定性を向上
させるためにはAl,Mn,Ni,Zn等の金属塩が
使用される。使用量はCoの場合Co/Feの原子換
算重量比で0.1〜40重量%、Niの場合Ni/Feの原
子換算重量比で0.1〜30重量%、Mnの場合0.01〜
10重量%、Crの場合Cr/Feの原子換算重量比で
0.01〜5重量%、Alの場合Al/Feの原子換算重
量比で0.01〜2重量%、Znの場合0.1〜20重量%
の範囲内であることが好ましいが上記の範囲外で
も特にさしつかえない。 このように多価アルコール中にケイ素化合物を
溶解するかあるいは溶解しないで針状酸化鉄粉末
を分散し、かつ金属塩を溶解した後、150℃以上
の温度で加熱処理が行なわれると、マグネタイト
粉末以外の針状酸化鉄粉末が還元されると同時に
種々の金属が粉末粒子中に導入される。この還元
と粉末粒子中への金属の導入拡散は加熱温度が高
くなるに従つて良好に進行し、300℃の加熱温度
で充分に還元されるとともに粉末粒子中に金属が
充分に導入拡散される。従つてこの加熱処理は
150℃〜300℃の範囲内の温度で行なえば充分であ
る。 次いで、この加熱処理が行なわれた多価アルコ
ール溶液は、放冷後未だ前の工程でケイ素化合物
を加えていない場合はケイ素化合物を添加溶解し
て水で希釈し、しかる後炭酸ガスを吹き込むかあ
るいは酸を添加して中和すると金属を導入した針
状酸化鉄粉末の粒子表面にケイ酸ゾルが被着され
る。このようにこの発明においては多価アルコー
ルの存在により粉末粒子を良好に分散しながらケ
イ酸ゾルを粉末粒子表面に被着しているため、ケ
イ酸ゾルは均一かつ良好に被着される。 以上のようにケイ素化合物を被着した金属固溶
針状酸化鉄粉末は、水素気流中などの還元性雰囲
気中で300〜600℃の温度で加熱することによつて
還元され、鉄を主体とする金属磁性粉末となる。
このようにして得られたこの発明の鉄を主体とす
る金属磁性粉末はケイ素化合物が多価アルコール
存在下の中和処理によつて均一かつ良好に金属固
溶針状酸化鉄粉末の粒子表面に被着された結果、
加熱還元時の粒子の焼結や形崩れが充分に抑制さ
れ、磁気特性が向上する。 次に、この発明の実施例について説明する。 実施例 1 ポリエチレングリコール(平均分子量400)100
重量部と塩化コバルト(CoCl2・6H2O)40重量
部とを加熱反応させてコバルトアルコキシドのポ
リエチレングリコール溶液を用意し、これに、ポ
リエチレングリコール100重量部にオルトケイ酸
ナトリウム30重量部を溶解させ、その中にゲータ
イト100重量部を分散させたものを添加し、攪拌
しながら常圧下220℃の温度で3時間反応させた。
次いで反応液を水で希釈してから液に炭酸ガスを
吹き込んで中和し、水洗、乾燥後、得られた粉末
を水素気流中で500℃で4時間加熱還元してコバ
ルトを固溶した針状酸化鉄粉末を得た。このよう
にして得られた粉末のコバルト含有量はCo/Fe
の原子換算重量比で5.5重量%であつた。 実施例 2 ポリエチレングリコール(平均分子量400)200
重量部に塩化コバルト(CoCl2・6H2O)40重量
部とゲータイト100重量部とを混合し、攪拌しな
がら200℃の温度で3時間反応させた。次いで反
応液を水で希釈し、オルトケイ酸ナトリウム30重
量部を溶解させてから液に炭酸ガスを吹き込んで
中和し、水洗、乾燥後、得られた粉末を水素気流
中で500℃で4時間加熱還元してコバルトを固溶
して針状酸化鉄粉末を得た。このようにして得ら
れた粉末のコバルト含有量はCo/Feの原子換算
重量比で5.0重量%であつた 比較例 ポリエチレングリコール100重量部と塩化コバ
ルト(CoCl2・6H2O)40重量部とを加熱反応さ
せてコバルトアルコキシドのポリエチレングリコ
ール溶液を用意し、これに、ポリエチレングリコ
ール100重量部にゲータイト100重量部を分散させ
たものを添加し、攪拌しながら常圧下220℃の温
度で3時間反応させた。次いで反応生成物をろ
別、水洗して100℃で2時間乾燥させた。次にこ
の生成粉末を水2000重量部中に加えて粉末を充分
に分散させた後、NaOH10重量部とオルトケイ
酸ナトリウム30重量部を添加混合し、攪拌しなが
ら液中に炭酸ガスを吹き込んで中和した。次い
で、水洗、乾燥後、得られた粉末を水素気流中で
500℃で4時間加熱還元してコバルトを固溶した
針状金属鉄粉末を得た。得られた粉末のコバルト
含有量はCo/Feの原子換算重量比で5.8重量%で
あつた。 各実施例および比較例で得られたコバルト固溶
金属鉄粉末について、保磁力(Hc)、飽和磁化量
(σs)、角型比(σr/σs)を測定した。 下表はその結果である。
The present invention relates to a method for manufacturing metal magnetic powder mainly composed of iron. Metal magnetic powder mainly composed of iron is usually produced by heating and reducing acicular powder particles containing mainly iron oxyhydroxide or iron oxide with hydrogen gas, etc., and is different from conventional oxide-based magnetic powder. Although it is known to have superior magnetic properties, it is prone to sintering between powder particles and deformation of particles during thermal reduction, resulting in uneven particle size and loss of acicularity. Magnetic properties tend to deteriorate. For this reason, methods such as dispersing powder particles before thermal reduction in an aqueous silicon compound solution and depositing a silicon compound on the particle surface have been used to prevent sintering and deformation of particles during thermal reduction. Efforts have been made to suppress this phenomenon, but satisfactorily results have not yet been obtained. The inventors conducted various studies in view of the current situation, and found that after dispersing and dissolving acicular iron oxide powder and metal salt in polyhydric alcohol, this was heated to dissolve the particles of acicular iron oxide powder. A metal is introduced into the powder, and acicular magnetite is produced by reduction at the same time, and then a silicon compound is added and dissolved to deposit the silicon compound on the surface of the powder particles, or an acicular iron oxide is produced in polyhydric alcohol. When dispersing and dissolving the powder and the metal salt, a silicon compound is added and dissolved, and this is heated to introduce the metal into the particles of the acicular iron oxide powder. At the same time, acicular magnetite is produced by reduction, and the powder is dissolved. They discovered that by depositing a silicon compound on the surface of the particles, sintering and deformation of the particles during thermal reduction can be sufficiently suppressed, and a metal magnetic powder mainly composed of iron with excellent magnetic properties can be obtained. He came up with an invention. In this invention, the addition and dissolution of the silicon compound is
Acicular oxidation can be performed when dispersing and dissolving acicular iron oxide powder and metal salt in polyhydric alcohol, or by heating a polyhydric alcohol solution in which acicular iron oxide powder and metal salt are dispersed and dissolved. This may be carried out after introducing the metal into the particles of iron powder. In this way, when polyhydric alcohol is present, the acicular iron oxide powder into which the metal has been introduced by the polyhydric alcohol is extremely well dispersed, so that the silicon compound is uniformly and uniformly distributed on the surface of the well-dispersed powder particles. It adheres well, and as a result, sintering and deformation of the particles during thermal reduction are sufficiently suppressed. Note that when the silicon compound is added and dissolved when the acicular iron oxide powder and metal salt are dispersed and dissolved in polyhydric alcohol, the silicon compound is dissolved in the polyhydric alcohol, and then the needles are added into the polyhydric alcohol. It is preferable to mix and stir a dispersion of iron oxide powder and a metal salt dissolved in a polyhydric alcohol. After dispersing iron oxide powder, a metal salt may be added and dissolved therein. In this case, a silicon compound aqueous solution prepared by dissolving a silicon compound in water is used instead of a silicon compound, and a needle-shaped iron oxide powder is added to the silicon compound aqueous solution. After dispersing iron oxide powder, it is added to polyhydric alcohol, and then a metal salt dissolved in polyhydric alcohol is added in the same manner as above, or the metal salt is directly added and dissolved. good. In this way, when a silicon compound is added and dissolved when acicular iron oxide powder and metal salt are dispersed and dissolved in polyhydric alcohol, the acicular oxide is well dispersed in polyhydric alcohol by this silicon compound. The iron powder is even better dispersed, so that during the subsequent heat treatment the metal is evenly and better introduced into the particles of the acicular iron oxide powder. Examples of such silicon compounds include:
Water-soluble silicates such as sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass of various compositions are preferably used. It is preferable to use the amount within the range of 0.5 to 20% by weight based on the acicular iron oxide powder into which the metal has been introduced, and if it is too small, the desired effect will not be obtained.
If the amount is too large, the saturation magnetization (σ s ) of the obtained magnetic powder may decrease. The raw material acicular iron oxide powder is α-
FeOOH powder, α- Fe2O3 powder, γ- Fe2O3 powder ,
Fe 3 O 4 powder and intermediate powders thereof are used, and those with good acicularity are preferably used. In addition, polyhydric alcohols with a boiling point of 150°C or higher, such as ethylene glycol, polyethylene glycol, propylene glycol, and glycerin, are preferably used. Disperses well in a state of In addition, if acicular iron oxide powder and metal salts are dispersed and dissolved in this type of polyhydric alcohol and then heated at a temperature of 150°C or higher, α-FeOOH, α-
Acicular iron oxide powders such as Fe 2 O 3 and γ-Fe 2 O 3 are reduced to magnetite powder, and at the same time metal is introduced and diffused into the powder particles. Such a polyhydric alcohol is preferably used in a volume ratio (acicular iron oxide powder to polyhydric alcohol) of 1:5 to 1:50 to the acicular iron oxide powder. Examples of metal salts dissolved in polyhydric alcohols include Co, Ni, Mn, Cr, Zn, Pb, Sn,
Halides and hydroxides of various metals such as Al,
In addition to inorganic salts such as carbonates and sulfates, organic metal salts are preferably used, and are generally used because they have favorable magnetic properties, and are generally optimized for magnetic properties (coercive force, saturation magnetization). To let Co
Metal salts such as Al, Mn, Ni, and Zn are used to improve thermal stability. The amount used is 0.1 to 40% by weight in Co/Fe atomic weight ratio for Co, 0.1 to 30% by weight in Ni/Fe atomic weight ratio for Ni, and 0.01 to 30% in Mn.
10% by weight, in the case of Cr, the atomic weight ratio of Cr/Fe
0.01-5% by weight for Al, 0.01-2% by weight in terms of Al/Fe atomic weight ratio, 0.1-20% by weight for Zn
Although it is preferably within the above range, there is no particular problem even outside the above range. After dispersing acicular iron oxide powder in polyhydric alcohol with or without dissolving the silicon compound and dissolving the metal salt, if heat treatment is performed at a temperature of 150℃ or higher, magnetite powder Various metals are simultaneously introduced into the powder particles while other acicular iron oxide powders are reduced. This reduction and the introduction and diffusion of metal into the powder particles proceed more favorably as the heating temperature increases, and at a heating temperature of 300°C, sufficient reduction is achieved and the metal is sufficiently introduced and diffused into the powder particles. . Therefore, this heat treatment
It is sufficient to carry out the reaction at a temperature within the range of 150°C to 300°C. Next, the heat-treated polyhydric alcohol solution is left to cool, and if a silicon compound has not been added in the previous step, a silicon compound is added and dissolved, diluted with water, and then carbon dioxide gas is blown into the polyhydric alcohol solution. Alternatively, when acid is added to neutralize the powder, a silicate sol is deposited on the particle surface of the acicular iron oxide powder into which the metal has been introduced. As described above, in the present invention, the silicic acid sol is deposited on the surface of the powder particles while the powder particles are well dispersed due to the presence of the polyhydric alcohol, so that the silicic acid sol is uniformly and well deposited. As described above, the metallic solid solution acicular iron oxide powder coated with a silicon compound is reduced by heating at a temperature of 300 to 600°C in a reducing atmosphere such as a hydrogen stream, and is made mainly of iron. It becomes a metal magnetic powder.
In the iron-based magnetic metal powder of the present invention thus obtained, the silicon compound is uniformly and well distributed on the particle surface of the metal-dissolved acicular iron oxide powder by neutralization treatment in the presence of polyhydric alcohol. As a result of being deposited,
Sintering and deformation of particles during thermal reduction are sufficiently suppressed, and magnetic properties are improved. Next, embodiments of the invention will be described. Example 1 Polyethylene glycol (average molecular weight 400) 100
Part by weight and 40 parts by weight of cobalt chloride (CoCl 2 6H 2 O) are heated to react to prepare a polyethylene glycol solution of cobalt alkoxide, and 30 parts by weight of sodium orthosilicate is dissolved in 100 parts by weight of polyethylene glycol. , into which 100 parts by weight of goethite was dispersed was added, and the mixture was allowed to react at a temperature of 220° C. under normal pressure for 3 hours with stirring.
Next, the reaction solution was diluted with water, neutralized by blowing carbon dioxide gas into the solution, washed with water, dried, and the resulting powder was reduced by heating at 500°C for 4 hours in a hydrogen stream to form a needle containing cobalt as a solid solution. Iron oxide powder was obtained. The cobalt content of the powder thus obtained is Co/Fe
It was 5.5% by weight in terms of atomic weight ratio. Example 2 Polyethylene glycol (average molecular weight 400) 200
40 parts by weight of cobalt chloride (CoCl 2 .6H 2 O) and 100 parts by weight of goethite were mixed and reacted at a temperature of 200° C. for 3 hours with stirring. Next, the reaction solution was diluted with water, 30 parts by weight of sodium orthosilicate was dissolved, and carbon dioxide gas was blown into the solution to neutralize it. After washing with water and drying, the obtained powder was heated at 500°C in a hydrogen stream for 4 hours. Cobalt was dissolved in solid solution by heating and reduction to obtain acicular iron oxide powder. The cobalt content of the thus obtained powder was 5.0% by weight in terms of Co/Fe atomic weight ratio.Comparative example: 100 parts by weight of polyethylene glycol, 40 parts by weight of cobalt chloride (CoCl 2 6H 2 O), A polyethylene glycol solution of cobalt alkoxide was prepared by heating and reacting, and to this was added a solution of 100 parts by weight of goethite dispersed in 100 parts by weight of polyethylene glycol, and the mixture was reacted at a temperature of 220°C under normal pressure for 3 hours with stirring. I let it happen. The reaction product was then filtered, washed with water, and dried at 100°C for 2 hours. Next, add this resulting powder to 2000 parts by weight of water to fully disperse the powder, then add and mix 10 parts by weight of NaOH and 30 parts by weight of sodium orthosilicate, and blow carbon dioxide gas into the liquid while stirring. It was peaceful. Next, after washing with water and drying, the obtained powder was heated in a hydrogen stream.
The mixture was heated and reduced at 500°C for 4 hours to obtain acicular metallic iron powder containing cobalt as a solid solution. The cobalt content of the obtained powder was 5.8% by weight in terms of Co/Fe atomic weight ratio. The coercive force (Hc), saturation magnetization (σ s ), and squareness ratio (σ rs ) of the cobalt solid solution metallic iron powder obtained in each example and comparative example were measured. The table below shows the results.

【表】 上表から明らかなように、この発明で得られた
コバルト固溶金属鉄粉末(実施例1〜2)はいず
れも従来のもの(比較例)より保磁力および角型
比が高く、このことからこの発明の方法によれ
ば、加熱還元時の粉末粒子の焼結や形崩れが充分
に抑制され、その結果として磁気特性に優れた鉄
を主体とする金属磁性粉末が得られるのがわか
る。
[Table] As is clear from the above table, the cobalt solid solution metallic iron powders obtained by the present invention (Examples 1 and 2) all have higher coercive force and squareness ratio than the conventional ones (comparative example). Therefore, according to the method of the present invention, sintering and deformation of powder particles during thermal reduction can be sufficiently suppressed, and as a result, metal magnetic powder mainly composed of iron with excellent magnetic properties can be obtained. Recognize.

Claims (1)

【特許請求の範囲】[Claims] 1 多価アルコール中に、針状酸化鉄粉末と金属
塩とを分散溶解した後、これを加熱して針状酸化
鉄粉末の粒子内に金属を導入し、次いでケイ素化
合物を添加して粉末粒子の表面にケイ素化合物を
被着させるか、あるいは多価アルコール中に、針
状酸化鉄粉末と金属塩とを分散溶解する際、ケイ
素化合物を添加溶解し、これを加熱して針状酸化
鉄粉末の粒子内に金属を導入するとともに粉末粒
子の表面にケイ素化合物を被着させ、しかる後気
相中で加熱還元して鉄を主体とする金属磁性粉末
とすることを特徴とする金属磁性粉末の製造方
法。
1 After dispersing and dissolving acicular iron oxide powder and metal salt in polyhydric alcohol, this is heated to introduce metal into the particles of acicular iron oxide powder, and then a silicon compound is added to form powder particles. When acicular iron oxide powder and metal salt are dispersed and dissolved in polyhydric alcohol, a silicon compound is added and dissolved, and this is heated to form acicular iron oxide powder. A metal magnetic powder characterized in that a metal is introduced into the particles and a silicon compound is coated on the surface of the powder particles, and then heated and reduced in a gas phase to obtain a metal magnetic powder mainly composed of iron. Production method.
JP57042372A 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder Granted JPS58159305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57042372A JPS58159305A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57042372A JPS58159305A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Publications (2)

Publication Number Publication Date
JPS58159305A JPS58159305A (en) 1983-09-21
JPH0472361B2 true JPH0472361B2 (en) 1992-11-18

Family

ID=12634206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57042372A Granted JPS58159305A (en) 1982-03-17 1982-03-17 Manufacture of metallic magnetic powder

Country Status (1)

Country Link
JP (1) JPS58159305A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766637B2 (en) * 2012-03-08 2015-08-19 国立研究開発法人科学技術振興機構 bcc-type FeCo alloy particles, method for producing the same, and magnet
CN106216706A (en) * 2016-09-08 2016-12-14 苏州大学 A kind of preparation method of metal fine powder

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739508A (en) * 1980-08-22 1982-03-04 Hitachi Ltd Manufacture of magnetic iron powder
JPS58120704A (en) * 1982-01-14 1983-07-18 Dainippon Ink & Chem Inc Production of ferromagnetic metallic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5739508A (en) * 1980-08-22 1982-03-04 Hitachi Ltd Manufacture of magnetic iron powder
JPS58120704A (en) * 1982-01-14 1983-07-18 Dainippon Ink & Chem Inc Production of ferromagnetic metallic powder

Also Published As

Publication number Publication date
JPS58159305A (en) 1983-09-21

Similar Documents

Publication Publication Date Title
US3748270A (en) Method of preparing cobalt doped magnetic iron oxide particles
JPH0472361B2 (en)
JPS5923505A (en) Magnetic powder
JPH0368923B2 (en)
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS5980901A (en) Manufacture of ferromagnetic metal powder
JPS62139803A (en) Production of ferromagnetic metallic powder
JPS6242858B2 (en)
JPH0450724B2 (en)
JP2744641B2 (en) Method for producing ferromagnetic metal powder
JPS59170209A (en) Production of magnetic metallic powder for magnetic recording
JPH0343325B2 (en)
JPS6132259B2 (en)
JPH08119635A (en) Production of granular fine magnetite particles
JP2002356329A (en) Granulated magnetite particles and their producing method
JPS6151401B2 (en)
JPH0447962B2 (en)
JPS5919164B2 (en) Manufacturing method of acicular iron-based ferromagnetic metal powder
JPS6350842B2 (en)
JPS5919162B2 (en) Method for producing iron-cobalt alloy ferromagnetic powder
JPS58159316A (en) Manfuacture of magnetic powder
JPH0425687B2 (en)
JPS58176902A (en) Manufacture of magnetic powder
JPH0425686B2 (en)
JPS5998503A (en) Magnetic iron oxide containing cobalt