JP3175286B2 - An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane - Google Patents

An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane

Info

Publication number
JP3175286B2
JP3175286B2 JP09517992A JP9517992A JP3175286B2 JP 3175286 B2 JP3175286 B2 JP 3175286B2 JP 09517992 A JP09517992 A JP 09517992A JP 9517992 A JP9517992 A JP 9517992A JP 3175286 B2 JP3175286 B2 JP 3175286B2
Authority
JP
Japan
Prior art keywords
chloroethane
trifluoro
hydrogen fluoride
liquid phase
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09517992A
Other languages
Japanese (ja)
Other versions
JPH05132434A (en
Inventor
武英 津田
信義 岩下
聡 小松
哲 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP09517992A priority Critical patent/JP3175286B2/en
Publication of JPH05132434A publication Critical patent/JPH05132434A/en
Application granted granted Critical
Publication of JP3175286B2 publication Critical patent/JP3175286B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、フッ化水素(以下、H
Fと称する。)と1,1,1−トリフルオロ−2−クロロ
エタン(以下、R−133aと称する。)の共沸混合物お
よびHFとR−133aの混合物からHFを除去しR−
133aを精製する方法に関する。R−133aは、ジ
クロロジフルオロメタンの代替冷媒として着目されてい
る。更に、R−133aは、HFC−134a(1,
1,1,2−テトラフルオロエタン)の原料として、ま
た、トリフルオロエタノールの原料として有用である。
BACKGROUND OF THE INVENTION The present invention relates to hydrogen fluoride (hereinafter referred to as H).
Called F. ) And 1,1,1-trifluoro-2-chloroethane (hereinafter, referred to as R-133a) and an azeotropic mixture of HF and R-133a to remove HF and remove R-
133a. R-133a is receiving attention as an alternative refrigerant to dichlorodifluoromethane. Further, R-133a is HFC-134a (1,
It is useful as a raw material for (1,1,2-tetrafluoroethane) and as a raw material for trifluoroethanol.

【0002】[0002]

【従来の技術】R−133aは、通常トリクロロエチレ
ンなどの塩化炭化水素とHFを反応させることにより製
造される。これまでは、HF、R−133aを主成分と
する、反応により生成する混合物を水性相により洗浄し
てHFを除去する方法が用いられているが、洗浄液の中
和のために多量のアルカリを要するので有効な方法とは
いえない。
2. Description of the Related Art R-133a is usually produced by reacting a chlorinated hydrocarbon such as trichloroethylene with HF. Until now, a method of removing HF by washing a mixture formed by the reaction, which is mainly composed of HF and R-133a, with an aqueous phase has been used. However, a large amount of alkali is used to neutralize the washing solution. It is not an effective method because it requires.

【0003】[0003]

【発明の開示】本発明者らは、HFとR−133aを主
成分とする混合物からHFを除去する方法について研究
を重ねた結果、この混合物を7℃以下に冷却した場合、
HFに富む上部液相とR−133aに富む下部液相に分
離すること(即ち、下部液相のHF/R−133aの比
率は相分離前のそれに比べ小さい値であること)、更
に、HFとR−133aは最低共沸混合物を形成するこ
とを見出し、本発明を完成した。この共沸混合物は、H
FとR−133aとの混合物からHFおよび/またはR
−133aを分離する際の蒸留操作の還流として使用す
ることができ、それにより有効な分離が可能となる。
DISCLOSURE OF THE INVENTION The present inventors have conducted research on a method for removing HF from a mixture containing HF and R-133a as a main component. As a result, when the mixture is cooled to 7 ° C. or less,
Separation into an upper liquid phase rich in HF and a lower liquid phase rich in R-133a (that is, the ratio of HF / R-133a in the lower liquid phase is smaller than that before the phase separation). And R-133a formed the lowest azeotrope, and completed the present invention. This azeotrope is H
HF and / or R from the mixture of F and R-133a
-133a can be used as a reflux in a distillation operation when separating, thereby enabling an effective separation.

【0004】従って、本発明は、第1の要旨においてH
FとR−133aとの共沸混合物を提供する。この共沸
混合物の沸点は、大気圧下において約−2℃である。更
に、本発明は、第2の要旨において、HFとR−133
aの混合物を冷却し、HFに富む上部液相とR−133
aに富む下部液相に分離し、HFまたはR−133aを
優先的に除去する適当な処理方法により、いずれかの成
分について少なくとも濃縮して、好ましくは実質的に他
方の成分から分離することを含んで成る該いずれかの成
分の精製方法を提供する。本明細書において、濃縮して
精製するとは、混合物のいずれか一方の成分の濃度を相
対的に増やし、他方の成分の濃度を相対的に減らすこと
を意味する。
[0004] Therefore, the present invention provides a first gist of the present invention.
An azeotropic mixture of F and R-133a is provided. The boiling point of this azeotrope is about -2 ° C under atmospheric pressure. Further, the present invention provides, in a second aspect, HF and R-133
a) and the upper liquid phase rich in HF and R-133
a) to separate at least one component and preferably substantially separate it from the other component by a suitable treatment method that preferentially removes HF or R-133a. A method for purifying any of the above components is provided. As used herein, the term “concentration and purification” means that the concentration of any one component of the mixture is relatively increased and the concentration of the other component is relatively reduced.

【0005】また、本発明の第3の要旨において、HF
とR−133aの混合物(好ましくは、本発明の第2の
要旨に基づいて、冷却して相分離させた後にR−133
aに富む下部液相としての混合物またはHFに富む上部
液相としての混合物)を、蒸留することによりHFをR
−133aとの共沸混合物として除去し、実質的にHF
またはR−133aを含まないR−133aまたはHF
を得る、R−133aまたはHFを精製する方法を提供
する。
In a third aspect of the present invention, HF
And preferably a mixture of R-133a (preferably according to the second aspect of the present invention, after cooling and phase separation).
a) as a lower liquid phase rich in a or a mixture as an upper liquid phase rich in HF)
-133a as an azeotrope and substantially HF
Or R-133a or HF not containing R-133a
And a method for purifying R-133a or HF.

【0006】前述のごとく、HFとR−133aの2成
分系には(最低)共沸混合物が存在する。この共沸混合
物は、本発明者らが初めて見出した。HFとR−133
aとの混合物を大気圧下で蒸留すると、HF/R−13
3aのモル比で約65/35以上にR−133aを濃縮
することはできないことが見出された。言い替えると、
この組成比の液相は平衡状態にある気相の組成比と同一
となる。尚、HFとR−133aの共沸組成は圧力によ
りそのモル比が変化し、1.5Kg/cm2GにおけるHF/
R−133aのモル比は約60/40、4.0Kg/cm2G
におけるモル比は約55/45、15Kg/cm2Gにおける
モル比は約45/55である。更に、HF/R−133
a比率に着目した場合、冷却相分離することにより、相
分離前に比べて下部液相のR−133aの割合が増加す
るが、この場合、下部液相のR−133aの濃度は、共
沸組成よりR−133aに富む方向にずれることが明ら
かになった。
[0006] As mentioned above, there is a (minimum) azeotrope in the binary system of HF and R-133a. This azeotrope was first discovered by the present inventors. HF and R-133
The mixture with HF / R-13 is distilled under atmospheric pressure.
It has been found that R-133a cannot be concentrated above about 65/35 at a molar ratio of 3a. In other words,
The liquid phase having this composition ratio is the same as the composition ratio of the gas phase in an equilibrium state. The azeotropic composition of HF and R-133a changes its molar ratio depending on the pressure, and the HF / R-133a HF / 1.5 kg / cm 2 G
The molar ratio of R-133a is about 60/40, 4.0 kg / cm 2 G
Is about 55/45, and the molar ratio at 15 kg / cm 2 G is about 45/55. Further, HF / R-133
When attention is paid to the a ratio, the ratio of R-133a in the lower liquid phase is increased by cooling phase separation compared to before the phase separation. In this case, the concentration of R-133a in the lower liquid phase is azeotropic. It has been clarified that the composition shifts in a direction rich in R-133a.

【0007】HFとR−133aの混合物を冷却するこ
とにより、R−133aに富む下部液相およびHFに富
む上部液相が得られる。即ち、単に冷却することによ
り、元の混合物の濃度と比較して、いずれかの濃度に富
む上部液相および下部液相を得ることができる。得られ
た下部液相から、混合物から主としてHFを効果的に除
去できる適当な処理(例えば蒸留、抽出、吸収、吸着、
アルカリによる中和などの反応による処理など)により
HFを除去するとR−133aの濃度を更に大きくでき
る、即ち、R−133aを濃縮して精製できる。逆に、
上部液相については、HFに富むので、これについても
同様に、R−133aを主として除去する適当な処理を
施すことにより、HFの濃度を大きくして精製できる。
このように、単に冷却することにより、第1段階目の分
離が容易に可能となる。
By cooling the mixture of HF and R-133a, a lower liquid phase rich in R-133a and an upper liquid phase rich in HF are obtained. That is, by simply cooling, it is possible to obtain an upper liquid phase and a lower liquid phase which are richer in either concentration as compared with the concentration of the original mixture. From the resulting lower liquid phase, a suitable treatment (eg, distillation, extraction, absorption, adsorption,
By removing HF by a treatment such as a reaction such as neutralization with an alkali, the concentration of R-133a can be further increased, that is, R-133a can be concentrated and purified. vice versa,
Since the upper liquid phase is rich in HF, it can be purified by increasing the concentration of HF by performing an appropriate treatment for mainly removing R-133a.
Thus, simply cooling allows the first stage separation to be easily achieved.

【0008】冷却相分離を行う温度として7℃以下の温
度が用いられる。7℃以上ではHF/R−133aの比
にかかわらず相分離現象は認められない。好ましい範囲
は5℃以下である。5℃以上では上下部液相間の組成差
が小さく、従って比重差も近いため分離が十分でないこ
とがある。温度の下限は、R−133aの凝固点(約−
100℃)以上であれば特に限定されないが、概ね−5
0℃程度以上である。この温度以下では冷却に多くのエ
ネルギーを要し、経済的に効率的ではなくなる。特に好
ましい温度は−20℃〜0℃の範囲である。
[0008] A temperature of 7 ° C or less is used as the temperature for performing the cooling phase separation. Above 7 ° C, no phase separation phenomenon is observed regardless of the HF / R-133a ratio. A preferred range is 5 ° C or less. Above 5 ° C., the composition difference between the upper and lower liquid phases is small, and the difference in specific gravity is also close, so that separation may not be sufficient. The lower limit of the temperature is the freezing point of R-133a (about-
The temperature is not particularly limited as long as it is 100 ° C. or higher, but is approximately −5.
It is about 0 ° C. or higher. Below this temperature, cooling requires a lot of energy and is not economically efficient. Particularly preferred temperatures are in the range of -20C to 0C.

【0009】R−133aとHFの混合物は、蒸留装置
を用いて直接蒸留することによりHFを除去することも
できる。この場合、R−133aとHFは共沸混合物を
形成することが見出されているので、混合物中のR−1
33aの組成が、共沸組成より大きい場合、R−133
aとHFの共沸混合物を還流として用いると、塔底から
HFを実質的に含まないR−133aを効果的に得るこ
とが可能となる。この共沸蒸留装置は蒸留に必要な機能
を備えていればどのようなものでも使用可能である。棚
段塔や充填塔などの精留装置の場合が特に好ましい結果
となる。また、バッチ蒸留または連続蒸留のいずれでも
実施可能である。
[0009] The mixture of R-133a and HF can be directly distilled using a distillation apparatus to remove HF. In this case, it has been found that R-133a and HF form an azeotrope, so that R-1
When the composition of 33a is larger than the azeotropic composition, R-133
When an azeotropic mixture of a and HF is used as reflux, R-133a substantially free of HF can be effectively obtained from the bottom of the column. As the azeotropic distillation apparatus, any apparatus having a function necessary for distillation can be used. Particularly favorable results are obtained in the case of a rectifying device such as a tray column or a packed column. Further, either batch distillation or continuous distillation can be performed.

【0010】本発明の特に好ましい態様では、R−13
3aとHFの混合物を冷却した後、R−133aに富む
下部液相とHFに富む上部液相とに分離し、それぞれの
液相を別々に蒸留塔で共沸蒸留する。従って、上部液相
については、R−133aとHFの混合物の組成が前記
共沸組成よりもHFに富んでいる場合、蒸留装置上部
(塔頂)からR−133aとHFの共沸混合物を抜き出
し(留出させ)、下部(塔底)に残る実質的にR−13
3aを含まないHFを抜き出す(缶出させる)ことがで
きる。また、下部液相は、先に説明したように前記共沸
組成よりもR−133aに富んでいるので、蒸留装置上
部からR−133aとHFの共沸混合物を抜き出し、下
部に残る実質的にHFを含まないR−133aを抜き出
すことができる。
In a particularly preferred embodiment of the present invention, R-13
After cooling the mixture of 3a and HF, it is separated into a lower liquid phase rich in R-133a and an upper liquid phase rich in HF, and each liquid phase is separately azeotropically distilled in a distillation column. Therefore, when the composition of the mixture of R-133a and HF is richer in HF than the azeotropic composition, the azeotropic mixture of R-133a and HF is extracted from the upper part (column top) of the distillation apparatus. (Distilled), substantially R-13 remaining in the lower part (tower bottom)
HF not containing 3a can be extracted (canned). Further, since the lower liquid phase is richer in R-133a than the azeotropic composition as described above, an azeotropic mixture of R-133a and HF is extracted from the upper part of the distillation apparatus, and substantially remains in the lower part. R-133a containing no HF can be extracted.

【0011】本発明は、トリクロロエチレンを触媒の存
在下気相または液相でHFによりフッ素化して得られる
R−133aとHFを含む混合物からHFを除去するの
に最も有効である。本発明の最も好ましい実施態様を以
下に示す。
The present invention is most effective for removing HF from a mixture containing R-133a and HF obtained by fluorinating trichloroethylene with HF in the gas phase or liquid phase in the presence of a catalyst. The most preferred embodiments of the present invention are shown below.

【0012】本発明に用いられる分離装置の一例をフロ
ーシートにて図1に示す。通常、前記の反応では生成物
を気相で抜き出す。得られる混合物中にはR−133
a、HF及び塩化水素の他に少量の有機物が含まれてい
る。この混合物から塩化水素を蒸留により除去したR−
133aとHFの混合物は、冷却器を通して+7℃以下
に冷却され、液相分離装置1(液々分離装置、例えばデ
カンターのような分液装置)に導かれる。分離装置にお
いて分離したR−133aに富む下部液相を蒸留装置3
に供給し、上部からHFをR−133aとの共沸混合物
5を留出させる。この際、蒸留装置3には留出したHF
とR−133aの共沸混合物の一部を還流7として蒸留
装置の頂部に戻し、残りの共沸混合物は、クーラー11
にて+7℃以下に冷却された後、液相分離装置1に送ら
れ、上述の処理が繰り返される。蒸留装置3の塔底部に
は実質的にHFを含まないR−133aが存在し、これ
を缶出物9として抜き出す。
FIG. 1 is a flow sheet showing an example of the separation apparatus used in the present invention. Usually, in the above-mentioned reaction, a product is extracted in a gas phase. R-133 in the resulting mixture.
It contains a small amount of organic matter in addition to a, HF and hydrogen chloride. R- is obtained by removing hydrogen chloride from the mixture by distillation.
The mixture of 133a and HF is cooled to + 7 ° C. or lower through a cooler, and guided to the liquid phase separation device 1 (liquid-liquid separation device, for example, a liquid separation device such as a decanter). The lower liquid phase rich in R-133a separated in the separation device is
And distills off HF from the top to form an azeotrope 5 with R-133a. At this time, the distilled HF
And a portion of the azeotrope of R-133a was returned to the top of the distillation apparatus as reflux 7 and the remaining azeotrope
After cooling to + 7 ° C. or lower at, it is sent to the liquid phase separation device 1 and the above processing is repeated. R-133a substantially free of HF is present at the bottom of the distillation apparatus 3 and is withdrawn as bottom product 9.

【0013】一方、HFに富む上部液相は、それが可能
な場合には反応系に循環することができる。不可能な場
合には、もう一つの蒸留装置が必要である。図1におけ
る蒸留装置23に導かれた上部液相は、ここでR−13
3aとHFの共沸混合物と実質的にR−133aを含ま
ないHFに分離される。蒸留装置23においても同様に
留出するHFとR−133aの共沸混合物25の一部を
蒸留装置の塔頂部に還流27として戻す。残りの共沸混
合物は、クーラー31にて+7℃以下に再度冷却された
後、液々分離装置1に戻される。実質的にR−133a
を含まないHF29は再利用される。このようにして全
てのHFを有効に利用しながらR−133aを分離する
ことができる。このような一連の操作は、バッチ式に行
うことも可能であるが、連続操作により行うのが好まし
い。
On the other hand, the HF-rich upper liquid phase can be recycled to the reaction system if this is possible. If this is not possible, another distillation device is required. The upper liquid phase led to the distillation apparatus 23 in FIG.
It is separated into an azeotrope of 3a and HF and HF substantially free of R-133a. In the distillation apparatus 23, a part of the azeotropic mixture 25 of HF and R-133a which is similarly distilled is returned to the top of the distillation apparatus as reflux 27. The remaining azeotropic mixture is cooled again to + 7 ° C. or lower in the cooler 31 and then returned to the liquid / liquid separation device 1. Substantially R-133a
Are not reused. In this manner, R-133a can be separated while effectively using all HF. Such a series of operations can be performed in a batch manner, but is preferably performed by a continuous operation.

【0014】[0014]

【実施例】以下、実施例により本発明を更に詳細に説明
する。 実施例1 真空にしたSUS製充填蒸留塔(直径:25mm、充填
物:マクマホン、有効充填高さ:1500mm)にHFを
40g(2.0mol)およびR−133aを592.5g
(5.0mol)仕込み、全還流で蒸留を開始し、スチル温
度を徐々に上げた。塔頂圧力が1.5Kg/cm2G、塔頂温
度が19℃となった時に還流液をサンプリングした。こ
のサンプルを分析すると、HF/R−133aのモル比
は58/42であった。
The present invention will be described in more detail with reference to the following examples. Example 1 40 g (2.0 mol) of HF and 592.5 g of R-133a were placed in a vacuum packed SUS distillation column (diameter: 25 mm, packing: McMahon, effective packing height: 1500 mm).
(5.0 mol), distillation was started at full reflux, and the still temperature was gradually increased. The reflux liquid was sampled when the overhead pressure was 1.5 kg / cm 2 G and the overhead temperature was 19 ° C. Analysis of this sample showed a HF / R-133a molar ratio of 58/42.

【0015】再び、全還流にてスチル温度を上げ、塔頂
圧力が4.0Kg/cm2G、塔頂温度が40℃になった時に
還流液をサンプリングした。このサンプルを分析する
と、HF/R−133aのモル比は55/45であっ
た。これらの分析結果から、R−133aより高い沸点
を有するHF(R−133aの常圧沸点7℃<HFの常
圧沸点19℃)が塔頂部に濃縮されることが明らかとな
り、R−133aとHFは共沸混合物を形成することが
確認された。
Again, the still temperature was raised at the total reflux, and the refluxed liquid was sampled when the pressure at the top reached 4.0 kg / cm 2 G and the temperature at the top reached 40 ° C. Analysis of this sample showed a HF / R-133a molar ratio of 55/45. From these analysis results, it is clear that HF having a boiling point higher than that of R-133a (normal pressure boiling point of R-133a <7 ° C. <normal pressure boiling point of HF of 19 ° C.) is concentrated at the top of the column. HF was found to form an azeotrope.

【0016】実施例2 真空にしたSUS製の気液平衡測定装置(容量75ml)
に実施例1においてサンプリングした液(還流)と同じ
組成のR−133aとHFの混合物(60g)を入れ、
系の圧力が1.5Kg/cm2Gとなるように装置全体を加熱
した。系の状態が平衡になってから、気相および液相を
サンプリングした。同様に、系の圧力を変えて気液平衡
を測定した。サンプリングした気相と液相のHF濃度を
以下の表1に示す(従って、R−133aは残部とな
る):
Example 2 Vacuum SUS vapor-liquid equilibrium measuring apparatus (capacity: 75 ml)
A mixture (60 g) of R-133a and HF having the same composition as the liquid (reflux) sampled in Example 1 was placed in
The entire apparatus was heated so that the pressure of the system was 1.5 kg / cm 2 G. After the state of the system was equilibrated, the gas phase and the liquid phase were sampled. Similarly, the gas-liquid equilibrium was measured by changing the pressure of the system. The sampled gas phase and liquid phase HF concentrations are shown in Table 1 below (thus R-133a is the balance):

【0017】[0017]

【表1】 サンプリング 液相組成 気相組成 圧力 温度 mol% mol% Kg/cm2G ℃ 1 58 59 1.5 20 2 55 55 4.0 41 この結果から、明らかなように、気相と液相の組成は実
験誤差の範囲内でほぼ等しく、HFとR−133aは共
沸混合物を形成することが判った。
Table 1 Sampling Liquid phase composition Gas phase composition Pressure Temperature mol% mol% Kg / cm 2 G ℃ 158 59 1.5 20 25 55 55 4.0 41 As is clear from these results, gas phase and liquid The composition of the phases was approximately equal within experimental error, indicating that HF and R-133a formed an azeotrope.

【0018】実施例3 真空にしたフッ素樹脂製容器に、HFとR−133aを
それぞれモル比60/40になるように充填して混合し
た後、温度を0℃に保って静置して相分離させた。この
状態における下部液相のHFとR−133aのモル比を
測定した。その結果、HF/R−133aのモル比は3
0/70であった。上部液相のHFとR−133aのモ
ル比は、84/16であった。
Example 3 HF and R-133a were charged and mixed in a vacuum fluorinated resin container at a molar ratio of 60/40, respectively, and the mixture was allowed to stand still at a temperature of 0 ° C. Separated. In this state, the molar ratio between HF and R-133a in the lower liquid phase was measured. As a result, the molar ratio of HF / R-133a was 3
0/70. The molar ratio between HF and R-133a in the upper liquid phase was 84/16.

【0019】実施例4〜6 相分離温度を変えたことを除いて実施例3と同様に実験
および測定を行った。条件および下部液相の結果を実施
例3と共に表2に示す。
Examples 4 to 6 Experiments and measurements were performed in the same manner as in Example 3 except that the phase separation temperature was changed. Table 2 shows the conditions and the results of the lower liquid phase together with Example 3.

【0020】[0020]

【表2】 実施例 相分離温度 下部液相組成(モル比) ℃ HF/R−133a 3 0 30/70 4 −5 20/80 5 −10 10/90 6 5 50/50Table 2 Example Phase separation temperature Lower liquid phase composition (molar ratio) ° C HF / R-133a 30 30/704 4-5 20/80 5 -10 10/90 65 50/50

【0021】但し、相分離前組成はHFとR−133a
のモル比60/40であった。実施例3〜6からわかる
ように、相分離を行うことにより下部液相のHF/R−
133aは顕著に低下している。
However, the composition before phase separation is HF and R-133a
Of 60/40. As can be seen from Examples 3 to 6, the lower liquid phase HF / R-
133a is significantly reduced.

【0022】実施例7 真空にしたフッ素樹脂製1000ml容器に、HFを15
0g(7.5mol)およびR−133aを592.5g(5.
0mol)仕込み−20℃に冷却した。冷却の進行にした
がってHFとR−133aが相分離状態となり、下部液
相を全量回収した。この下部液相中にはHFが1g(0.
05mol)およびR−133aが435.5g(3.68mo
l)含まれていた。従って、HF/R−133aのモル
比は1.34/98.66となり、HFとR−133aの
二成分系の共沸組成よりR−133a側に大きくずれた
比率になることがわかる。
Example 7 HF was added to a vacuumed fluororesin 1000 ml container.
0 g (7.5 mol) and 592.5 g (5.
0 mol) Charged and cooled to -20 ° C. As the cooling progressed, HF and R-133a became in a phase separated state, and the entire lower liquid phase was recovered. In the lower liquid phase, 1 g of HF (0.
53 mol) and 435.5 g (3.68 mol) of R-133a.
l) included. Therefore, the molar ratio of HF / R-133a is 1.34 / 98.66, which indicates that the ratio is greatly shifted to the R-133a side from the azeotropic composition of the binary system of HF and R-133a.

【0023】更に、回収した下部液相400gを実施例
1で用いたものと同一のSUS製蒸留塔に仕込み、全還
流状態でスチル温度を徐々に上げていき、塔頂圧力が
1.5Kg/cm2G、塔頂温度が20℃となった時にサンプ
リングをした(2g)。サンプルを分析したところ、H
F/R−133aのモル比は60.8/39.2であっ
た。再び、全還流状態でスチル温度を上げ、塔頂圧力が
4.0Kg/cm2G、塔頂温度が41℃となり、このときに
サンプリングをした(2g)。サンプルを分析したとこ
ろ、HF/R−133aのモル比は56.6/43.4で
あった。
Further, 400 g of the recovered lower liquid phase was charged into the same SUS distillation column as that used in Example 1, and the still temperature was gradually increased at all reflux conditions, and the top pressure was 1.5 kg / kg. Sampling was performed when the temperature reached 20 ° C. and cm 2 G (2 g). When the sample was analyzed, H
The molar ratio of F / R-133a was 60.8 / 39.2. Again, the still temperature was increased in the total reflux state, the overhead pressure was 4.0 kg / cm 2 G, the overhead temperature was 41 ° C., and sampling was performed at this time (2 g). When the sample was analyzed, the molar ratio of HF / R-133a was 56.6 / 43.4.

【0024】再度、圧力を1.5Kg/cm2Gに戻して全還
流で蒸留塔を安定させた。安定後、塔頂からの流出液を
徐々に抜き出して行くと、塔頂温度が徐々に上昇し、塔
頂温度がスチル温度と同じになった時に加熱を停止し
た。塔頂から抜き出した液量は、約20gとなり(途中
サンプリング分を含む)、スチルからはHF約10ppm
を含むR−133a約380gを得た。
The pressure was returned to 1.5 kg / cm 2 G again to stabilize the distillation column at full reflux. After the stabilization, the effluent from the top was gradually extracted, and the temperature of the top gradually increased. When the temperature of the top became the same as the still temperature, heating was stopped. The amount of liquid withdrawn from the top is about 20 g (including sampling on the way), and about 10 ppm of HF from still
About 380 g of R-133a containing was obtained.

【0025】実施例8 真空にしたフッ素樹脂製1000ml容器に、HFを15
0g(7.5mol)およびR−133aを592.5g(5.
0mol)仕込み−20℃に冷却した。冷却の進行にした
がってHFとR−133aが相分離状態となり、上部液
相を全量回収した。この上部液相中にはHFが149g
(7.45mol)およびR−133aが157g(1.32
mol)含まれていた。従って、HF/R−133aのモ
ル比は84.95/15.05となり、HFとR−13
3aの二成分系の共沸組成よりHF側に大きくずれた比
率になることがわかる。
Example 8 HF was placed in a vacuum-applied 1000 ml container made of fluororesin.
0 g (7.5 mol) and 592.5 g (5.
0 mol) Charged and cooled to -20 ° C. As the cooling progressed, HF and R-133a became in a phase separated state, and the entire upper liquid phase was recovered. 149 g of HF was contained in the upper liquid phase.
(7.45 mol) and 157 g (1.32) of R-133a.
mol) was included. Therefore, the molar ratio of HF / R-133a is 84.95 / 15.05, and HF and R-13
It can be seen that the ratio is greatly shifted to the HF side from the azeotropic composition of the binary system of 3a.

【0026】更に、回収した上部液相300gを実施例
1と同一のSUS製蒸留塔に仕込み、全還流状態でスチ
ル温度を徐々に上げていき、塔頂圧力が1.5Kg/cm
2G、塔頂温度が20℃となった時にサンプリングをした
(2g)。サンプルを分析したところ、HF/R−13
3aのモル比は59.5/40.5であった。再び、全還
流状態でスチル温度を上げ、塔頂圧力が4.0Kg/cm
2G、塔頂温度が40℃となり、このときにサンプリング
をした(2g)。サンプルを分析したところ、HF/R
−133aのモル比は57.5/42.5であった。
Further, 300 g of the recovered upper liquid phase was charged into the same SUS distillation column as in Example 1, and the still temperature was gradually increased in the total reflux state, and the overhead pressure was 1.5 kg / cm.
Sampling was performed when the temperature at the top of the column reached 20 ° C. at 2 G (2 g). Analysis of the sample showed that HF / R-13
The molar ratio of 3a was 59.5 / 40.5. Again, the still temperature was raised in the total reflux state, and the overhead pressure was 4.0 kg / cm.
At 2 G, the top temperature became 40 ° C., and sampling was performed at this time (2 g). When the sample was analyzed, HF / R
The molar ratio of -133a was 57.5 / 42.5.

【0027】再度、圧力を1.5Kg/cm2Gに戻して全還
流で蒸留塔を安定させた。安定後、塔頂からの流出液を
徐々に抜き出して行くと、塔頂温度が徐々に上昇し、塔
頂温度がスチル温度と同じになった時に加熱を停止し
た。塔頂から抜き出した液量は、約240gとなり(途
中サンプリング分を含む)、スチルからはR−133a
を痕跡程度しか含まないHF約60gを得た。
The pressure was returned to 1.5 kg / cm 2 G again, and the distillation column was stabilized at the total reflux. After the stabilization, the effluent from the top was gradually extracted, and the temperature of the top gradually increased. When the temperature of the top became the same as the still temperature, heating was stopped. The amount of liquid withdrawn from the top of the column was about 240 g (including sampling on the way), and R-133a was obtained from the still.
Of HF containing only traces of HF was obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 図1は、本発明に用いられる1,1,1−トリ
フルオロ−2−クロロエタンの精製装置の一例のフロー
シートを示す。
FIG. 1 shows a flow sheet of an example of an apparatus for purifying 1,1,1-trifluoro-2-chloroethane used in the present invention.

【符号の説明】[Explanation of symbols]

1…液々分離装置、3…蒸留装置、5…留出物、7…還
流、9…缶出、11…クーラー、23…蒸留装置、25
…留出物、27…還流、29…缶出、31…クーラー。
DESCRIPTION OF SYMBOLS 1 ... Liquid separation apparatus, 3 ... Distillation apparatus, 5 ... Distillate, 7 ... Reflux, 9 ... Boiler, 11 ... Cooler, 23 ... Distillation apparatus, 25
... distillate, 27 ... reflux, 29 ... can, 31 ... cooler.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小山 哲 大阪府摂津市西一津屋1番1号 ダイキ ン工業株式会社淀川製作所内 (56)参考文献 特開 平5−78267(JP,A) 特開 平5−255144(JP,A) 特開 平6−135867(JP,A) (58)調査した分野(Int.Cl.7,DB名) C07C 17/38 C01B 7/19 C07C 17/383 C07C 19/08 CA(STN) CAOLD(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continuation of front page (72) Inventor Satoshi Koyama 1-1, Nishiichitsuya, Settsu-shi, Osaka Daikin Industries, Ltd. Yodogawa Works (56) References JP-A-5-78267 (JP, A) JP JP-A-5-255144 (JP, A) JP-A-6-135867 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C07C 17/38 C01B 7/19 C07C 17/383 C07C 19 / 08 CA (STN) CAOLD (STN) REGISTRY (STN)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 少なくともフッ化水素と1,1,1−トリ
フルオロ−2−クロロエタン含んで成る混合物を7℃以
下に冷却し、フッ化水素に富む上部液相と1,1,1−ト
リフルオロ−2−クロロエタンに富む下部液相に分離
し、下部液相からフッ化水素の少ない1,1,1−トリフ
ルオロ−2−クロロエタンを回収することを特徴とする
1,1,1−トリフルオロ−2−クロロエタンの精製方
法。
1. A mixture comprising at least hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane is cooled to 7 ° C. or lower, and the upper liquid phase rich in hydrogen fluoride is mixed with 1,1,1-trifluoroethane. Separating a lower liquid phase rich in fluoro-2-chloroethane and recovering 1,1,1-trifluoro-2-chloroethane containing less hydrogen fluoride from the lower liquid phase; A method for purifying fluoro-2-chloroethane.
【請求項2】 少なくともフッ化水素と1,1,1−トリ
フルオロ−2−クロロエタンを含んで成る混合物を蒸留
することによりフッ化水素をフッ化水素と1,1,1−ト
リフルオロ−2−クロロエタンの共沸混合物として除く
ことを特徴とする1,1,1−トリフルオロ−2−クロロ
エタンの精製方法。
2. A method comprising distilling a mixture comprising at least hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane to form hydrogen fluoride and 1,1,1-trifluoro-2. A method for purifying 1,1,1-trifluoro-2-chloroethane, characterized in that the chloroethane is removed as an azeotrope.
【請求項3】 少なくともフッ化水素と1,1,1−トリ
フルオロ−2−クロロエタンを含んで成る混合物を7℃
以下に冷却し、フッ化水素に富む上部液相と1,1,1−
トリフルオロ−2−クロロエタンに富む下部液相に分離
し、フッ化水素の少ない下部液相を蒸留することにより
フッ化水素をフッ化水素と1,1,1−トリフルオロ−2
−クロロエタンの共沸混合物として除くことを特徴とす
る1,1,1−トリフルオロ−2−クロロエタンの精製方
法。
3. A mixture comprising at least hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane at 7 ° C.
Cooled below, the upper liquid phase rich in hydrogen fluoride and 1,1,1-
Hydrogen fluoride is separated into hydrogen fluoride and 1,1,1-trifluoro-2 by separating into a lower liquid phase rich in trifluoro-2-chloroethane and distilling the lower liquid phase with less hydrogen fluoride.
A method for purifying 1,1,1-trifluoro-2-chloroethane, characterized in that the chloroethane is removed as an azeotrope.
【請求項4】 下部液相を蒸留することにより得られた
フッ化水素と1,1,1−トリフルオロ−2−クロロエタ
ンの共沸混合物を冷却相分離工程に戻す請求項4記載の
1,1,1−トリフルオロ−2−クロロエタンの精製方
法。
4. The method according to claim 4, wherein an azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane obtained by distilling the lower liquid phase is returned to the cooling phase separation step. A method for purifying 1,1-trifluoro-2-chloroethane.
【請求項5】 フッ化水素および1,1,1−トリフルオ
ロ−2−クロロエタンを含んで成る混合物を7℃以下に
冷却する工程、 フッ化水素に富む上部液相と1,1,1−トリフルオロ−
2−クロロエタンに富む下部液相に分離する工程、 上部液相を蒸留することにより、1,1,1−トリフルオ
ロ−2−クロロエタンを1,1,1−トリフルオロ−2−
クロロエタンとフッ化水素との共沸混合物として回収す
る第1蒸留工程、 下部液相を蒸留することにより、フッ化水素をフッ化水
素と1,1,1−トリフルオロ−2−クロロエタンとの共
沸混合物として回収する第2蒸留工程、ならびに双方の
蒸留工程により得られる共沸混合物を冷却工程にリサイ
クルする工程を含んで成り、第2蒸留工程からフッ化水
素を実質的に含まない1,1,1−トリフルオロ−2−ク
ロロエタンを得ることを特徴とする、1,1,1−トリフ
ルオロ−2−クロロエタンの精製方法。
5. Cooling a mixture comprising hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane to below 7 ° C., wherein the upper liquid phase rich in hydrogen fluoride and 1,1,1- Trifluoro-
Separating the lower liquid phase enriched in 2-chloroethane, distilling the upper liquid phase to convert 1,1,1-trifluoro-2-chloroethane to 1,1,1-trifluoro-2-
A first distillation step of recovering an azeotrope of chloroethane and hydrogen fluoride, and distilling the lower liquid phase to convert hydrogen fluoride into hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane; A second distillation step of recovering a boiling mixture, and a step of recycling an azeotrope obtained by both distillation steps to a cooling step, wherein the first distillation step is substantially free of hydrogen fluoride. A method for purifying 1,1,1-trifluoro-2-chloroethane, comprising obtaining 1,1-trifluoro-2-chloroethane.
【請求項6】 少なくともフッ化水素と1,1,1−トリ
フルオロ−2−クロロエタンを含んで成る混合物を5℃
以下に冷却する請求項1、3、4または5記載の1,1,
1−トリフルオロ−2−クロロエタンの精製方法。
6. A mixture comprising at least hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane at 5 ° C.
The cooling method according to claim 1, 3, 4, or 5, wherein
A method for purifying 1-trifluoro-2-chloroethane.
JP09517992A 1991-04-15 1992-04-15 An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane Expired - Fee Related JP3175286B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09517992A JP3175286B2 (en) 1991-04-15 1992-04-15 An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-82261 1991-04-15
JP8226191 1991-04-15
JP09517992A JP3175286B2 (en) 1991-04-15 1992-04-15 An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane

Publications (2)

Publication Number Publication Date
JPH05132434A JPH05132434A (en) 1993-05-28
JP3175286B2 true JP3175286B2 (en) 2001-06-11

Family

ID=26423282

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09517992A Expired - Fee Related JP3175286B2 (en) 1991-04-15 1992-04-15 An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane

Country Status (1)

Country Link
JP (1) JP3175286B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675496B1 (en) * 1991-04-17 1993-09-03 Atochem PROCESS FOR SEPARATING HYDROGEN FLUORIDE FROM ITS MIXTURES WITH 1,1,1-TRIFLUORO-2-CHLOROETHANE.
WO1995017366A1 (en) * 1993-12-22 1995-06-29 Daikin Industries, Ltd. Process for purifying 1,1,1,3,3-pentafluoro-2,3-dichloropropane
US6677493B1 (en) * 1998-04-03 2004-01-13 E. I. Du Pont De Nemours And Company Processes for the purification and use of 2-chloro-1,1,1,2,3,3,3-heptafluoropropane and zeotropes thereof with HF
EP1068170A2 (en) * 1998-04-03 2001-01-17 E.I. Du Pont De Nemours And Company Processes for the purification and use of 2,2-dichloro-1,1,1,3,3,3-hexafluoropropane and azeotropes thereof with hf
RU2466979C2 (en) * 2006-08-24 2012-11-20 Е.И.Дюпон Де Немур Энд Компани Method of separating fluorolefins from fluorohydrogen by azeotropic distillation
JP5788380B2 (en) * 2009-03-24 2015-09-30 アーケマ・インコーポレイテッド Separation of R-1233 from hydrogen fluoride

Also Published As

Publication number Publication date
JPH05132434A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
JP3147380B2 (en) How to remove hydrogen fluoride
JP3811185B2 (en) Process for purification of hexafluoroethane product
EP0395793B1 (en) Process for the separation of 1,1-dichloro-1-fluoroethane and 1,1,1,3,3-pentafluorobutane
US4975156A (en) Process for the separation of hydrogen fluoride, 1,1-dichloro-1-fluoroethane and 1-chloro-1,1-difluoroethane from liquid mixtures thereof
JP3514041B2 (en) Method for purifying 1,1,1,3,3-pentafluoropropane
JP3175286B2 (en) An azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and a method for purifying 1,1,1-trifluoro-2-chloroethane
US5324873A (en) Azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane and process for purification of 1,1,1-trifluoro-2-chloroethane
EP0601373A1 (en) Process for separating hydrogen fluoride from its mixtures with chlorofluorohydrocarbons 123 and/or 124
JP3182869B2 (en) Azeotropic mixture of pentafluoroethane and pentafluorochloroethane and method for separating pentafluorochloroethane
JP3856820B2 (en) Method for purifying pentafluoroethane
JP3163831B2 (en) An azeotropic mixture of 1,1-difluoroethane and hydrogen fluoride and a method for recovering 1,1-difluoroethane or hydrogen fluoride
JP3569921B2 (en) Method for producing difluoromethane
JP3278848B2 (en) Purification method of 1,1,1,3,3-pentafluoro-2,3-dichloropropane
JP2661441B2 (en) Method for producing 1,1,1-trifluoro-2-chloroethane and / or 1,1,1,2-tetrafluoroethane
JPH0532568A (en) Method for removing hydrogen fluoride from mixture of hydrogen fluoride and dichlorofluoromethane
US5401430A (en) Azeotropic mixture of hydrogen fluoride and 1,1,1-trifluoro-2-chloroethane
JP3387484B2 (en) How to remove hydrogen fluoride
CA2361985C (en) Process for purification of 1,1,1-trifluoro-2-chloroethane
US6676809B1 (en) Process for removal of hydrogen fluoride
JPH1143451A (en) Azeotrope and its separation
JPH06293674A (en) Azeotropic mixture of pentafluoroethane with hydrogen fluoride and recovery of pentafluoroethane or hydrogen fluoride
JP2778162B2 (en) How to remove hydrogen fluoride
JP2001342007A (en) Hydrogen fluoride separation method
JP2001342006A (en) Hydrogen chloride recovery method
JPS6065701A (en) Separation of hydrogen chloride from acetyl chloride

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080406

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090406

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees