JP3628349B2 - Process for producing 1,1,1,2,2-pentafluoroethane - Google Patents

Process for producing 1,1,1,2,2-pentafluoroethane Download PDF

Info

Publication number
JP3628349B2
JP3628349B2 JP11567194A JP11567194A JP3628349B2 JP 3628349 B2 JP3628349 B2 JP 3628349B2 JP 11567194 A JP11567194 A JP 11567194A JP 11567194 A JP11567194 A JP 11567194A JP 3628349 B2 JP3628349 B2 JP 3628349B2
Authority
JP
Japan
Prior art keywords
reactor
tower
side cut
product
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11567194A
Other languages
Japanese (ja)
Other versions
JPH07324044A (en
Inventor
博基 大野
哲夫 中條
亮 宮村
敏夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11567194A priority Critical patent/JP3628349B2/en
Publication of JPH07324044A publication Critical patent/JPH07324044A/en
Application granted granted Critical
Publication of JP3628349B2 publication Critical patent/JP3628349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【産業上の利用分野】
本発明は1,1,1,2,2−ペンタフルオロエタン(CF−CHF、以下「HFC125」という)の製法に関するものであり、特にテトラクロロエチレンとHFとを反応させて得られる生成物から、簡略化された工程で効率よくHFC125を製造する方法に関する。
【0002】
【従来の技術】
近年になって、クロロフルオロカーボン類による成層圏のオゾン層破壊が深刻な問題として提起され、その使用が国際的に禁止されるに至った。更に、クロロジフルオロメタン(CHClF、通称「HCFC22」)などのハイドロクロロフルオロカーボン類も、クロロフルオロカーボン類に比べればオゾン破壊係数はきわめて小さいものの、使用量が増大すればオゾン層を破壊する可能性も高まることから、その生産及び使用が規制の対象とされている。このため、オゾン層に影響を及ぼすことなくHCFC22使用の空調装置などにそのまま置換して使用できるHCFC22代替品の開発が国際的に強く求められている。
ハイドロフルオロカーボン類はオゾン破壊係数がゼロであり、地球温暖化係数も小さいので、規制の対象とされない。そこでこれらの化合物の中からHCFC22代替品を見いだすことが望まれているが、単一成分では対応が困難であり、複数成分の混合物でこの要望に対応する検討が進められている。この内の有望な成分の一つとしてHFC125がある。
【0003】
一般にHFC125は、テトラクロロエチレン(CCl=CCl、以下「PCE」という)とHFとから、気相2段反応によって製造される。すなわち、第1反応でまず下記式(1)のように、PCEとHFとから主として1,1−ジクロロ−2,2,2−トリフルオロエタン(以下、「HCFC123」という)を含む生成物を得、次いで第2反応で下記式(2)のように、HCFC123とHFとから主として目的物のHFC125を含む生成物を得る。
【0004】
【化1】

Figure 0003628349
【0005】
ただし、上記のそれぞれの反応と平行して、それぞれ下式(3)および(4)で示される反応も進行することが知られている。すなわち、式(3)に示される第1反応においてPCEとHFとから1−クロロ−1,2,2,2−テトラフルオロエタン(以下、「HCFC124」という)が生成し、これが第2反応において式(4)のように、更にHFと反応して、結局は目的物のHFC125となる。
【0006】
【化2】
Figure 0003628349
【0007】
HCFC123およびHCFC124はいずれもHFC125生成反応における中間体であるから、以下、これらのいずれか一方または双方を総称して「中間体」という。
式(1)および式(3)で表される中間体を生成する第1反応は、例えば圧力4kg/cmG、温度300℃、HF/PCEモル比4の条件下に進行し、式(2)および式(4)で表されるHFC125を生成する第2反応は、例えば圧力4kg/cmG、温度330℃、HF/HCFC123モル比4〜8の条件下に進行するので、双方の反応工程を合体して1段反応とすることはできない。
【0008】
そこで、従来の製造工程は例えば図3に示すように、原料のPCEとHFと、および第2蒸留塔38から回収されるPCEとHFとに富む回収留分40との合流物30を第1反応器31に導入して反応させ、ここで生成した中間体生成物を第1脱酸塔32に導入してこの塔頂から副生物であるHClを除去し、中間体に富むボトム液33を、第2蒸留塔38から回収された中間体とHFとに富む循環留分39と合流して第2反応器34に導入し、ここで再びHFと反応させ、生成した生成物を第2脱酸塔35に導入して塔頂からHClを除去し、このボトム液36を第1蒸留塔37に導入して塔頂からHFC125に富む留分を留出させ、ボトム液は第2蒸留塔38に導入して塔頂留分として中間体とHFとに富む循環留分39を得、またボトム液としてPCEとHFとに富む回収留分40を得、循環留分39は第1脱酸塔ボトム液33と共に第2反応器34に循環し、回収留分40は原料と共に第1反応器31に循環していた。
【0009】
【発明が解決しようとする課題】
しかしこの製造工程は長く煩雑であり、最低限でも蒸留塔2本と脱酸塔2本とを要するばかりでなく、エネルギー効率が悪く、工程経費が嵩む点が問題であった。
本発明は上記の課題を解決するためになされたものであり、従ってその目的は、PCEとHFとから、簡単な装置で効率よくHFC125を製造する方法を提供することにある。
【0010】
【課題を解決するための手段】
上記の課題は、反応を第1反応器と第2反応器とに分けて行い、第1反応器ではPCEとHFとを反応させて中間体を含む第1生成物を生成させ、第2反応器ではこの第1生成物の少なくとも一部とHFとを反応させてHFC125を含む第2生成物を生成させ、これら双方の反応器から得られる生成物を合流した合流生成物の少なくとも一部を蒸留塔を用いて蒸留し、塔頂からHFC125に富む塔頂留分を留出させると共に、残部の少なくとも一部を上記のそれぞれの反応器に分別して循環させる方法により解決できる。
【0011】
上記において、双方の反応器から得られる生成物を合流した合流生成物は、その少なくとも一部を蒸留塔の中間の供給段に供給し、この供給段より下段の段位が異なる2段のサイドカット段からそれぞれ中間体に富む第1サイドカットと第2サイドカットとをガスとして留出させてこれらの双方のサイドカットを合わせて第2反応器に循環させ、ボトムからの蒸留塔ボトム液は第1反応器に循環させることが好ましい。
上記の反応によって生成したHClは、合流生成物を蒸留した後に蒸留塔の塔頂留分を脱酸塔に導入してその塔頂留分として除去するか、または合流生成物を蒸留塔に供給するに先だって脱酸塔に導入してその塔頂留分として除去することができる。後者の場合は、この脱酸塔のボトム液を蒸留塔に供給することになる。
【0012】
次に本発明を図面を用いて具体的に説明する。図1は本発明の好ましい一実施例を示している。図1において、まず供給原料のPCE12とHF11とが第1反応器1に気相で導入される。第1反応器1では、上記の式(1)または式(3)に従って主としてHCFC123とHCFC124とからなる中間体、およびHClを含む第1生成物24が生成する。
【0013】
一方、第2反応器2では、第1生成物24の一部である蒸留塔3からの中間体に富む第1サイドカット18および第2サイドカット19が合流され、更に供給原料のHF11が加えられて第2反応原料14として導入され、式(2)または式(4)に従う反応により主としてHFC125とHClとを含む第2生成物25が生成する。
【0014】
第1生成物24と第2生成物25とは合流され合流生成物15とされる。この合流生成物15は更に、精製工程5からの回収中間体23とも合流され、合流物16として、蒸留塔3の中間の供給段26に導入される。
この蒸留塔3は、塔頂およびボトムの他に、供給段26より下段の、段位が異なる2段のサイドカット段27、28に留出口が設けられている。
供給段26から導入された合流物16はこの蒸留塔3で蒸留され、塔頂からはHFC125とHClとに富んだ塔頂留分17が留出する。2段のサイドカット段の上位段27からはHCFC124とHFとに富んだ第1サイドカット18が留出し、下位段28からはHCFC123とHFとに富んだ第2サイドカット19が留出する。またボトムからは未反応のPCEとHFとに富んだ蒸留塔ボトム液20が得られる。
【0015】
第1サイドカット18と第2サイドカット19とは前記のように合流され、これに反応好適量の原料HF11が追加されて第2反応器2に導入される。また蒸留塔ボトム液20は供給原料のPCE12およびHF11と合流され、第1反応原料13として第1反応器1に循環される。
【0016】
ここに得られた塔頂留分17は、HFC125と共にHClおよび少量の未反応物を含む。塔頂留分17は、次に脱酸塔4に導入され、塔頂からHCl留分21が除去され、そのボトムから得られる脱酸塔ボトム液22は別途設けられた精製工程5において、精製HFC125と未反応HFと少量の回収中間体23とに分離される。この回収中間体23は、合流生成物15と合わされて、合流物16として蒸留塔3に循環される。
【0017】
この実施例の方法に従えば、各反応器ごとに生成物の分離工程を付加する必要がなく、これら反応器の生成物が一括して蒸留され、HFC125を含む反応生成物が塔頂留分として回収されると共に残分が中間体に富むサイドカット留分と未反応原料に富む蒸留塔ボトム液とに分離され、それぞれが第2反応器および第1反応器に循環されるので、連続運転における工程条件が安定し、工程管理が簡単になり、設備が単純化され、またエネルギー原単位も従来の製法に比して低くなる。
【0018】
上記の工程に関与する主要な物質とその大気圧下における沸点は以下の通りである。
PCE 121.0℃
HF 19.5℃
HCFC123 27.1℃
HCFC124 −12.0℃
HFC125 −48.5℃
HCl −84.9℃
これらの全てを含む合流物16から、HFC125に富む留分を取り出すと共に、残余の未反応物を効率よく分離してPCEは第1反応器に、HCFC123とHCFC124とは第2反応器に循環させる条件が求められる。この際、HFは第1反応および第2反応のいずれの原料ともなるので、双方に適宜配分して循環されてよい。
【0019】
本発明らは、HCFC123とHFとの間、およびHCFC124とHFとの間にそれぞれ最低共沸関係が存在することを見いだし、本発明に到達した。これらの共沸混合物は例えば圧力4kg/cmGにおいて、
HCFC123/HF共沸混合物(A):モル比78/22、共沸点52℃
HCFC124/HF共沸混合物(B):モル比67/33、共沸点26℃
である。
すなわち、蒸留塔の供給段より下段の中間段からこれら共沸混合物の気相を取り出せば、この気相成分は純度の高いHCFC123またはHCFC124とHFとの混合物であるから、第2反応原料として好適に使用できる。
【0020】
そこで、1本の蒸留塔3を用い、その中間の供給段26にガスまたは液体またはガス/液混相として合流物16を供給して蒸留を行うとき、塔頂から沸点が十分に低い生成物系であるHFC125(圧力4kg/cmG下で約−13℃)とHClとに富む塔頂留分17を留出させ、供給段26より下段のサイドカット段からそれぞれ、第2反応原料系であるHCFC123/HF共沸混合物(A)の気相成分とHCFC124/HF共沸混合物(B)の気相成分とを留出させ、かつボトムからは第1反応原料系であるPCEとHFとに富む蒸留塔ボトム液を取り出すことができる。
【0021】
このとき、共沸混合物(A)と共沸混合物(B)とは沸点差が比較的大きいので、同一のサイドカット段から双方の気相成分を同時に取り出そうとすると、蒸留塔内での気液平衡関係の維持が困難となり、操作が安定せず各成分の分離能が低下する。そこで図1に示すように、サイドカット段を上下2段(27および28)に分け、上段27から第1サイドカット18として共沸混合物(B)の気相成分を、また下段28から第2サイドカット19として共沸混合物(A)の気相成分を取り出せば、蒸留塔内の気液平衡関係が安定して良好な分離が達成できる。
【0022】
この蒸留により分離された塔頂留分17は、反応生成物であるHFC125とHClとに富むものであるが、この両者は沸点差が十分に大きく、かつ共沸混合物を形成しないから、後工程の脱酸塔4における蒸留で塔頂からHClを留出させることによって容易に分離することができる。第1サイドカット18と第2サイドカット19とは合流し、第2反応に必要な追加のHF11と共に第2反応器2に導入し、HFC125の生成反応を行わせることができる。また蒸留塔ボトム液20は実質的に中間体成分を含まず、PCEとHFとに富むものであるから、第1反応器1の反応原料の一部として循環使用することができる。
【0023】
反応生成物であるHClは、他の成分との沸点差が十分に大きく、かつ共沸混合物を形成しないので、上記の蒸留に先立って脱酸塔4を用いて除去してもよい。図2はこの方法の一例を示している。図2の工程においては、第1生成物24と第2生成物25と回収中間体23とを含む合流物16がまず脱酸塔4に導入され、ここでHCl留分21と脱酸塔ボトム液22とに分離される。この脱酸塔ボトム液22は、PCE、HF、HCFC123、HCFC124、およびHFC125を含んでいる。この脱酸塔ボトム液22が次に図1で説明したものと同様な蒸留塔3に供給され、ここで蒸留分離されてHFC125に富む塔頂留分17と、主としてHCFC124とHFとからなる第1サイドカット18と、主としてHCFC123とHFとからなる第2サイドカット19と、PCEとHFとに富む蒸留塔ボトム液20とに分離される。
【0024】
ここに得られた塔頂留分17は、別途設けられた精製工程5において精製され、分離されたHFは回収され、回収中間体23は合流生成物15と合流され脱酸塔4に循環される。第1サイドカット18と第2サイドカット19とは合流されて追加のHFと共に第2反応原料14として第2反応器2に導入される。また蒸留塔ボトム液20は新たなPCEおよびHFと共に第1反応原料13として第1反応器1に循環される。
【0025】
HClの分離を先行させる場合もさせない場合も、いずれの場合にも蒸留塔の内圧は大気圧ないし20気圧の範囲内とすることが好ましい。大気圧未満でも運転は可能であるが、蒸留を低温冷媒系で行う必要があり設備上望ましくない。また20気圧を越えると高圧系の設備を要することとなり好ましくない。
【0026】
本発明のHFC125の製法は、PCE、HCFC123、HCFC124、またはこれらのいずれか2種以上の混合物をHFと反応させる工程であれば、如何なる組成のものにも適用が可能であり、また上記のサイドカットとして、HCFC123またはHCFC124またはその双方を他の目的でそれぞれ工程から抜き出すことも可能である。
【0027】
【実施例】
次に実施例によって本発明をさらに詳しく説明する。
(実施例1)
図1に示す工程を用い、PCEとHFとからHFC125を製造した。
第1反応器1は圧力4kg/cmG、温度300℃で運転し、これに供給するHF/PCEモル比は4とした。第2反応器2は圧力4kg/cmG、温度330℃で運転し、これに供給するHF/中間体モル比は4とした。蒸留塔3は圧力4kg/cmGで運転した。このとき、蒸留塔各部の温度は、
塔頂 約 0℃
第一サイドカット 約44℃
第二サイドカット 約68℃
ボトム 約89℃
であった。
合流物16の流量を100(kg/hr)としたときの工程各部における各成分の流量、およびその各成分の重量割合(重量%)を表1に示す。
【0028】
【表1】
Figure 0003628349
【0029】
表1の結果から、以下の事実が明かである。
(1)塔頂留分17は反応生成物であるHFC125とHClとに富み、これを脱酸塔4で脱HClすることによって、HFC125を87.4重量%の濃度で含む脱酸塔ボトム液22が得られる。
(2)第1サイドカット18はHCFC124とHFとからなり、また第2サイドカット19はHCFC123とHFとからなっている。従ってこれらは合流して第2反応器2の反応原料として好適に使用できる。
(3)蒸留塔ボトム液20は中間体成分を含まないから第1反応器1の反応原料として好適に循環できる。
(4)以上により、蒸留塔と脱酸塔とを各1本用いるのみで、円滑にHFC125を製造することができる。
【0030】
(実施例2)
図2に示す工程を用いてPCEとHFとからHFC125を製造した。
第1反応器1および第2反応器2の運転条件は実施例1と同様にした。蒸留塔3および脱酸塔4は圧力4kg/cmGで運転した。
このとき、脱酸塔4の各部の温度は、
塔頂 約−39℃
ボトム 約20℃、
また、蒸留塔3の各部の温度は、
塔頂 約 8℃
第一サイドカット 約44℃
第二サイドカット 約68℃
ボトム 約89℃
であった。
合流物16の流量を100(kg/hr)としたときの工程各部における各成分の流量、およびその各成分の重量割合(重量%)を表2に示す。
【0031】
【表2】
Figure 0003628349
【0032】
表2の結果から、以下の事実が明かである。
(1)蒸留塔3の塔頂留分17はHClを含まず、目的物であるHFC125を87.4重量%の濃度で含んでいる。
(2)第1サイドカット18はHCFC124とHFとからなり、また第2サイドカット19はHCFC123とHFとからなっている。従ってこれらは合流して第2反応器2の反応原料として好適に使用できる。
(3)蒸留塔ボトム液20は中間体成分を含まないから第1反応器1の反応原料として好適に循環できる。
(4)以上により、蒸留塔と脱酸塔とを各1本用いるのみで、円滑にHFC125を製造することができる。
【0033】
【発明の効果】
以上、詳細に説明したように、本発明のHFC125の製法は、第1反応器と第2反応器との双方の反応器から得られる生成物を合流し、この合流生成物の少なくとも一部を蒸留し、塔頂からHFC125に富む塔頂留分を留出させると共に、残部の少なくとも一部をそれぞれ上記の第1反応器および第2反応器に分別して循環させるものであるので、蒸留工程が簡略化され、工程経費が大幅に削減できるばかりでなく、工程ロスが軽減され、エネルギー原単位も節減できるなど、多くの利点を有する。
【図面の簡単な説明】
【図1】本発明の一実施例を示す工程図。
【図2】本発明の他の一実施例を示す工程図。
【図3】従来の製造工程の一例を示す工程図。
【符号の説明】
1…第1反応器、
2…第2反応器、
3…蒸留塔、
4…脱酸塔、
17…塔頂留分、
20…蒸留塔ボトム液、
27、28…サイドカット段。[0001]
[Industrial application fields]
The present invention relates to a process for producing 1,1,1,2,2-pentafluoroethane (CF 3 —CHF 2 , hereinafter referred to as “HFC125”), particularly from a product obtained by reacting tetrachlorethylene with HF. The present invention relates to a method for efficiently manufacturing HFC125 by a simplified process.
[0002]
[Prior art]
Recently, stratospheric ozone depletion by chlorofluorocarbons has been raised as a serious problem and its use has been banned internationally. In addition, hydrochlorofluorocarbons such as chlorodifluoromethane (CHClF 2 , commonly known as “HCFC22”) also have a very small ozone depletion coefficient compared to chlorofluorocarbons. Due to the increase, its production and use are subject to regulation. For this reason, there is a strong international demand for the development of an HCFC22 substitute that can be used as it is by replacing it with an air conditioner using HCFC22 without affecting the ozone layer.
Hydrofluorocarbons have zero ozone depletion potential and low global warming potential, so they are not subject to regulation. Therefore, it is desired to find a substitute for HCFC22 among these compounds. However, it is difficult to cope with a single component, and studies are being made to meet this demand with a mixture of a plurality of components. One of the promising components is HFC125.
[0003]
In general, HFC125 is produced from tetrachloroethylene (CCl 2 = CCl 2 , hereinafter referred to as “PCE”) and HF by a gas phase two-stage reaction. That is, in the first reaction, a product mainly containing 1,1-dichloro-2,2,2-trifluoroethane (hereinafter referred to as “HCFC123”) from PCE and HF as shown in the following formula (1): Then, in the second reaction, a product containing mainly the target HFC125 is obtained from HCFC123 and HF as shown in the following formula (2).
[0004]
[Chemical 1]
Figure 0003628349
[0005]
However, it is known that the reactions represented by the following formulas (3) and (4) also proceed in parallel with each of the above reactions. That is, 1-chloro-1,2,2,2-tetrafluoroethane (hereinafter referred to as “HCFC124”) is generated from PCE and HF in the first reaction represented by the formula (3), and this is generated in the second reaction. As shown in the formula (4), it further reacts with HF and eventually becomes the target HFC125.
[0006]
[Chemical formula 2]
Figure 0003628349
[0007]
Since both HCFC123 and HCFC124 are intermediates in the HFC125 production reaction, hereinafter, either or both of them will be collectively referred to as “intermediate”.
The first reaction for producing the intermediate represented by the formulas (1) and (3) proceeds under the conditions of, for example, a pressure of 4 kg / cm 2 G, a temperature of 300 ° C., and an HF / PCE molar ratio of 4, 2) The second reaction for producing HFC125 represented by formula (4) proceeds under conditions of, for example, a pressure of 4 kg / cm 2 G, a temperature of 330 ° C., and an HF / HCFC 123 molar ratio of 4 to 8, so that both The reaction steps cannot be combined into a one-stage reaction.
[0008]
Therefore, in the conventional manufacturing process, for example, as shown in FIG. 3, the combined product 30 of the raw material PCE and HF and the recovered fraction 40 rich in PCE and HF recovered from the second distillation column 38 is first. The reaction product is introduced into the reactor 31 and the intermediate product produced here is introduced into the first deoxidation tower 32 to remove HCl as a by-product from the top of the tower, and a bottom liquid 33 rich in the intermediate is obtained. The intermediate fraction recovered from the second distillation column 38 and the circulating fraction 39 rich in HF are combined and introduced into the second reactor 34, where they are reacted again with HF, and the resulting product is subjected to the second desorption. It is introduced into the acid tower 35 to remove HCl from the top of the tower, and this bottom liquid 36 is introduced into the first distillation tower 37 to distill a fraction rich in HFC125 from the top of the tower. The bottom liquid is the second distillation tower 38. To obtain a recycle fraction 39 rich in intermediates and HF as a top fraction. A recovered fraction 40 rich in PCE and HF is obtained as a liquid, and a recycle fraction 39 is circulated to the second reactor 34 together with the first deoxidizer bottom liquid 33, and the recovered fraction 40 together with the raw material is the first reactor. It was circulating to 31.
[0009]
[Problems to be solved by the invention]
However, this production process is long and complicated, and at the minimum, not only two distillation towers and two deoxidation towers are required, but also energy efficiency is low and process costs increase.
The present invention has been made to solve the above-described problems. Therefore, an object of the present invention is to provide a method for efficiently producing HFC125 from PCE and HF with a simple apparatus.
[0010]
[Means for Solving the Problems]
The problem is that the reaction is performed separately in the first reactor and the second reactor. In the first reactor, PCE and HF are reacted to produce a first product containing an intermediate, and the second reaction. In the reactor, at least a part of the first product is reacted with HF to produce a second product containing HFC125, and at least a part of the combined product obtained by joining the products obtained from both reactors is obtained. This can be solved by a method of distilling using a distillation column and distilling the top fraction rich in HFC125 from the top of the column and separating and circulating at least a part of the remainder into the respective reactors.
[0011]
In the above, the combined product obtained by joining the products obtained from both reactors is supplied to at least a part of the product into an intermediate supply stage of the distillation column, and a two-stage side cut having a lower stage than this supply stage. The first side cut and the second side cut, which are rich in intermediates, are distilled from the stage as gases, and both side cuts are combined and circulated to the second reactor. It is preferable to circulate to one reactor.
The HCl produced by the above reaction is either distilled after distilling the combined product, and then removing the distillation column top fraction into the deoxidation column or removing it as the top fraction, or supplying the combined product to the distillation column. Prior to this, it can be introduced into a deoxidation tower and removed as a top fraction. In the latter case, the bottom liquid of this deoxidation tower is supplied to the distillation tower.
[0012]
Next, the present invention will be specifically described with reference to the drawings. FIG. 1 shows a preferred embodiment of the present invention. In FIG. 1, feedstock PCE12 and HF11 are first introduced into the first reactor 1 in a gas phase. In the first reactor 1, an intermediate mainly composed of HCFC 123 and HCFC 124 and a first product 24 containing HCl are generated according to the above formula (1) or formula (3).
[0013]
On the other hand, in the second reactor 2, the first side cut 18 and the second side cut 19, which are part of the first product 24, rich in intermediates from the distillation column 3 are merged, and the feed HF 11 is further added. Then, it is introduced as the second reaction raw material 14, and the second product 25 mainly containing HFC125 and HCl is generated by the reaction according to the formula (2) or the formula (4).
[0014]
The first product 24 and the second product 25 are merged into a merged product 15. This combined product 15 is further combined with the recovery intermediate 23 from the purification step 5, and is introduced into the intermediate supply stage 26 of the distillation column 3 as a combined product 16.
In addition to the top and bottom of the distillation column 3, the distillation column 3 is provided with outlets at two side cut stages 27 and 28, which are lower than the supply stage 26 and have different stages.
The combined product 16 introduced from the supply stage 26 is distilled in the distillation column 3, and a column top fraction 17 rich in HFC125 and HCl is distilled from the top of the column. A first side cut 18 rich in HCFC 124 and HF is distilled from the upper stage 27 of the two side cut stages, and a second side cut 19 rich in HCFC 123 and HF is distilled from the lower stage 28. From the bottom, a distillation column bottom liquid 20 rich in unreacted PCE and HF is obtained.
[0015]
The first side cut 18 and the second side cut 19 are merged as described above, and a suitable amount of the raw material HF11 is added to this and introduced into the second reactor 2. The distillation column bottom liquid 20 is combined with the feed materials PCE 12 and HF 11 and circulated to the first reactor 1 as the first reaction material 13.
[0016]
The overhead fraction 17 obtained here contains HCl and a small amount of unreacted substances together with HFC125. The tower top fraction 17 is then introduced into the deoxidation tower 4, the HCl fraction 21 is removed from the top of the tower, and the deoxidation tower bottom liquid 22 obtained from the bottom is purified in a separate purification step 5. It is separated into HFC125, unreacted HF and a small amount of recovered intermediate 23. The recovered intermediate 23 is combined with the combined product 15 and circulated as a combined product 16 to the distillation column 3.
[0017]
According to the method of this embodiment, there is no need to add a product separation step for each reactor, the products of these reactors are distilled at once, and the reaction product containing HFC125 is converted into the overhead fraction. As the residue is separated into a side cut fraction rich in intermediates and a distillation column bottom liquid rich in unreacted raw materials, and each is circulated to the second reactor and the first reactor, continuous operation The process conditions are stable, process management is simplified, equipment is simplified, and the energy intensity is lower than that of the conventional manufacturing method.
[0018]
The main substances involved in the above process and their boiling points under atmospheric pressure are as follows.
PCE 121.0 ° C
HF 19.5 ° C
HCFC123 27.1 ° C
HCFC124 -12.0 ° C
HFC125-48.5 ° C
HCl-84.9 ° C
A fraction rich in HFC125 is taken out from the combined product 16 containing all of these, and the remaining unreacted materials are efficiently separated, and PCE is circulated to the first reactor, and HCFC123 and HCFC124 are circulated to the second reactor. Conditions are required. At this time, since HF serves as a raw material for both the first reaction and the second reaction, it may be circulated appropriately distributed to both.
[0019]
The present inventors have found that the lowest azeotropic relationship exists between HCFC123 and HF and between HCFC124 and HF, respectively, and have reached the present invention. These azeotropes are, for example, at a pressure of 4 kg / cm 2 G,
HCFC123 / HF azeotrope (A): molar ratio 78/22, azeotropic point 52 ° C
HCFC124 / HF azeotrope (B): molar ratio 67/33, azeotropic point 26 ° C
It is.
That is, if the gas phase of these azeotropes is taken out from the intermediate stage below the supply stage of the distillation column, this gas phase component is a highly pure HCFC 123 or a mixture of HCFC 124 and HF, which is suitable as the second reaction raw material. Can be used for
[0020]
Therefore, when a distillation column 3 is used and distillation is performed by supplying the combined product 16 as a gas, liquid, or gas / liquid mixed phase to an intermediate supply stage 26, a product system having a sufficiently low boiling point from the top of the column. And a column top fraction 17 rich in HFC125 (under a pressure of 4 kg / cm 2 G and about −13 ° C.) and HCl are distilled from the side cut stage below the feed stage 26 in the second reaction raw material system. A gas phase component of a certain HCFC123 / HF azeotrope (A) and a gas phase component of the HCFC124 / HF azeotrope (B) are distilled, and from the bottom, PCE and HF, which are the first reaction raw material system, are distilled. A rich distillation column bottom liquid can be taken out.
[0021]
At this time, since the azeotropic mixture (A) and the azeotropic mixture (B) have a relatively large difference in boiling point, if both gas phase components are simultaneously taken out from the same side cut stage, the gas-liquid in the distillation column It becomes difficult to maintain an equilibrium relationship, the operation is not stable, and the resolution of each component is reduced. Therefore, as shown in FIG. 1, the side cut stage is divided into two upper and lower stages (27 and 28), the gas phase component of the azeotrope (B) from the upper stage 27 as the first side cut 18 and the second stage 28 to the second stage. If the vapor phase component of the azeotrope (A) is taken out as the side cut 19, the vapor-liquid equilibrium relationship in the distillation column is stabilized and good separation can be achieved.
[0022]
The overhead fraction 17 separated by this distillation is rich in the reaction products HFC125 and HCl, but both of them have a sufficiently large boiling point difference and do not form an azeotrope. It can be easily separated by distilling HCl from the top of the column by distillation in the acid column 4. The first side cut 18 and the second side cut 19 are joined together and introduced into the second reactor 2 together with the additional HF 11 necessary for the second reaction, and the HFC 125 can be generated. Further, the distillation column bottom liquid 20 does not substantially contain an intermediate component and is rich in PCE and HF, and therefore can be recycled as a part of the reaction raw material of the first reactor 1.
[0023]
HCl, which is a reaction product, has a sufficiently large difference in boiling point from other components and does not form an azeotrope, so it may be removed using the deoxidation tower 4 prior to the above distillation. FIG. 2 shows an example of this method. In the process of FIG. 2, the combined product 16 containing the first product 24, the second product 25 and the recovered intermediate 23 is first introduced into the deoxidation tower 4, where the HCl fraction 21 and the deoxidation tower bottom are introduced. Separated into liquid 22. The deoxidation tower bottom liquid 22 contains PCE, HF, HCFC123, HCFC124, and HFC125. This deacidification tower bottom liquid 22 is then fed to a distillation tower 3 similar to that described with reference to FIG. 1, where a column top fraction 17 which is separated by distillation and is rich in HFC125, and mainly composed of HCFC 124 and HF. It is separated into one side cut 18, a second side cut 19 mainly composed of HCFC 123 and HF, and a distillation column bottom liquid 20 rich in PCE and HF.
[0024]
The column top fraction 17 obtained here is purified in a purification step 5 provided separately, the separated HF is recovered, and the recovery intermediate 23 is combined with the combined product 15 and circulated to the deoxidation tower 4. The The first side cut 18 and the second side cut 19 are merged and introduced into the second reactor 2 as the second reaction raw material 14 together with additional HF. Further, the distillation column bottom liquid 20 is circulated to the first reactor 1 as the first reaction raw material 13 together with new PCE and HF.
[0025]
In both cases, whether or not the separation of HCl is preceded, the internal pressure of the distillation column is preferably in the range of atmospheric pressure to 20 atmospheres. Although operation is possible even at a pressure lower than atmospheric pressure, the distillation needs to be performed in a low-temperature refrigerant system, which is not desirable in terms of equipment. On the other hand, if it exceeds 20 atm, a high pressure system is required, which is not preferable.
[0026]
The method for producing HFC125 of the present invention can be applied to any composition as long as it is a step of reacting PCE, HCFC123, HCFC124, or a mixture of any two or more of these with HF. As a cut, HCFC 123 and / or HCFC 124 can be extracted from the process for other purposes.
[0027]
【Example】
Next, the present invention will be described in more detail with reference to examples.
(Example 1)
HFC125 was manufactured from PCE and HF using the process shown in FIG.
The first reactor 1 was operated at a pressure of 4 kg / cm 2 G and a temperature of 300 ° C., and the HF / PCE molar ratio supplied thereto was 4. The second reactor 2 was operated at a pressure of 4 kg / cm 2 G and a temperature of 330 ° C., and the HF / intermediate molar ratio supplied thereto was 4. The distillation column 3 was operated at a pressure of 4 kg / cm 2 G. At this time, the temperature of each part of the distillation tower is
Tower top about 0 ℃
First side cut approx. 44 ° C
Second side cut approx. 68 ℃
Bottom about 89 ℃
Met.
Table 1 shows the flow rate of each component in each part of the process and the weight ratio (% by weight) of each component when the flow rate of the combined product 16 is 100 (kg / hr).
[0028]
[Table 1]
Figure 0003628349
[0029]
From the results in Table 1, the following facts are clear.
(1) The column top fraction 17 is rich in the reaction products HFC125 and HCl, and this is deHCled in the deacidification column 4, thereby dehydrating tower bottom liquid containing HFC125 at a concentration of 87.4% by weight. 22 is obtained.
(2) The first side cut 18 is composed of HCFC 124 and HF, and the second side cut 19 is composed of HCFC 123 and HF. Therefore, they can be combined and used suitably as a reaction raw material of the second reactor 2.
(3) Since the distillation column bottom liquid 20 does not contain an intermediate component, it can be suitably circulated as a reaction raw material of the first reactor 1.
(4) As described above, the HFC 125 can be produced smoothly by using only one distillation column and one deoxidation column.
[0030]
(Example 2)
HFC125 was manufactured from PCE and HF using the process shown in FIG.
The operating conditions of the first reactor 1 and the second reactor 2 were the same as in Example 1. The distillation tower 3 and the deoxidation tower 4 were operated at a pressure of 4 kg / cm 2 G.
At this time, the temperature of each part of the deoxidation tower 4 is
Tower top about -39 ° C
Bottom about 20 ℃,
The temperature of each part of the distillation column 3 is
Tower top about 8 ℃
First side cut approx. 44 ° C
Second side cut approx. 68 ℃
Bottom about 89 ℃
Met.
Table 2 shows the flow rate of each component in each part of the process when the flow rate of the combined product 16 is 100 (kg / hr) and the weight ratio (% by weight) of each component.
[0031]
[Table 2]
Figure 0003628349
[0032]
From the results in Table 2, the following facts are clear.
(1) The column top fraction 17 of the distillation column 3 does not contain HCl but contains the target product HFC125 at a concentration of 87.4% by weight.
(2) The first side cut 18 is composed of HCFC 124 and HF, and the second side cut 19 is composed of HCFC 123 and HF. Therefore, they can be combined and used suitably as a reaction raw material of the second reactor 2.
(3) Since the distillation column bottom liquid 20 does not contain an intermediate component, it can be suitably circulated as a reaction raw material of the first reactor 1.
(4) As described above, the HFC 125 can be produced smoothly by using only one distillation column and one deoxidation column.
[0033]
【The invention's effect】
As described above in detail, in the method for producing HFC125 of the present invention, the products obtained from the reactors of both the first reactor and the second reactor are joined, and at least a part of the joined product is obtained. Distillation is performed to distill a column top fraction rich in HFC125 from the top of the column, and at least a part of the remainder is separately circulated to the first reactor and the second reactor, respectively. Not only can it be simplified and process costs can be significantly reduced, but it also has many advantages such as reduced process losses and reduced energy intensity.
[Brief description of the drawings]
FIG. 1 is a process diagram showing one embodiment of the present invention.
FIG. 2 is a process diagram showing another embodiment of the present invention.
FIG. 3 is a process diagram showing an example of a conventional manufacturing process.
[Explanation of symbols]
1 ... 1st reactor,
2 ... second reactor,
3. Distillation tower,
4 ... Deoxidation tower,
17 ... Tower fraction,
20: Distillation tower bottom liquid,
27, 28 ... Side cut steps.

Claims (3)

テトラクロロエチレンとHFとを反応させて1,1,1,2,2−ペンタフルオロエタンを製造するに際して、
第1反応器で、テトラクロロエチレンとHFとを反応させて1,1−ジクロロ−2,2,2−トリフルオロエタンまたは1−クロロ−1,2,2,2−テトラフルオロエタンからなる中間体に富む第1生成物を生成させ、第2反応器で、この第1生成物の少なくとも一部とHFとを反応させて1,1,1,2,2−ペンタフルオロエタンを含む第2生成物を生成させ、
これら双方の反応器から得られる生成物を合流した合流生成物の少なくとも一部を脱酸塔に導入し、この脱酸塔の塔頂から、反応によって生成したHClを留出させて除去し、このボトムから得られる脱酸塔ボトム液を蒸留塔の中間の供給段に供給し、塔頂から1,1,1,2,2−ペンタフルオロエタンに富む塔頂留分を留出させると共に、この供給段より下段の段位が異なる2段のサイドカット段からそれぞれ中間体に富む第1サイドカットと第2サイドカットとをガスとして留出させてこれらの双方のサイドカットを合わせて第2反応器に循環させ、かつボトムから得られる蒸留塔ボトム液を第1反応器に循環させることを特徴とする1,1,1,2,2−ペンタフルオロエタンの製法。
In producing 1,1,1,2,2-pentafluoroethane by reacting tetrachloroethylene and HF,
In the first reactor, tetrachloroethylene and HF are reacted to form an intermediate comprising 1,1-dichloro-2,2,2-trifluoroethane or 1-chloro-1,2,2,2-tetrafluoroethane. A second product containing 1,1,1,2,2-pentafluoroethane by reacting at least a portion of the first product with HF in a second reactor. To generate
At least a part of the combined product obtained by joining the products obtained from both the reactors is introduced into a deoxidation tower, and HCl produced by the reaction is distilled off from the top of the deoxidation tower, and removed. The deacidification tower bottom liquid obtained from this bottom is supplied to the middle supply stage of the distillation tower, and a tower top fraction rich in 1,1,1,2,2-pentafluoroethane is distilled from the tower top, The first side cut and the second side cut, which are rich in intermediates, are distilled out as gas from the two side cut stages, which are different from the supply stage, and the second reaction is performed by combining both side cuts. A process for producing 1,1,1,2,2-pentafluoroethane, characterized in that the bottom liquid obtained from the bottom is circulated to the reactor and the bottom liquid obtained from the bottom is circulated to the first reactor.
蒸留塔ボトム液がテトラクロロエチレンとHFとを主成分とするものである請求項1に記載の1,1,1,2,2−ペンタフルオロエタンの製法。The process for producing 1,1,1,2,2-pentafluoroethane according to claim 1, wherein the bottom liquid of the distillation tower is mainly composed of tetrachloroethylene and HF. 蒸留塔内の圧力を大気圧ないし20気圧の範囲内とする請求項1ないし請求項のいずれか1項に記載の1,1,1,2,2−ペンタフルオロエタンの製法。The method for producing 1,1,1,2,2-pentafluoroethane according to any one of claims 1 to 2 , wherein the pressure in the distillation column is in the range of atmospheric pressure to 20 atmospheres.
JP11567194A 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane Expired - Lifetime JP3628349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11567194A JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11567194A JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Publications (2)

Publication Number Publication Date
JPH07324044A JPH07324044A (en) 1995-12-12
JP3628349B2 true JP3628349B2 (en) 2005-03-09

Family

ID=14668415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11567194A Expired - Lifetime JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Country Status (1)

Country Link
JP (1) JP3628349B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3853397B2 (en) * 1995-05-11 2006-12-06 イネオス フラウアー ホールデイングス リミテッド Process for producing pentafluoroethane and composition suitable for conversion to pentafluoroethane
JP3496708B2 (en) * 1997-10-09 2004-02-16 ダイキン工業株式会社 Method for producing 1,1,1,2,2-pentafluoroethane
AU2001271524A1 (en) * 2000-06-30 2002-01-14 Honeywell International, Inc. Process for the preparation of pentafluoroethane
JP2003313146A (en) * 2002-04-19 2003-11-06 Showa Denko Kk Method for producing hydrofluorocarbon
JP2003286207A (en) * 2002-03-26 2003-10-10 Showa Denko Kk Method for producing hydrofluorocarbon
CN100400484C (en) * 2001-07-06 2008-07-09 昭和电工株式会社 Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
WO2003014047A1 (en) * 2001-08-06 2003-02-20 Showa Denko K. K. Production and use of hexafluoroethane
JP2003055277A (en) * 2001-08-16 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
JP5000111B2 (en) * 2005-08-24 2012-08-15 昭和電工株式会社 Method for producing pentafluoroethane
GB0525699D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525701D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525700D0 (en) 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process
GB0525702D0 (en) * 2005-12-17 2006-01-25 Ineos Fluor Holdings Ltd Process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0687660B2 (en) * 1993-03-05 2006-05-17 Daikin Industries, Limited Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane

Also Published As

Publication number Publication date
JPH07324044A (en) 1995-12-12

Similar Documents

Publication Publication Date Title
JP5788380B2 (en) Separation of R-1233 from hydrogen fluoride
JP2815914B2 (en) Method for separating HF by phase separation and distillation
EP0354697B1 (en) Process for the separation of hf via azeotropic distillation
JP5049320B2 (en) Process for purification of hexafluoroethane product
JP2680945B2 (en) Method for separating 1,1,1,2-tetrafluoroethane
EP0734366B1 (en) Production of pentafluoroethane
JP3628349B2 (en) Process for producing 1,1,1,2,2-pentafluoroethane
EP0395793B1 (en) Process for the separation of 1,1-dichloro-1-fluoroethane and 1,1,1,3,3-pentafluorobutane
JPH02295938A (en) Method for separating hydrogen fluoride, 1,1-dichloro- 1-fluoroethane, and 1-chloro-1,1-difluorobutane from their liquid mixture
US20240050792A1 (en) Azeotropic or azeotropic-like composition comprising hydrogen fluoride and 1,1,2-trifluoroethane, 1-chloro-2,2-difluoroethane, or 1,2-dichloro-1-fluoroethane
CN102992270A (en) Methods of purifying hydrogen fluoride
JP3496708B2 (en) Method for producing 1,1,1,2,2-pentafluoroethane
JPH05178768A (en) Method for separating 1,1,1,2-tetrafluoroethane and hydrogen fluoride
JP3163831B2 (en) An azeotropic mixture of 1,1-difluoroethane and hydrogen fluoride and a method for recovering 1,1-difluoroethane or hydrogen fluoride
JP3816148B2 (en) Method for producing hydrofluorocarbons
JP2661441B2 (en) Method for producing 1,1,1-trifluoro-2-chloroethane and / or 1,1,1,2-tetrafluoroethane
JPH10324650A (en) Production of pentafluoroethane
JPH05279276A (en) Production of 1,1,1,2-tetrafluoroethane
JP2003313146A (en) Method for producing hydrofluorocarbon

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term