JPH05178768A - Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride - Google Patents

Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride

Info

Publication number
JPH05178768A
JPH05178768A JP33229591A JP33229591A JPH05178768A JP H05178768 A JPH05178768 A JP H05178768A JP 33229591 A JP33229591 A JP 33229591A JP 33229591 A JP33229591 A JP 33229591A JP H05178768 A JPH05178768 A JP H05178768A
Authority
JP
Japan
Prior art keywords
column
mixture
concentration
mol
hydrogen fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP33229591A
Other languages
Japanese (ja)
Inventor
Sadayoshi Yuge
定義 弓削
Tatsuharu Arai
龍晴 新井
Toshio Nagayasu
敏夫 長安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP33229591A priority Critical patent/JPH05178768A/en
Publication of JPH05178768A publication Critical patent/JPH05178768A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To efficiently separate a mixture of 1,1,1,2-tetrafluoroethane (134a) with hydrogen fluoride simply through distillation by keeping the internal pressure in the system of the first column low and the internal pressure in the system of the second column high. CONSTITUTION:A reactional product discharged from a reactional system 1 where 134a is synthesized is fed to a crude distillation system 2 to separate a mixture 3 of the 134a with HF. The resultant mixture, together with a distillate 6 from the second column 5, is introduced as a raw material 7 for the first column 4 therein. The raw material 7 at an HF concentration D mol% higher than that (C mol%) in an azeotropic mixture of the first column 4 is distilled under conditions of A kg/cm<2> G internal pressure in the system, B deg.C minimum azeotropic temperature and C mol% HF concentration in the azeotropic mixture in the first column 4 to recover the high- purity HF from the column bottom. A mixture at C mol% HF concentration is simultaneously distilled from the column top. The obtained distillate mixture is then distilled at A' kg/cm<2>G internal pressure in the system higher than A kg/cm<2>G in the second column 5 to distill a mixture at an HF concentration of C' mol% higher than C mol% from the column top and the high-purity 134a is simultaneously recovered from the column bottom.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ハロゲン化炭化水素と
フッ化水素(以下HFという)とを反応させて1,1,
1,2−テトラフルオロエタン(以下134aという)
を製造する際に得られる134aとHFとの混合物の分
離方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises reacting a halogenated hydrocarbon with hydrogen fluoride (hereinafter referred to as HF) to produce 1,1,
1,2-tetrafluoroethane (hereinafter referred to as 134a)
It relates to a method for separating a mixture of 134a and HF obtained in the production of

【0002】[0002]

【従来の技術】従来、カーエアコンや冷蔵庫等の冷媒と
して広い用途を有するフロン12は、オゾン層破壊の問
題があり、これと同じ様な物性を有し、成層圏のオゾン
層を破壊しない134aが、フロン12の代替品として
の使用が見込まれ、脚光をあびている。
2. Description of the Related Art Conventionally, CFC 12 which has been widely used as a refrigerant for car air conditioners and refrigerators has a problem of depletion of the ozone layer. It has the same physical properties and does not deplete the ozone layer in the stratosphere. , Is expected to be used as a substitute for Freon 12, and is in the limelight.

【0003】上記134aの製造には、過剰のHFが使
用され、HFを効率よく回収し反復使用することは、経
済性,プロセス操作性の観点から重要であるが、134
aとHFとの間には最低共沸関係が存在し、蒸留のみで
は分離困難なため、抽出,酸洗浄等の手段が併用される
ことが多い。
Excess HF is used in the production of the above 134a, and efficient recovery and repeated use of HF is important from the viewpoint of economy and process operability.
Since a minimum azeotropic relationship exists between a and HF, and separation is difficult only by distillation, means such as extraction and acid washing are often used together.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記酸洗浄
や、抽出を用いる方法は操作が複雑で、酸洗浄すると、
高価なHFの損失となる等の操作性,経済性が共に問題
となっていた。
By the way, the method using the above-mentioned acid washing or extraction is complicated in operation, and if the acid washing is carried out,
Both operability and economical efficiency such as loss of expensive HF have been problems.

【0005】本発明者等は、蒸留のみによって134a
とHFとの混合物を分離すべく種々研究した結果、13
4aとHFのとの混合物を蒸留した場合、系内圧力が高
くなるとともに、最低共沸物中のHF濃度が上昇するこ
とを知見した。
The inventors of the present invention have found that only the distillation of 134a
As a result of various studies to separate the mixture of HF and HF, 13
It was found that when the mixture of 4a and HF was distilled, the system pressure increased and the HF concentration in the lowest azeotrope increased.

【0006】本発明は上記の知見に基づいてなされたも
ので、134aとHFとの混合物を蒸留のみによって分
離する分離方法を提供することを目的とする。
The present invention has been made based on the above findings, and an object thereof is to provide a separation method for separating a mixture of 134a and HF by only distillation.

【0007】[0007]

【課題を解決するための手段】本発明に係る134aと
HFとの分離方法においては、系内圧力:Akg/cm
2G、最低共沸温度:B°C、共沸物中のHF濃度:C
mol%の条件下で、HF濃度がCmol%より高い濃
度の混合物を原料として蒸留し、塔底から高濃度のHF
を回収するとともに塔頂からHFがCmol%の混合物
を留出せしめ、この留出混合物を、Akg/cm2Gよ
り高い系内圧力 A′kg/cm2Gで蒸留し、塔頂より
HF濃度がCmol%より高いC′mol%の混合物を
留出せしめ、塔底から純度の高い134aを回収するこ
とを問題の解決の手段とした。
In the method for separating 134a and HF according to the present invention, the system pressure: Akg / cm
2 G, minimum azeotropic temperature: B ° C, HF concentration in azeotrope: C
Under the condition of mol%, a mixture having a HF concentration higher than C mol% was distilled as a raw material to obtain a high concentration of HF from the bottom of the column.
And a mixture of HF containing Cmol% was distilled from the top of the column, and the distillate mixture was distilled at a system pressure A'kg / cm 2 G higher than A kg / cm 2 G to obtain the HF concentration from the top of the column. Was used as a means for solving the problem, by distilling out a mixture of C′mol% higher than Cmol% and recovering highly pure 134a from the column bottom.

【0008】[0008]

【作用】第1塔の最低共沸物中のHF濃度より高い濃度
のHFを含有する混合物を原料として用いるので、塔頂
からは共沸成分が留出し、塔底からは餘剰のHFが回収
される。
Since a mixture containing HF at a concentration higher than the HF concentration in the lowest azeotrope of the first column is used as a raw material, azeotropic components are distilled from the top of the column and surplus HF is distilled from the bottom of the column. Be recovered.

【0009】また第2塔では、第1塔より系内圧が高い
ので、第2塔の共沸物中のHF濃度C′はCより高い。
したがって塔底からは、純度の高い134aが回収され
る。
Since the system pressure in the second column is higher than that in the first column, the HF concentration C'in the azeotrope of the second column is higher than C.
Therefore, highly pure 134a is recovered from the bottom of the column.

【0010】[0010]

【実施例】図1は、本発明に係る分離方法を実施する装
置の一例を示すもので、図中符号1は134aが合成さ
れる反応系である。反応系1より出る反応生成物は、粗
蒸留系2に送られ、134aとHFとの混合物3が分離
され、後述する第2塔5の留出物6と共に第1塔4の原
料7として導入される。
EXAMPLE FIG. 1 shows an example of an apparatus for carrying out the separation method according to the present invention. In the figure, reference numeral 1 is a reaction system in which 134a is synthesized. The reaction product discharged from the reaction system 1 is sent to the crude distillation system 2, the mixture 3 of 134a and HF is separated, and introduced as the raw material 7 of the first column 4 together with the distillate 6 of the second column 5 described later. To be done.

【0011】第1塔においては系内圧力がAkg/cm
2Gで蒸留される。その場合留出される134aとHF
との混合物中のHF濃度は、系内圧力Aによって規定さ
れるCmol%となる。
In the first tower, the system pressure is Akg / cm.
It is distilled at 2 G. In that case, 134a and HF distilled out
The HF concentration in the mixture of and is C mol% defined by the system internal pressure A.

【0012】この場合、原料7となる134aとHFと
の混合物中のHF濃度Dは第1塔の共沸物中のHF濃度
Cより高いことが必要で、D>Cにより、第1塔の留出
物8に134aが留出され、第1塔の塔底回収物9とし
て純度のよいHFが得られる。この回収物9は反応系1
に送られ、134aの合成に用いられる。
In this case, the HF concentration D in the mixture of 134a as the raw material 7 and HF needs to be higher than the HF concentration C in the azeotrope of the first column, and D> C 134a is distilled into the distillate 8, and HF with high purity is obtained as the bottom product 9 of the first column. This collected product 9 is the reaction system 1
And used to synthesize 134a.

【0013】次いで上記第1塔の留出物8は第2塔に送
られる。第2塔では系内圧がAより高いA′に保持され
て共沸蒸留が行われる。この第2塔の留出物中のHF濃
度は、系内圧が高いのでCより高いC′となる。したが
って前記第2塔留出物6はHF濃度C′mol%となっ
て第1塔の原料7の一部となり、塔底回収物10は純度
の高い134aとなる。
Next, the distillate 8 from the first column is sent to the second column. In the second column, azeotropic distillation is carried out while the system internal pressure is maintained at A'which is higher than A. The HF concentration in the distillate of this second column becomes C'higher than C because the system internal pressure is high. Therefore, the second column distillate 6 has a HF concentration of C'mol% and becomes a part of the raw material 7 of the first column, and the bottom product 10 becomes high purity 134a.

【0014】上記分離方法において第1塔4、第2塔5
の系内圧A,A′の選択は重要で、A,A′が近かすぎ
ると、第2塔5の原料となる第1塔4の留出物8と第2
塔の留出物6中のHF濃度C,C′が近くなり第1塔の
塔底回収液9(HF)と第2塔の塔底回収液(134
a)の回収効率が悪くなる。また第1塔の原料中のHF
濃度Dは第1塔の留出物8中のHF濃度よりはるかに大
きいことが望ましい。
In the above separation method, the first tower 4 and the second tower 5
It is important to select the system pressures A and A'of A. If A and A'are too close to each other, the distillate 8 of the first tower 4 and the second
The HF concentrations C and C'in the distillate 6 of the column are close to each other, and the bottoms recovered liquid 9 (HF) of the first column and the bottoms recovered liquid of the second column (134)
The collection efficiency of a) deteriorates. HF in the raw material of the first tower
The concentration D is preferably much higher than the HF concentration in the distillate 8 of the first column.

【0015】次に実施例を示して本発明を具体的に説明
する。ステンレス製のオスマー型気液平衡測定装置によ
って134aとHFとの混合物を種々な系内圧で蒸留し
た場合の共沸物中のHF濃度,共沸温度、134aの沸
点を測定すると、表1のようになる。
Next, the present invention will be specifically described with reference to examples. The HF concentration in the azeotrope, the azeotropic temperature, and the boiling point of 134a in the case of distilling a mixture of 134a and HF under various system pressures with an Osmer type gas-liquid equilibrium measuring device made of stainless steel are shown in Table 1. become.

【0016】[0016]

【表1】 [Table 1]

【0017】上記表より、例えばAを0kg/cm
2G、A′を4kg/cm2Gとすると、第1塔の共沸物
中のHFは8mol%、第2塔の共沸物中のHFは17
mol%となり、これを第1塔の原料の一部として用い
るので、第1塔の塔底からはHF、第2塔の塔底からは
134aが効率よく回収される。
From the above table, for example, A is 0 kg / cm
When 2 G and A ′ are 4 kg / cm 2 G, HF in the azeotrope of the first column is 8 mol% and HF in the azeotrope of the second column is 17%.
Since this is used as a part of the raw material for the first tower, HF is efficiently recovered from the bottom of the first tower and 134a is efficiently recovered from the bottom of the second tower.

【0018】(実施例1)径40mmφの理論段数20
段のステンレス製の充填塔において、系内圧力3kg/
cm2Gで134a:80mol%とHF:20mol
%の混合物で塔頂から約10段の位置に205g/hr
の速度で供給し、還流比20で塔頂から203g/hr
で留出させた。塔頂温度8℃,塔底温度は65℃で、塔
底回収物は100%のHFであった。
(Embodiment 1) 20 theoretical plates having a diameter of 40 mmφ
In a single-stage stainless packed column, the system internal pressure was 3 kg /
134a in cm 2 G: 80mol% and the HF: 20mol
% Mixture at the position of about 10 plates from the top of the tower 205 g / hr
At a rate of 203 g / hr from the top of the tower at a reflux ratio of 20
Distilled in. The column top temperature was 8 ° C, the column bottom temperature was 65 ° C, and the column bottoms recovered was 100% HF.

【0019】(実施例2)径40mmφの理論段数20
段のステンレス製の充填塔を系内圧0kg/cm2Gに
保持して、134a:80mol%,HF:20mol
%の混合物を塔頂から10段の位置に250g/hrで
供給し、還流比20で塔頂より198g/hrで留出さ
せた。この留出物中のHF濃度は8mol%,留出温度
は−27℃,塔底温度は20℃,塔底回収物は、19g
/hrの速度で100mol%のHFが得られた。
(Example 2) 20 theoretical plates with a diameter of 40 mmφ
While maintaining the internal pressure of the system in a single-stage stainless packed column at 0 kg / cm 2 G, 134a: 80 mol%, HF: 20 mol
% Of the mixture was fed at a position of 10 stages from the top of the column at a rate of 250 g / hr, and distilled at a reflux ratio of 20 from the top of the column at 198 g / hr. The HF concentration in this distillate was 8 mol%, the distillate temperature was -27 ° C, the tower bottom temperature was 20 ° C, and the tower bottom recovered product was 19 g.
100 mol% HF was obtained at a rate of / hr.

【0020】(実施例3)径40mmφの理論段数20
段のステンレス製の充填塔を系内圧3kg/cm2Gに
保持し、実施例2で留出したHF:8mol%の134
aとHFの混合物を、塔頂から10段の位置に198g
/hrで供給し、還流比20で塔頂から100g/hr
の速度で留出させた。留出温度は8℃,HFの濃度は1
4.9mol%であり塔底からはほぼ100mol%の
134aが98g/hrの速度で回収された。この塔底
温度は9℃であった。
(Example 3) 20 theoretical plates with a diameter of 40 mm
A stainless steel packed column in a single stage was kept at a system internal pressure of 3 kg / cm 2 G, and HF distilled in Example 2 was 8 mol% of 134.
198 g of the mixture of a and HF was placed at the 10th stage from the top of the tower.
/ Hr, 100 g / hr from the top of the tower at a reflux ratio of 20
Distilled at the speed of. Distillation temperature is 8 ° C, HF concentration is 1
It was 4.9 mol% and almost 100 mol% of 134a was recovered from the column bottom at a rate of 98 g / hr. The tower bottom temperature was 9 ° C.

【0021】[0021]

【発明の効果】以上説明したように、本発明における1
34aとHF混合物の分離方法は、第1塔の系内圧を低
く保持し、第2塔の系内圧を高く保持することにより効
果よく134aとHFに分けることが出来る。特に、第
1塔の系内圧を0kg/cmG以下、第2塔の係内圧
を約3kg/cmG以上に保持することによって、ほ
ぼ純粹な134aとHFが効率よく得られ、134a
は、アルカリ洗浄によって僅か含まれているHFが完全
に除去されて製品となり、HFは反応系にリサイクルさ
れて、無駄なく原料とすることができる。
As described above, according to the present invention,
As a method for separating the 34a and HF mixture, 134a and HF can be effectively separated by keeping the system internal pressure of the first column low and the system internal pressure of the second column high. Particularly, by keeping the internal pressure of the first tower at 0 kg / cm 2 G or less and the internal pressure of the second tower at about 3 kg / cm 2 G or more, substantially pure 134a and HF can be efficiently obtained.
The HF contained in the product is completely removed by alkali cleaning to form a product, and the HF is recycled to the reaction system and can be used as a raw material without waste.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明における134aとHFとの混合物を蒸
留のみによって分離する方法で実施する装置の一例を示
す図である。
FIG. 1 is a diagram showing an example of an apparatus used in a method of separating a mixture of 134a and HF according to the present invention by only distillation.

【符号の説明】[Explanation of symbols]

1 134aを合成する反応系 2 粗蒸留系 3 粗蒸留系によって分離された134aとHFの混合
物 4 第1塔 5 第2塔 6 第2塔の留出物 7 第1塔の原料 8 第1塔の留出物 9 第1塔の塔底回収物 10 第2塔の塔底回収物 A 第1塔の系内圧力 A′ 第2塔の系内圧力 B 第1塔の共沸温度 B′ 第1塔の共沸温度 C 第1塔の共沸物中のHF濃度(8のHF濃度) C′ 第2塔の共沸物中のHF濃度(6のHF濃度) D 第1塔の原料中のHF濃度(7のHF濃度)
1 Reaction system for synthesizing 134a 2 Crude distillation system 3 Mixture of 134a and HF separated by crude distillation system 4 1st tower 5 2nd tower 6 Distillate of 2nd tower 7 Raw material of 1st tower 8 1st tower Distillate 9 Tower bottoms recovered from the first tower 10 Tower bottoms recovered from the second tower A System pressure of the first tower A'System pressure of the second tower B Azeotropic temperature of the first tower B ' Azeotropic temperature of one tower C HF concentration in azeotrope of first tower (HF concentration of 8) C'HF concentration in azeotrope of second tower (HF concentration of 6) D In raw material of first tower HF concentration (7 HF concentration)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 共沸蒸留を用いた1,1,1,2−テト
ラフルオロエタンとフッ化水素との混合物を分離する方
法であって、 系内圧力:Akg/cm2G、最低共沸温度B°C、共
沸物中のフッ化水素の濃度Cmol%の条件下で、フッ
化水素濃度がCmol%より高い濃度の混合物を原料と
して蒸留し、塔底から高濃度のフッ化水素を回収すると
ともに塔頂からフッ化水素濃度がCmol%の混合物を
留出せしめ、この留出混合物をAkg/cm2Gより高
い系内圧力:A′kg/cm2Gで蒸留し、塔頂よりフ
ッ化水素濃度がCmol%より高いC′mol%の混合
物を留出せしめると共に、塔底から、純度の高い1,
1,1,2−テトラフルオロエタンを回収することを特
徴とする1,1,1,2−テトラフルオロエタンとフッ
化水素の分離方法。
1. A method for separating a mixture of 1,1,1,2-tetrafluoroethane and hydrogen fluoride using azeotropic distillation, wherein system pressure: Akg / cm 2 G, minimum azeotropic distillation At a temperature of B ° C. and a hydrogen fluoride concentration of Cmol% in the azeotrope, a mixture having a hydrogen fluoride concentration higher than Cmol% is distilled as a raw material to obtain a high concentration of hydrogen fluoride from the bottom of the column. concentration of hydrogen fluoride from the top as well as recovered tighten distill a mixture of C mol%, the distillate mixture a kg / cm 2 higher than the G system pressure: distilled A'kg / cm 2 G, from the top A mixture of C'mol% having a hydrogen fluoride concentration higher than C mol% was distilled off, and at the
A method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride, which comprises recovering 1,1,2-tetrafluoroethane.
【請求項2】 Aが約0kg/cm2G,A′が約3k
g/cm2G、原料となる混合物中のフッ化水素濃度が
約10mol%以上である請求項1記載の1,1,1,
2−テトラフルオロエタンとフッ化水素の分離方法。
2. A is about 0 kg / cm 2 G and A'is about 3 k.
g / cm 2 G, wherein the hydrogen fluoride concentration in the raw material mixture is about 10 mol% or more.
A method for separating 2-tetrafluoroethane and hydrogen fluoride.
JP33229591A 1991-12-16 1991-12-16 Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride Withdrawn JPH05178768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33229591A JPH05178768A (en) 1991-12-16 1991-12-16 Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33229591A JPH05178768A (en) 1991-12-16 1991-12-16 Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride

Publications (1)

Publication Number Publication Date
JPH05178768A true JPH05178768A (en) 1993-07-20

Family

ID=18253370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33229591A Withdrawn JPH05178768A (en) 1991-12-16 1991-12-16 Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride

Country Status (1)

Country Link
JP (1) JPH05178768A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997013719A1 (en) * 1995-10-10 1997-04-17 Imperial Chemical Industries Plc Hydrogen fluoride recovery process
US5846388A (en) * 1993-04-06 1998-12-08 Daiken Industries Ltd. Azeotropic mixture of 1,1-difluoroethane and hydrogen fluoride and production process of 1,1-difluoroethane
WO1999026908A1 (en) * 1997-11-20 1999-06-03 Alliedsignal Inc. Process for separating hydrogen fluoride from fluorocarbons
US6191328B1 (en) 1996-06-27 2001-02-20 Daikin Industries, Ltd. Method for 1, 1, 1, 3, 3-pentafluoropropane
US6328907B1 (en) 1996-01-23 2001-12-11 Daikin Industries, Ltd. Azeotrope comprising pentafluoropropane and hydrogen fluoride and method for separating and purifying pentafluoropropane
US6375808B1 (en) 1996-08-27 2002-04-23 Daikin Industries Ltd. Process for producing difluoromethane
US6555086B2 (en) 1997-04-09 2003-04-29 Ineos Fluor Holdings Limited Hydrogen fluoride recovery process
JP2009221228A (en) * 1994-09-20 2009-10-01 E I Du Pont De Nemours & Co Method for purifying hexafluoroethane product
JP2011063626A (en) * 2001-09-07 2011-03-31 Solvay (Sa) Method for obtention of purified heptafluoropropane
JP2011154035A (en) * 2000-03-07 2011-08-11 Solvay (Sa) Analysis method for hydrofluoroalkane

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846388A (en) * 1993-04-06 1998-12-08 Daiken Industries Ltd. Azeotropic mixture of 1,1-difluoroethane and hydrogen fluoride and production process of 1,1-difluoroethane
JP2009221228A (en) * 1994-09-20 2009-10-01 E I Du Pont De Nemours & Co Method for purifying hexafluoroethane product
US6660893B2 (en) 1995-10-10 2003-12-09 Ineca Fluor Holdings Limited Hydrogen fluoride recovery process
WO1997013719A1 (en) * 1995-10-10 1997-04-17 Imperial Chemical Industries Plc Hydrogen fluoride recovery process
US6270742B1 (en) 1995-10-10 2001-08-07 Imperial Chemical Industries Plc Hydrogen fluoride recovery process
US6328907B1 (en) 1996-01-23 2001-12-11 Daikin Industries, Ltd. Azeotrope comprising pentafluoropropane and hydrogen fluoride and method for separating and purifying pentafluoropropane
US6863780B2 (en) 1996-01-23 2005-03-08 Tatsuo Nakada Process of separating/purifying pentafluoropropane
US6191328B1 (en) 1996-06-27 2001-02-20 Daikin Industries, Ltd. Method for 1, 1, 1, 3, 3-pentafluoropropane
US6375808B1 (en) 1996-08-27 2002-04-23 Daikin Industries Ltd. Process for producing difluoromethane
US6555086B2 (en) 1997-04-09 2003-04-29 Ineos Fluor Holdings Limited Hydrogen fluoride recovery process
WO1999026908A1 (en) * 1997-11-20 1999-06-03 Alliedsignal Inc. Process for separating hydrogen fluoride from fluorocarbons
JP2011154035A (en) * 2000-03-07 2011-08-11 Solvay (Sa) Analysis method for hydrofluoroalkane
JP2011063626A (en) * 2001-09-07 2011-03-31 Solvay (Sa) Method for obtention of purified heptafluoropropane

Similar Documents

Publication Publication Date Title
JP5491069B2 (en) Method for separating hydrogen fluoride from organic raw materials
JP5049320B2 (en) Process for purification of hexafluoroethane product
JP2680945B2 (en) Method for separating 1,1,1,2-tetrafluoroethane
JPH02295937A (en) Method for separating 1,1-dichloro-1-fluoroethane from 1,1,1,3,3-pentafluorobutane
US4975156A (en) Process for the separation of hydrogen fluoride, 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane from liquid mixtures thereof
JPH09263553A (en) Azeotropic mixture of pentafluoropropane with hydrogen fluoride and separation and purification of pentafluoropropane
JPH05178768A (en) Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride
US20240050792A1 (en) Azeotropic or azeotropic-like composition comprising hydrogen fluoride and 1,1,2-trifluoroethane, 1-chloro-2,2-difluoroethane, or 1,2-dichloro-1-fluoroethane
JPS58217403A (en) Anhydrous phase separation for recovering hydrogen fluoride from fluorination
JP3628349B2 (en) Process for producing 1,1,1,2,2-pentafluoroethane
JPH1059878A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with water as extractant
JPH11116511A (en) Production of 1,1,1,2,2-pentafluoroethane
EP0665203B1 (en) Process for purification of 1,1,1-trifluoro-2-chloroethane
JP3163831B2 (en) An azeotropic mixture of 1,1-difluoroethane and hydrogen fluoride and a method for recovering 1,1-difluoroethane or hydrogen fluoride
JPH05255144A (en) Separation method of mixture containing hydrogenfluoride and 1-chloro-2,2,2-trifluoroethane
JP3182869B2 (en) Azeotropic mixture of pentafluoroethane and pentafluorochloroethane and method for separating pentafluorochloroethane
JPH1059877A (en) Production and fractionation of mixture of dimethyl ether and chloromethane with methanol as extractant
JP3175286B2 (en) An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane
WO1995017366A1 (en) Process for purifying 1,1,1,3,3-pentafluoro-2,3-dichloropropane
JPH0733691A (en) Production of difluoromethane
WO1993011093A1 (en) Production of 1,1,1-trifluoro-2-chloroethane and/or 1,1,1,2-tetrafluoroethane
JPH0532568A (en) Method for removing hydrogen fluoride from mixture of hydrogen fluoride and dichlorofluoromethane
JPH06263658A (en) Production of difluoromethane
JP2002348270A (en) Method for separating carboxylic acid and dimethyl amide by distillation and apparatus therefor
JPH09110749A (en) Separating method for benzyl chloride, benzyl alcohol, dibenzyl ether, and aqueous hydrochloric acid

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311