JPH07324044A - Production of 1,1,1,2,2-pentafluoroethane - Google Patents

Production of 1,1,1,2,2-pentafluoroethane

Info

Publication number
JPH07324044A
JPH07324044A JP6115671A JP11567194A JPH07324044A JP H07324044 A JPH07324044 A JP H07324044A JP 6115671 A JP6115671 A JP 6115671A JP 11567194 A JP11567194 A JP 11567194A JP H07324044 A JPH07324044 A JP H07324044A
Authority
JP
Japan
Prior art keywords
pentafluoroethane
column
reactor
distillation column
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6115671A
Other languages
Japanese (ja)
Other versions
JP3628349B2 (en
Inventor
Hiromoto Ono
博基 大野
Tetsuo Nakajo
哲夫 中條
Akira Miyamura
亮 宮村
Toshio Oi
敏夫 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP11567194A priority Critical patent/JP3628349B2/en
Publication of JPH07324044A publication Critical patent/JPH07324044A/en
Application granted granted Critical
Publication of JP3628349B2 publication Critical patent/JP3628349B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the compound through a simplified process at a markedly reduced cost by reaction between tetrachloroethylene and HF as feedstocks. CONSTITUTION:A reaction between tetrachloroethylene and HF is conducted in a 1st reaction vessel 1 to produce a chlorofluoroethane intermediate, which is then reacted with HF in a 2nd reaction vessel 2 to form 1,1,1,2,2- pentafluoroethane; the products in both the reaction vessels are joined and fed into a distillation column 3, and a 1,1,1,2,2-pentafluoroethane-rich overhead product 17 is delivered via the column top, while the vapor fractions from two side cut tiers 27, 28 are circulated to the 2nd reaction vessel 2 and bottoms 20 are circulated to the 1st reaction vessel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は1,1,1,2,2−ペ
ンタフルオロエタン(CF3−CHF2、以下「HFC1
25」という)の製法に関するものであり、特にテトラ
クロロエチレンとHFとを反応させて得られる生成物か
ら、簡略化された工程で効率よくHFC125を製造す
る方法に関する。
The present invention relates to 1,1,1,2,2-pentafluoroethane (CF 3 --CHF 2 , hereinafter referred to as "HFC1".
25 "), and particularly to a method for efficiently producing HFC125 in a simplified process from a product obtained by reacting tetrachloroethylene with HF.

【0002】[0002]

【従来の技術】近年になって、クロロフルオロカーボン
類による成層圏のオゾン層破壊が深刻な問題として提起
され、その使用が国際的に禁止されるに至った。更に、
クロロジフルオロメタン(CHClF2、通称「HCF
C22」)などのハイドロクロロフルオロカーボン類
も、クロロフルオロカーボン類に比べればオゾン破壊係
数はきわめて小さいものの、使用量が増大すればオゾン
層を破壊する可能性も高まることから、その生産及び使
用が規制の対象とされている。このため、オゾン層に影
響を及ぼすことなくHCFC22使用の空調装置などに
そのまま置換して使用できるHCFC22代替品の開発
が国際的に強く求められている。ハイドロフルオロカー
ボン類はオゾン破壊係数がゼロであり、地球温暖化係数
も小さいので、規制の対象とされない。そこでこれらの
化合物の中からHCFC22代替品を見いだすことが望
まれているが、単一成分では対応が困難であり、複数成
分の混合物でこの要望に対応する検討が進められてい
る。この内の有望な成分の一つとしてHFC125があ
る。
2. Description of the Related Art In recent years, ozone layer depletion in the stratosphere by chlorofluorocarbons has been raised as a serious problem, and its use has been internationally prohibited. Furthermore,
Chlorodifluoromethane (CHClF 2 , commonly known as “HCF
Hydrochlorofluorocarbons such as C22 ") have an extremely low ozone depletion potential compared to chlorofluorocarbons, but their production and use are regulated because the possibility of depleting the ozone layer increases as the amount used increases. It is targeted. Therefore, there is a strong international demand for the development of an HCFC22 substitute that can be used as it is by substituting it for an air conditioner using HCFC22 without affecting the ozone layer. Hydrofluorocarbons have a zero ozone depletion potential and a low global warming potential, so they are not subject to regulation. Therefore, it is desired to find a substitute for HCFC22 from these compounds, but it is difficult to meet with a single component, and a mixture of a plurality of components is being investigated to meet this demand. HFC125 is one of the promising components.

【0003】一般にHFC125は、テトラクロロエチ
レン(CCl2=CCl2、以下「PCE」という)とH
Fとから、気相2段反応によって製造される。すなわ
ち、第1反応でまず下記式(1)のように、PCEとH
Fとから主として1,1−ジクロロ−2,2,2−トリ
フルオロエタン(以下、「HCFC123」という)を
含む生成物を得、次いで第2反応で下記式(2)のよう
に、HCFC123とHFとから主として目的物のHF
C125を含む生成物を得る。
Generally, HFC125 contains tetrachloroethylene (CCl 2 = CCl 2 , hereinafter referred to as “PCE”) and H.
It is produced from F with a gas phase two-step reaction. That is, in the first reaction, as shown in the following formula (1), PCE and H
A product mainly containing 1,1-dichloro-2,2,2-trifluoroethane (hereinafter, referred to as “HCFC123”) was obtained from F and then, in the second reaction, as shown by the following formula (2), HCFC123 and HF and mainly the target HF
A product containing C125 is obtained.

【0004】[0004]

【化1】 [Chemical 1]

【0005】ただし、上記のそれぞれの反応と平行し
て、それぞれ下式(3)および(4)で示される反応も
進行することが知られている。すなわち、式(3)に示
される第1反応においてPCEとHFとから1−クロロ
−1,2,2,2−テトラフルオロエタン(以下、「H
CFC124」という)が生成し、これが第2反応にお
いて式(4)のように、更にHFと反応して、結局は目
的物のHFC125となる。
However, it is known that the reactions represented by the following formulas (3) and (4) also proceed in parallel with the above respective reactions. That is, in the first reaction represented by the formula (3), 1-chloro-1,2,2,2-tetrafluoroethane (hereinafter, referred to as “H
CFC124 ”) is generated, and this is further reacted with HF as in the formula (4) in the second reaction, and finally becomes the target HFC125.

【0006】[0006]

【化2】 [Chemical 2]

【0007】HCFC123およびHCFC124はい
ずれもHFC125生成反応における中間体であるか
ら、以下、これらのいずれか一方または双方を総称して
「中間体」という。式(1)および式(3)で表される
中間体を生成する第1反応は、例えば圧力4kg/cm
2G、温度300℃、HF/PCEモル比4の条件下に
進行し、式(2)および式(4)で表されるHFC12
5を生成する第2反応は、例えば圧力4kg/cm
2G、温度330℃、HF/HCFC123モル比4〜
8の条件下に進行するので、双方の反応工程を合体して
1段反応とすることはできない。
Since both HCFC123 and HCFC124 are intermediates in the HFC125 producing reaction, one or both of them will be generically referred to as "intermediate" hereinafter. The first reaction for producing the intermediates represented by the formulas (1) and (3) is, for example, a pressure of 4 kg / cm.
HFC12 represented by formula (2) and formula (4) under the conditions of 2 G, temperature 300 ° C., and HF / PCE molar ratio of 4
The second reaction producing 5 is, for example, a pressure of 4 kg / cm
2 G, temperature 330 ° C., HF / HCFC123 molar ratio 4 to
Since the reaction proceeds under the condition of 8, it is not possible to combine both reaction steps into a one-step reaction.

【0008】そこで、従来の製造工程は例えば図3に示
すように、原料のPCEとHFと、および第2蒸留塔3
8から回収されるPCEとHFとに富む回収留分40と
の合流物30を第1反応器31に導入して反応させ、こ
こで生成した中間体生成物を第1脱酸塔32に導入して
この塔頂から副生物であるHClを除去し、中間体に富
むボトム液33を、第2蒸留塔38から回収された中間
体とHFとに富む循環留分39と合流して第2反応器3
4に導入し、ここで再びHFと反応させ、生成した生成
物を第2脱酸塔35に導入して塔頂からHClを除去
し、このボトム液36を第1蒸留塔37に導入して塔頂
からHFC125に富む留分を留出させ、ボトム液は第
2蒸留塔38に導入して塔頂留分として中間体とHFと
に富む循環留分39を得、またボトム液としてPCEと
HFとに富む回収留分40を得、循環留分39は第1脱
酸塔ボトム液33と共に第2反応器34に循環し、回収
留分40は原料と共に第1反応器31に循環していた。
Therefore, in the conventional manufacturing process, for example, as shown in FIG. 3, raw materials PCE and HF and the second distillation column 3 are used.
The combined product 30 of PCE and the recovered distillate 40 rich in HF, which is recovered from No. 8, is introduced into the first reactor 31 and reacted therewith, and the intermediate product produced here is introduced into the first deoxidation column 32. Then, HCl, which is a by-product, is removed from the top of this column, and the bottom liquid 33 rich in the intermediate is combined with the intermediate recovered in the second distillation column 38 and the circulating distillate 39 rich in HF to produce the second Reactor 3
4, and then reacted with HF again, the produced product is introduced into the second deoxidation column 35 to remove HCl from the top of the column, and the bottom liquid 36 is introduced into the first distillation column 37. A distillate rich in HFC125 is distilled off from the top of the column, a bottom liquid is introduced into the second distillation column 38 to obtain a circulating distillate 39 rich in the intermediate and HF as a top distillate, and PCE as a bottom liquid. A recovered fraction 40 rich in HF was obtained, a circulating fraction 39 was circulated to the second reactor 34 together with the first deoxidizer bottom liquid 33, and a recovered fraction 40 was circulated to the first reactor 31 together with the raw materials. It was

【0009】[0009]

【発明が解決しようとする課題】しかしこの製造工程は
長く煩雑であり、最低限でも蒸留塔2本と脱酸塔2本と
を要するばかりでなく、エネルギー効率が悪く、工程経
費が嵩む点が問題であった。本発明は上記の課題を解決
するためになされたものであり、従ってその目的は、P
CEとHFとから、簡単な装置で効率よくHFC125
を製造する方法を提供することにある。
However, this manufacturing process is long and complicated, not only requires at least two distillation columns and two deoxidation columns, but also has a low energy efficiency and a high process cost. It was a problem. The present invention has been made to solve the above problems, and therefore its purpose is to
Efficient and simple HFC125 from CE and HF
It is to provide a method of manufacturing.

【0010】[0010]

【課題を解決するための手段】上記の課題は、反応を第
1反応器と第2反応器とに分けて行い、第1反応器では
PCEとHFとを反応させて中間体を含む第1生成物を
生成させ、第2反応器ではこの第1生成物の少なくとも
一部とHFとを反応させてHFC125を含む第2生成
物を生成させ、これら双方の反応器から得られる生成物
を合流した合流生成物の少なくとも一部を蒸留塔を用い
て蒸留し、塔頂からHFC125に富む塔頂留分を留出
させると共に、残部の少なくとも一部を上記のそれぞれ
の反応器に分別して循環させる方法により解決できる。
[Means for Solving the Problems] The above-mentioned problems are solved by dividing the reaction into a first reactor and a second reactor, and in the first reactor, PCE and HF are reacted to form a first reactor containing an intermediate. A product is produced, and at least a part of the first product is reacted with HF in the second reactor to produce a second product containing HFC125, and the products obtained from both reactors are combined. At least a part of the combined product thus obtained is distilled using a distillation column to distill a HFC125-rich overhead fraction from the top of the column, and at least a part of the remainder is circulated separately in each of the above reactors. It can be solved by the method.

【0011】上記において、双方の反応器から得られる
生成物を合流した合流生成物は、その少なくとも一部を
蒸留塔の中間の供給段に供給し、この供給段より下段の
段位が異なる2段のサイドカット段からそれぞれ中間体
に富む第1サイドカットと第2サイドカットとをガスと
して留出させてこれらの双方のサイドカットを合わせて
第2反応器に循環させ、ボトムからの蒸留塔ボトム液は
第1反応器に循環させることが好ましい。上記の反応に
よって生成したHClは、合流生成物を蒸留した後に蒸
留塔の塔頂留分を脱酸塔に導入してその塔頂留分として
除去するか、または合流生成物を蒸留塔に供給するに先
だって脱酸塔に導入してその塔頂留分として除去するこ
とができる。後者の場合は、この脱酸塔のボトム液を蒸
留塔に供給することになる。
In the above, at least a part of the combined product obtained by combining the products obtained from both reactors is supplied to an intermediate feed stage of the distillation column, and two stages different in stage below the feed stage are provided. The first side cut and the second side cut, which are rich in intermediates, are distilled out as gas from the side cut stage, and both side cuts are combined and circulated to the second reactor, and the distillation column bottom from the bottom. The liquid is preferably circulated in the first reactor. The HCl produced by the above reaction is obtained by distilling the combined product and then introducing the overhead fraction of the distillation column into the deoxidizing column to remove it as the overhead fraction, or supplying the combined product to the distillation column. Prior to this, it can be introduced into the deoxidation column and removed as the overhead fraction. In the latter case, the bottom liquid of the deoxidizing column will be supplied to the distillation column.

【0012】次に本発明を図面を用いて具体的に説明す
る。図1は本発明の好ましい一実施例を示している。図
1において、まず供給原料のPCE12とHF11とが
第1反応器1に気相で導入される。第1反応器1では、
上記の式(1)または式(3)に従って主としてHCF
C123とHCFC124とからなる中間体、およびH
Clを含む第1生成物24が生成する。
Next, the present invention will be specifically described with reference to the drawings. FIG. 1 shows a preferred embodiment of the present invention. In FIG. 1, PCE12 and HF11 as feed materials are first introduced into the first reactor 1 in a gas phase. In the first reactor 1,
According to the above formula (1) or formula (3), mainly HCF
Intermediate consisting of C123 and HCFC124, and H
A first product 24 containing Cl is produced.

【0013】一方、第2反応器2では、第1生成物24
の一部である蒸留塔3からの中間体に富む第1サイドカ
ット18および第2サイドカット19が合流され、更に
供給原料のHF11が加えられて第2反応原料14とし
て導入され、式(2)または式(4)に従う反応により
主としてHFC125とHClとを含む第2生成物25
が生成する。
On the other hand, in the second reactor 2, the first product 24
The first side-cut 18 and the second side-cut 19 rich in the intermediate from the distillation column 3, which is a part of the above, are combined, and HF11 as a feed material is further added and introduced as the second reaction material 14, and the formula (2 ) Or a second product 25 mainly containing HFC125 and HCl by the reaction according to formula (4)
Is generated.

【0014】第1生成物24と第2生成物25とは合流
され合流生成物15とされる。この合流生成物15は更
に、精製工程5からの回収中間体23とも合流され、合
流物16として、蒸留塔3の中間の供給段26に導入さ
れる。この蒸留塔3は、塔頂およびボトムの他に、供給
段26より下段の、段位が異なる2段のサイドカット段
27、28に留出口が設けられている。供給段26から
導入された合流物16はこの蒸留塔3で蒸留され、塔頂
からはHFC125とHClとに富んだ塔頂留分17が
留出する。2段のサイドカット段の上位段27からはH
CFC124とHFとに富んだ第1サイドカット18が
留出し、下位段28からはHCFC123とHFとに富
んだ第2サイドカット19が留出する。またボトムから
は未反応のPCEとHFとに富んだ蒸留塔ボトム液20
が得られる。
The first product 24 and the second product 25 are combined to form a combined product 15. The combined product 15 is further combined with the recovery intermediate 23 from the refining step 5 and introduced as a combined product 16 into the intermediate supply stage 26 of the distillation column 3. In addition to the top and bottom of this distillation column 3, distillation outlets are provided in two side-cut stages 27 and 28 below the supply stage 26 and having different stages. The combined product 16 introduced from the supply stage 26 is distilled in this distillation column 3, and a column top fraction 17 rich in HFC125 and HCl is distilled from the column top. H from the upper stage 27 of the two side cut stages
The first side cut 18 rich in CFC124 and HF is distilled, and the second side cut 19 rich in HCFC123 and HF is distilled from the lower stage 28. Further, from the bottom, the bottom liquid 20 of the distillation column rich in unreacted PCE and HF
Is obtained.

【0015】第1サイドカット18と第2サイドカット
19とは前記のように合流され、これに反応好適量の原
料HF11が追加されて第2反応器2に導入される。ま
た蒸留塔ボトム液20は供給原料のPCE12およびH
F11と合流され、第1反応原料13として第1反応器
1に循環される。
The first side cut 18 and the second side cut 19 are merged as described above, and a suitable reaction amount of the raw material HF11 is added to this and introduced into the second reactor 2. The bottom liquid 20 of the distillation column is composed of PCE12 and H
It is merged with F11 and circulated in the first reactor 1 as the first reaction raw material 13.

【0016】ここに得られた塔頂留分17は、HFC1
25と共にHClおよび少量の未反応物を含む。塔頂留
分17は、次に脱酸塔4に導入され、塔頂からHCl留
分21が除去され、そのボトムから得られる脱酸塔ボト
ム液22は別途設けられた精製工程5において、精製H
FC125と未反応HFと少量の回収中間体23とに分
離される。この回収中間体23は、合流生成物15と合
わされて、合流物16として蒸留塔3に循環される。
The overhead fraction 17 obtained here is HFC1
25 with HCl and a small amount of unreacted material. The overhead fraction 17 is then introduced into the deoxidizing column 4, the HCl fraction 21 is removed from the overhead, and the deoxidizing column bottom liquid 22 obtained from the bottom is purified in a purification step 5 provided separately. H
FC125, unreacted HF, and a small amount of recovered intermediate 23 are separated. The recovery intermediate 23 is combined with the combined product 15 and circulated as a combined product 16 in the distillation column 3.

【0017】この実施例の方法に従えば、各反応器ごと
に生成物の分離工程を付加する必要がなく、これら反応
器の生成物が一括して蒸留され、HFC125を含む反
応生成物が塔頂留分として回収されると共に残分が中間
体に富むサイドカット留分と未反応原料に富む蒸留塔ボ
トム液とに分離され、それぞれが第2反応器および第1
反応器に循環されるので、連続運転における工程条件が
安定し、工程管理が簡単になり、設備が単純化され、ま
たエネルギー原単位も従来の製法に比して低くなる。
According to the method of this embodiment, it is not necessary to add a product separation step to each reactor, the products of these reactors are collectively distilled, and the reaction products containing HFC125 are removed from the column. It is recovered as a top fraction, and the residue is separated into a side-cut fraction rich in intermediates and a bottom liquid of a distillation column rich in unreacted raw materials, which are respectively the second reactor and the first reactor.
Since it is circulated in the reactor, the process conditions in continuous operation are stable, the process control is simple, the equipment is simplified, and the energy consumption rate is lower than in the conventional manufacturing method.

【0018】上記の工程に関与する主要な物質とその大
気圧下における沸点は以下の通りである。 PCE 121.0℃ HF 19.5℃ HCFC123 27.1℃ HCFC124 −12.0℃ HFC125 −48.5℃ HCl −84.9℃ これらの全てを含む合流物16から、HFC125に富
む留分を取り出すと共に、残余の未反応物を効率よく分
離してPCEは第1反応器に、HCFC123とHCF
C124とは第2反応器に循環させる条件が求められ
る。この際、HFは第1反応および第2反応のいずれの
原料ともなるので、双方に適宜配分して循環されてよ
い。
The main substances involved in the above steps and their boiling points under atmospheric pressure are as follows. PCE 121.0 ° C HF 19.5 ° C HCFC123 27.1 ° C HCFC124 -12.0 ° C HFC125 -48.5 ° C HCl -84.9 ° C The HFC125-rich fraction is removed from the confluent 16 containing all of these. At the same time, the residual unreacted material was efficiently separated, and PCE was fed to the first reactor, where HCFC123 and HCF
C124 is required to be circulated in the second reactor. At this time, since HF serves as a raw material for both the first reaction and the second reaction, it may be appropriately distributed to both and circulated.

【0019】本発明らは、HCFC123とHFとの
間、およびHCFC124とHFとの間にそれぞれ最低
共沸関係が存在することを見いだし、本発明に到達し
た。これらの共沸混合物は例えば圧力4kg/cm2
において、 HCFC123/HF共沸混合物(A):モル比78/
22、共沸点52℃ HCFC124/HF共沸混合物(B):モル比67/
33、共沸点26℃ である。すなわち、蒸留塔の供給段より下段の中間段か
らこれら共沸混合物の気相を取り出せば、この気相成分
は純度の高いHCFC123またはHCFC124とH
Fとの混合物であるから、第2反応原料として好適に使
用できる。
The present inventors have found that there is a minimum azeotropic relationship between HCFC123 and HF, and between HCFC124 and HF, respectively, and arrived at the present invention. These azeotropes have a pressure of, for example, 4 kg / cm 2 G
At an HCFC123 / HF azeotrope (A): molar ratio of 78 /
22, azeotropic point 52 ° C. HCFC124 / HF azeotrope (B): molar ratio 67 /
33, azeotropic point 26 ° C. That is, when the vapor phase of these azeotropes is taken out from the intermediate stage below the feed stage of the distillation column, this vapor phase component is HCFC123 or HCFC124 and H with high purity.
Since it is a mixture with F, it can be suitably used as the second reaction raw material.

【0020】そこで、1本の蒸留塔3を用い、その中間
の供給段26にガスまたは液体またはガス/液混相とし
て合流物16を供給して蒸留を行うとき、塔頂から沸点
が十分に低い生成物系であるHFC125(圧力4kg
/cm2G下で約−13℃)とHClとに富む塔頂留分
17を留出させ、供給段26より下段のサイドカット段
からそれぞれ、第2反応原料系であるHCFC123/
HF共沸混合物(A)の気相成分とHCFC124/H
F共沸混合物(B)の気相成分とを留出させ、かつボト
ムからは第1反応原料系であるPCEとHFとに富む蒸
留塔ボトム液を取り出すことができる。
Therefore, when one distillation column 3 is used and the combined product 16 is fed as a gas or liquid or a gas / liquid mixed phase to the intermediate feed stage 26, the boiling point is sufficiently low from the top of the column. Product system HFC125 (pressure 4 kg
(About −13 ° C. under C / cm 2 G) and an overhead fraction 17 rich in HCl are distilled off, and HCFC123 / which is a second reaction raw material system is fed from the side cut stages below the feed stage 26, respectively.
Gas phase component of HF azeotrope (A) and HCFC124 / H
The vapor phase component of the F azeotropic mixture (B) can be distilled off, and the bottom liquid of the distillation column rich in PCE and HF which is the first reaction raw material system can be taken out from the bottom.

【0021】このとき、共沸混合物(A)と共沸混合物
(B)とは沸点差が比較的大きいので、同一のサイドカ
ット段から双方の気相成分を同時に取り出そうとする
と、蒸留塔内での気液平衡関係の維持が困難となり、操
作が安定せず各成分の分離能が低下する。そこで図1に
示すように、サイドカット段を上下2段(27および2
8)に分け、上段27から第1サイドカット18として
共沸混合物(B)の気相成分を、また下段28から第2
サイドカット19として共沸混合物(A)の気相成分を
取り出せば、蒸留塔内の気液平衡関係が安定して良好な
分離が達成できる。
At this time, since the difference in boiling points between the azeotropic mixture (A) and the azeotropic mixture (B) is relatively large, if both gas phase components are simultaneously taken out from the same side-cut stage, they will be removed in the distillation column. It becomes difficult to maintain the gas-liquid equilibrium relationship, and the operation is unstable and the separation ability of each component decreases. Therefore, as shown in FIG. 1, the side cut stages are divided into two upper and lower stages (27 and 2).
8), the upper side 27 is used as the first side cut 18 for the gas phase component of the azeotrope (B), and the lower side 28 is used as the second side cut 18.
If the gas phase component of the azeotropic mixture (A) is taken out as the side cut 19, the gas-liquid equilibrium relationship in the distillation column is stabilized and good separation can be achieved.

【0022】この蒸留により分離された塔頂留分17
は、反応生成物であるHFC125とHClとに富むも
のであるが、この両者は沸点差が十分に大きく、かつ共
沸混合物を形成しないから、後工程の脱酸塔4における
蒸留で塔頂からHClを留出させることによって容易に
分離することができる。第1サイドカット18と第2サ
イドカット19とは合流し、第2反応に必要な追加のH
F11と共に第2反応器2に導入し、HFC125の生
成反応を行わせることができる。また蒸留塔ボトム液2
0は実質的に中間体成分を含まず、PCEとHFとに富
むものであるから、第1反応器1の反応原料の一部とし
て循環使用することができる。
The overhead fraction 17 separated by this distillation
Is rich in HFC125 and HCl which are reaction products. However, since both have a sufficiently large boiling point difference and do not form an azeotrope, HCl is removed from the top of the column by distillation in the deoxidation column 4 in the subsequent step. It can be easily separated by distilling. The first side cuts 18 and the second side cuts 19 join together, and the additional H required for the second reaction is added.
It can be introduced into the second reactor 2 together with F11 to cause a reaction for producing HFC125. Distillation tower bottom liquid 2
Since 0 contains substantially no intermediate component and is rich in PCE and HF, it can be recycled and used as a part of the reaction raw material of the first reactor 1.

【0023】反応生成物であるHClは、他の成分との
沸点差が十分に大きく、かつ共沸混合物を形成しないの
で、上記の蒸留に先立って脱酸塔4を用いて除去しても
よい。図2はこの方法の一例を示している。図2の工程
においては、第1生成物24と第2生成物25と回収中
間体23とを含む合流物16がまず脱酸塔4に導入さ
れ、ここでHCl留分21と脱酸塔ボトム液22とに分
離される。この脱酸塔ボトム液22は、PCE、HF、
HCFC123、HCFC124、およびHFC125
を含んでいる。この脱酸塔ボトム液22が次に図1で説
明したものと同様な蒸留塔3に供給され、ここで蒸留分
離されてHFC125に富む塔頂留分17と、主として
HCFC124とHFとからなる第1サイドカット18
と、主としてHCFC123とHFとからなる第2サイ
ドカット19と、PCEとHFとに富む蒸留塔ボトム液
20とに分離される。
Since the reaction product HCl has a sufficiently large boiling point difference from other components and does not form an azeotropic mixture, it may be removed using the deoxidation column 4 prior to the above-mentioned distillation. . FIG. 2 shows an example of this method. In the process of FIG. 2, the combined product 16 including the first product 24, the second product 25, and the recovery intermediate 23 is first introduced into the deoxidizing tower 4, where the HCl fraction 21 and the deoxidizing tower bottom are provided. It is separated into liquid 22. The deoxidizing tower bottom liquid 22 contains PCE, HF,
HCFC123, HCFC124, and HFC125
Is included. This deoxidizer bottoms liquid 22 is then fed to a distillation column 3 similar to that described in FIG. 1, where it is distilled and separated to a top fraction 17 which is rich in HFC125 and mainly composed of HCFC124 and HF. 1 side cut 18
And a second side cut 19 mainly composed of HCFC 123 and HF, and a distillation column bottom liquid 20 rich in PCE and HF.

【0024】ここに得られた塔頂留分17は、別途設け
られた精製工程5において精製され、分離されたHFは
回収され、回収中間体23は合流生成物15と合流され
脱酸塔4に循環される。第1サイドカット18と第2サ
イドカット19とは合流されて追加のHFと共に第2反
応原料14として第2反応器2に導入される。また蒸留
塔ボトム液20は新たなPCEおよびHFと共に第1反
応原料13として第1反応器1に循環される。
The overhead fraction 17 obtained here is refined in a purification step 5 provided separately, the separated HF is recovered, the recovered intermediate 23 is combined with the combined product 15, and the deoxidation tower 4 is obtained. Is circulated to. The first side cut 18 and the second side cut 19 are merged and introduced into the second reactor 2 as the second reaction raw material 14 together with additional HF. The bottom liquid 20 of the distillation column is circulated to the first reactor 1 as the first reaction raw material 13 together with new PCE and HF.

【0025】HClの分離を先行させる場合もさせない
場合も、いずれの場合にも蒸留塔の内圧は大気圧ないし
20気圧の範囲内とすることが好ましい。大気圧未満で
も運転は可能であるが、蒸留を低温冷媒系で行う必要が
あり設備上望ましくない。また20気圧を越えると高圧
系の設備を要することとなり好ましくない。
In both cases, with or without separation of HCl in advance, the internal pressure of the distillation column is preferably in the range of atmospheric pressure to 20 atm. Operation is possible even below atmospheric pressure, but distillation is required to be performed in a low-temperature refrigerant system, which is not desirable in terms of equipment. On the other hand, if the pressure exceeds 20 atm, high pressure equipment is required, which is not preferable.

【0026】本発明のHFC125の製法は、PCE、
HCFC123、HCFC124、またはこれらのいず
れか2種以上の混合物をHFと反応させる工程であれ
ば、如何なる組成のものにも適用が可能であり、また上
記のサイドカットとして、HCFC123またはHCF
C124またはその双方を他の目的でそれぞれ工程から
抜き出すことも可能である。
The production method of HFC125 of the present invention is PCE,
As long as it is a step of reacting HCFC123, HCFC124, or a mixture of any two or more of these with HF, it can be applied to any composition, and HCFC123 or HCF can be used as the above side cut.
It is also possible to withdraw C124, or both, from the process for other purposes.

【0027】[0027]

【実施例】次に実施例によって本発明をさらに詳しく説
明する。 (実施例1)図1に示す工程を用い、PCEとHFとか
らHFC125を製造した。第1反応器1は圧力4kg
/cm2G、温度300℃で運転し、これに供給するH
F/PCEモル比は4とした。第2反応器2は圧力4k
g/cm2G、温度330℃で運転し、これに供給する
HF/中間体モル比は4とした。蒸留塔3は圧力4kg
/cm2Gで運転した。このとき、蒸留塔各部の温度
は、 塔頂 約 0℃ 第一サイドカット 約44℃ 第二サイドカット 約68℃ ボトム 約89℃ であった。合流物16の流量を100(kg/hr)と
したときの工程各部における各成分の流量、およびその
各成分の重量割合(重量%)を表1に示す。
EXAMPLES The present invention will be described in more detail by way of examples. Example 1 HFC125 was produced from PCE and HF using the process shown in FIG. The pressure in the first reactor 1 is 4 kg
/ Cm 2 G, operating at a temperature of 300 ° C, and supplying H to this
The F / PCE molar ratio was 4. 2nd reactor 2 pressure 4k
It was operated at g / cm 2 G and a temperature of 330 ° C., and the HF / intermediate molar ratio supplied thereto was 4. Distillation column 3 pressure is 4 kg
It was operated at / cm 2 G. At this time, the temperature of each part of the distillation column was about 0 ° C at the top of the column, about 44 ° C at the first side cut, about 68 ° C at the second side cut, and about 89 ° C at the bottom. Table 1 shows the flow rate of each component in each step of the process and the weight ratio (wt%) of each component when the flow rate of the combined product 16 is 100 (kg / hr).

【0028】[0028]

【表1】 [Table 1]

【0029】表1の結果から、以下の事実が明かであ
る。 (1)塔頂留分17は反応生成物であるHFC125と
HClとに富み、これを脱酸塔4で脱HClすることに
よって、HFC125を87.4重量%の濃度で含む脱
酸塔ボトム液22が得られる。 (2)第1サイドカット18はHCFC124とHFと
からなり、また第2サイドカット19はHCFC123
とHFとからなっている。従ってこれらは合流して第2
反応器2の反応原料として好適に使用できる。 (3)蒸留塔ボトム液20は中間体成分を含まないから
第1反応器1の反応原料として好適に循環できる。 (4)以上により、蒸留塔と脱酸塔とを各1本用いるの
みで、円滑にHFC125を製造することができる。
From the results of Table 1, the following facts are clear. (1) The overhead fraction 17 is rich in HFC125 and HCl which are reaction products, and is dehydrochlorinated in the deoxidation column 4, whereby the deoxidation column bottom liquid containing HFC125 at a concentration of 87.4% by weight. 22 is obtained. (2) The first side cut 18 is made of HCFC124 and HF, and the second side cut 19 is made of HCFC123.
And HF. Therefore, these merge and the second
It can be suitably used as a reaction raw material of the reactor 2. (3) Since the distillation column bottom liquid 20 does not contain an intermediate component, it can be suitably circulated as a reaction raw material for the first reactor 1. (4) As described above, the HFC125 can be smoothly produced by using only one distillation tower and one deoxidizer tower.

【0030】(実施例2)図2に示す工程を用いてPC
EとHFとからHFC125を製造した。第1反応器1
および第2反応器2の運転条件は実施例1と同様にし
た。蒸留塔3および脱酸塔4は圧力4kg/cm2Gで
運転した。このとき、脱酸塔4の各部の温度は、 塔頂 約−39℃ ボトム 約20℃、 また、蒸留塔3の各部の温度は、 塔頂 約 8℃ 第一サイドカット 約44℃ 第二サイドカット 約68℃ ボトム 約89℃ であった。合流物16の流量を100(kg/hr)と
したときの工程各部における各成分の流量、およびその
各成分の重量割合(重量%)を表2に示す。
Example 2 A PC was manufactured using the process shown in FIG.
HFC125 was produced from E and HF. First reactor 1
The operating conditions of the second reactor 2 were the same as in Example 1. The distillation column 3 and the deoxidation column 4 were operated at a pressure of 4 kg / cm 2 G. At this time, the temperature of each part of the deoxidizer 4 is about −39 ° C. at the top and about 20 ° C. at the bottom, and the temperature of each part of the distillation tower 3 is about 8 ° C. at the top of the tower, about 44 ° C. at the first side cut, and the second side. The cut was about 68 ° C and the bottom was about 89 ° C. Table 2 shows the flow rate of each component in each part of the process and the weight ratio (wt%) of each component when the flow rate of the combined product 16 is 100 (kg / hr).

【0031】[0031]

【表2】 [Table 2]

【0032】表2の結果から、以下の事実が明かであ
る。 (1)蒸留塔3の塔頂留分17はHClを含まず、目的
物であるHFC125を87.4重量%の濃度で含んで
いる。 (2)第1サイドカット18はHCFC124とHFと
からなり、また第2サイドカット19はHCFC123
とHFとからなっている。従ってこれらは合流して第2
反応器2の反応原料として好適に使用できる。 (3)蒸留塔ボトム液20は中間体成分を含まないから
第1反応器1の反応原料として好適に循環できる。 (4)以上により、蒸留塔と脱酸塔とを各1本用いるの
みで、円滑にHFC125を製造することができる。
From the results of Table 2, the following facts are clear. (1) The overhead fraction 17 of the distillation column 3 does not contain HCl, but contains the target product, HFC125, at a concentration of 87.4% by weight. (2) The first side cut 18 is made of HCFC124 and HF, and the second side cut 19 is made of HCFC123.
And HF. Therefore, these merge and the second
It can be suitably used as a reaction raw material of the reactor 2. (3) Since the distillation column bottom liquid 20 does not contain an intermediate component, it can be suitably circulated as a reaction raw material for the first reactor 1. (4) As described above, the HFC125 can be smoothly produced by using only one distillation tower and one deoxidizer tower.

【0033】[0033]

【発明の効果】以上、詳細に説明したように、本発明の
HFC125の製法は、第1反応器と第2反応器との双
方の反応器から得られる生成物を合流し、この合流生成
物の少なくとも一部を蒸留し、塔頂からHFC125に
富む塔頂留分を留出させると共に、残部の少なくとも一
部をそれぞれ上記の第1反応器および第2反応器に分別
して循環させるものであるので、蒸留工程が簡略化さ
れ、工程経費が大幅に削減できるばかりでなく、工程ロ
スが軽減され、エネルギー原単位も節減できるなど、多
くの利点を有する。
As described above in detail, in the method for producing HFC125 of the present invention, the products obtained from both the first reactor and the second reactor are combined, and the combined product is obtained. At least a part of the above is distilled to distill an HFC125-rich overhead fraction from the top of the column, and at least a part of the remaining fraction is separately circulated to the first reactor and the second reactor described above, respectively. Therefore, not only the distillation process is simplified and the process cost can be significantly reduced, but also process loss is reduced and the energy consumption rate can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例を示す工程図。FIG. 1 is a process drawing showing an embodiment of the present invention.

【図2】 本発明の他の一実施例を示す工程図。FIG. 2 is a process drawing showing another embodiment of the present invention.

【図3】 従来の製造工程の一例を示す工程図。FIG. 3 is a process drawing showing an example of a conventional manufacturing process.

【符号の説明】[Explanation of symbols]

1…第1反応器、 2…第2反応器、 3…蒸留塔、 4…脱酸塔、 17…塔頂留分、 20…蒸留塔ボトム液、 27、28…サイドカット段。 DESCRIPTION OF SYMBOLS 1 ... 1st reactor, 2 ... 2nd reactor, 3 ... Distillation column, 4 ... Deoxidization column, 17 ... Top fraction, 20 ... Distillation column bottom liquid, 27, 28 ... Side cut stage.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大井 敏夫 神奈川県川崎市川崎区扇町5−1 昭和電 工株式会社川崎工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshio Oi 5-1 Ogimachi, Kawasaki-ku, Kawasaki-shi, Kanagawa Showa Denko KK Kawasaki Plant

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 テトラクロロエチレンとHFとを反応さ
せて1,1,1,2,2−ペンタフルオロエタンを製造
するに際して、 第1反応器で、テトラクロロエチレンとHFとを反応さ
せて1,1−ジクロロ−2,2,2−トリフルオロエタ
ンまたは1−クロロ−1,2,2,2−テトラフルオロ
エタンからなる中間体に富む第1生成物を生成させ、 第2反応器で、この第1生成物の少なくとも一部とHF
とを反応させて1,1,1,2,2−ペンタフルオロエ
タンを含む第2生成物を生成させ、 これら双方の反応器から得られる生成物を合流した合流
生成物の少なくとも一部を蒸留塔を用いて蒸留し、塔頂
から1,1,1,2,2−ペンタフルオロエタンに富む
塔頂留分を留出させると共に、残部の少なくとも一部を
上記のそれぞれの反応器に分別して循環させることを特
徴とする1,1,1,2,2−ペンタフルオロエタンの
製法。
1. When producing 1,1,1,2,2-pentafluoroethane by reacting tetrachloroethylene with HF, tetrachloroethylene and HF are reacted in the first reactor to produce 1,1-dichloro. An intermediate-rich first product consisting of -2,2,2-trifluoroethane or 1-chloro-1,2,2,2-tetrafluoroethane is produced and in the second reactor, this first production is produced. At least some of the things and HF
To produce a second product containing 1,1,1,2,2-pentafluoroethane, and at least a part of the combined product obtained by combining the products obtained from both reactors is distilled. Distilling using a column to distill a 1,1,1,2,2-pentafluoroethane-rich overhead fraction from the column top, and at least a part of the remainder is fractionated into each of the above reactors. A method for producing 1,1,1,2,2-pentafluoroethane which is characterized in that it is circulated.
【請求項2】 上記合流生成物の少なくとも一部を蒸留
塔の中間の供給段に供給し、この供給段より下段の段位
が異なる2段のサイドカット段からそれぞれ中間体に富
む第1サイドカットと第2サイドカットとをガスとして
留出させてこれらの双方のサイドカットを合わせて第2
反応器に循環させ、かつボトムから得られる蒸留塔ボト
ム液を第1反応器に循環させることを特徴とする請求項
1に記載の1,1,1,2,2−ペンタフルオロエタン
の製法。
2. At least a part of the combined product is supplied to an intermediate feed stage of the distillation column, and first side cuts rich in intermediates are obtained from each of two side cut stages having different stages below the feed stage. And a second side cut are distilled as a gas, and both of these side cuts are combined to form a second
The method for producing 1,1,1,2,2-pentafluoroethane according to claim 1, wherein the distillation column bottom liquid obtained from the bottom is circulated to the first reactor.
【請求項3】 上記の塔頂留分を脱酸塔に導入し、この
脱酸塔の塔頂から、反応によって生成したHClを留出
させて除去し、このボトムから脱酸塔ボトム液として
1,1,1,2,2−ペンタフルオロエタンに富む留分
を得ることを特徴とする請求項1ないし請求項2のいず
れかに記載の1,1,1,2,2−ペンタフルオロエタ
ンの製法。
3. The above-mentioned overhead fraction is introduced into a deoxidizing column, and HCl generated by the reaction is distilled off from the top of this deoxidizing column to obtain a bottom liquid of the deoxidizing column from this bottom. A 1,1,1,2,2-pentafluoroethane according to any one of claims 1 to 2, characterized in that a fraction rich in 1,1,1,2,2-pentafluoroethane is obtained. Manufacturing method.
【請求項4】 上記の合流生成物を脱酸塔に導入し、こ
の脱酸塔の塔頂から、反応によって生成したHClを留
出させて除去し、このボトムから得られる脱酸塔ボトム
液を上記の蒸留塔に供給することを特徴とする請求項1
ないし請求項2のいずれかに記載の1,1,1,2,2
−ペンタフルオロエタンの製法。
4. The deoxidizing tower bottom liquid obtained by introducing the above combined product into a deoxidizing tower, distilling off and removing HCl generated by the reaction from the top of this deoxidizing tower. Is supplied to the distillation column.
Or 1, 1, 1, 2, 2 according to any one of claims 2 to 4.
-A process for producing pentafluoroethane.
【請求項5】 蒸留塔ボトム液がテトラクロロエチレン
とHFとを主成分とするものである請求項1ないし請求
項4のいずれか1項に記載の1,1,1,2,2−ペン
タフルオロエタンの製法。
5. The 1,1,1,2,2-pentafluoroethane according to any one of claims 1 to 4, wherein the bottom liquid of the distillation column contains tetrachloroethylene and HF as main components. Manufacturing method.
【請求項6】 蒸留塔内の圧力を大気圧ないし20気圧
の範囲内とする請求項1ないし請求項5のいずれか1項
に記載の1,1,1,2,2−ペンタフルオロエタンの
製法。
6. The 1,1,1,2,2-pentafluoroethane of claim 1, wherein the pressure in the distillation column is in the range of atmospheric pressure to 20 atmospheres. Manufacturing method.
JP11567194A 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane Expired - Lifetime JP3628349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11567194A JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11567194A JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Publications (2)

Publication Number Publication Date
JPH07324044A true JPH07324044A (en) 1995-12-12
JP3628349B2 JP3628349B2 (en) 2005-03-09

Family

ID=14668415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11567194A Expired - Lifetime JP3628349B2 (en) 1994-05-27 1994-05-27 Process for producing 1,1,1,2,2-pentafluoroethane

Country Status (1)

Country Link
JP (1) JP3628349B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301800A (en) * 1995-05-11 1996-11-19 Imperial Chem Ind Plc <Ici> Production of pentafluoroethane and composition suitable to be converted into pentafluoroethane
WO1999019286A1 (en) * 1997-10-09 1999-04-22 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane
WO2002002492A3 (en) * 2000-06-30 2002-05-16 Honeywell Int Inc Process for the preparation of pentafluoroethane
JP2003055277A (en) * 2001-08-16 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
WO2003004445A3 (en) * 2001-07-06 2003-08-28 Showa Denko Kk Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
JP2003286207A (en) * 2002-03-26 2003-10-10 Showa Denko Kk Method for producing hydrofluorocarbon
JP2003313146A (en) * 2002-04-19 2003-11-06 Showa Denko Kk Method for producing hydrofluorocarbon
JP2007055934A (en) * 2005-08-24 2007-03-08 Showa Denko Kk Method for production of pentafluoroethane
US7208644B2 (en) * 2001-08-06 2007-04-24 Showa Denko K.K. Production and use of hexafluoroethane
WO2007068964A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of dichlorotrifluoroethane
WO2007068965A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of dichlorotrifluoroethane
WO2007068962A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of pentafluoroethane
JP2009519924A (en) * 2005-12-17 2009-05-21 イネオス、フラウアー、ホールディングス、リミテッド Method for producing dichlorotrifluoroethane

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020441A1 (en) * 1993-03-05 1994-09-15 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020441A1 (en) * 1993-03-05 1994-09-15 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane, process for producing 2,2-dichloro-1,1,1-trifluoroethane, and method of purifying 1,1,1,2,2-pentafluoroethane

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08301800A (en) * 1995-05-11 1996-11-19 Imperial Chem Ind Plc <Ici> Production of pentafluoroethane and composition suitable to be converted into pentafluoroethane
WO1999019286A1 (en) * 1997-10-09 1999-04-22 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane
US6392106B1 (en) 1997-10-09 2002-05-21 Daikin Industries, Ltd. Process for producing 1,1,1,2,2-pentafluoroethane
WO2002002492A3 (en) * 2000-06-30 2002-05-16 Honeywell Int Inc Process for the preparation of pentafluoroethane
WO2003004445A3 (en) * 2001-07-06 2003-08-28 Showa Denko Kk Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
CN1315765C (en) * 2001-07-06 2007-05-16 昭和电工株式会社 Method for purifying tetrachloroethylene and process for producing hydrofluorocarbons
US7208644B2 (en) * 2001-08-06 2007-04-24 Showa Denko K.K. Production and use of hexafluoroethane
JP2003055277A (en) * 2001-08-16 2003-02-26 Showa Denko Kk Method for producing hexafluoroethane and use thereof
JP2003286207A (en) * 2002-03-26 2003-10-10 Showa Denko Kk Method for producing hydrofluorocarbon
JP2003313146A (en) * 2002-04-19 2003-11-06 Showa Denko Kk Method for producing hydrofluorocarbon
JP2007055934A (en) * 2005-08-24 2007-03-08 Showa Denko Kk Method for production of pentafluoroethane
WO2007068964A3 (en) * 2005-12-17 2007-07-26 Ineos Fluor Holdings Ltd Process for the production of dichlorotrifluoroethane
JP2009519921A (en) * 2005-12-17 2009-05-21 イネオス、フラウアー、ホールディングス、リミテッド Method for producing pentafluoroethane
WO2007068962A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of pentafluoroethane
WO2007068964A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of dichlorotrifluoroethane
WO2007068965A3 (en) * 2005-12-17 2007-07-26 Ineos Fluor Holdings Ltd Process for the production of dichlorotrifluoroethane
WO2007068962A3 (en) * 2005-12-17 2007-07-26 Ineos Fluor Holdings Ltd Process for the production of pentafluoroethane
JP2009519923A (en) * 2005-12-17 2009-05-21 イネオス、フラウアー、ホールディングス、リミテッド Method for producing dichlorotrifluoroethane
JP2009519924A (en) * 2005-12-17 2009-05-21 イネオス、フラウアー、ホールディングス、リミテッド Method for producing dichlorotrifluoroethane
JP2009519922A (en) * 2005-12-17 2009-05-21 イネオス、フラウアー、ホールディングス、リミテッド Method for producing dichlorotrifluoroethane
WO2007068965A2 (en) * 2005-12-17 2007-06-21 Ineos Fluor Holdings Limited Process for the production of dichlorotrifluoroethane
KR101024085B1 (en) * 2005-12-17 2011-03-22 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. Process for the production of dichlorotrifluoroethane
KR101024099B1 (en) * 2005-12-17 2011-03-22 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. Process for the production of pentafluoroethane
US8049045B2 (en) 2005-12-17 2011-11-01 Mexichem Amanco S.A. de C.V. Process for production of dichlorotrifluoroethane
US8058485B2 (en) 2005-12-17 2011-11-15 Mexichem Amanco S.A. de C.V. Process for the production of dichlorotrifluoroethane
US20120016166A1 (en) * 2005-12-17 2012-01-19 Mexichem Amanco S.A. de C.V. Process for the production of dichlorotrifluoroethane
US20120016165A1 (en) * 2005-12-17 2012-01-19 Mexichem Amanco S.A. de C.V. Process for the production of dichlorotrifluoroethane
US8236997B2 (en) 2005-12-17 2012-08-07 Mexichem Amanco Holding S.A. De C.V. Process for the production of pentafluoroethane
US8415515B2 (en) 2005-12-17 2013-04-09 Mexichem Amanco Holding S.A. De C.V. Process for the production of pentafluroethane

Also Published As

Publication number Publication date
JP3628349B2 (en) 2005-03-09

Similar Documents

Publication Publication Date Title
US6013846A (en) Azeotrope of HF and 1233zd
US8735636B2 (en) Separation of R-1233 from hydrogen fluoride
EP0354697B1 (en) Process for the separation of hf via azeotropic distillation
JP2815914B2 (en) Method for separating HF by phase separation and distillation
EP0864554B1 (en) Method for purifying crude 1,1,1,3,3-pentafluoropropane
KR100220439B1 (en) Process for the separation of 1,1,1,2-tetrafluoroethane
EP0734366B1 (en) Production of pentafluoroethane
EP0395793B1 (en) Process for the separation of 1,1-dichloro-1-fluoroethane and 1,1,1,3,3-pentafluorobutane
JP2933014B2 (en) Azeotropic mixture of pentafluoropropane and hydrogen fluoride and method for separation and purification of pentafluoropropane
JPH07324044A (en) Production of 1,1,1,2,2-pentafluoroethane
JPH08502758A (en) Method for purifying binary azeotropic compound components
EP0098341B1 (en) Anhydrous phase separation for recovering hydrogen fluoride from a fluorination reaction
JP2024036584A (en) Azeotropic composition containing 1,2-difluoroethylene or 1,1,2-trifluoroethylene and hydrogen fluoride
EP0743933B1 (en) Process for separating pentafluoroethane from a mixture comprising halogenated hydrocarbons and chloropentafluoroethane
KR20210151152A (en) Azeotropic or similar azeotropic composition comprising 1,1,2-trifluoroethane, 1-chloro-2,2-difluoroethane or 1,2-dichloro-1-fluoroethane and hydrogen fluoride
JP3893111B2 (en) Purification of difluoromethane
EP1026139B1 (en) Process for preparing pentafluoroethane
US5345015A (en) Process for producing 1,1,2-tetrafluoroethane
JP3816148B2 (en) Method for producing hydrofluorocarbons
US7141094B2 (en) Azeotrope-like compositions of iodine heptafluoride and hydrogen fluoride
US5789633A (en) Azeotropic or azeotrope-like compositions of hydrofluoric acid with dihaloethanes
JP3407332B2 (en) Method for producing 1,1,1,2-tetrafluoroethane
EP0985650A1 (en) Process for the preparation of pentafluoroethane
KR20020082793A (en) Recovery of HFC-32
CA2197171C (en) Process for producing pentafluoroethane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040614

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041001

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 9

EXPY Cancellation because of completion of term