JPH0517744A - Working fluid - Google Patents

Working fluid

Info

Publication number
JPH0517744A
JPH0517744A JP3171033A JP17103391A JPH0517744A JP H0517744 A JPH0517744 A JP H0517744A JP 3171033 A JP3171033 A JP 3171033A JP 17103391 A JP17103391 A JP 17103391A JP H0517744 A JPH0517744 A JP H0517744A
Authority
JP
Japan
Prior art keywords
working fluid
saturated
temperature
line
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3171033A
Other languages
Japanese (ja)
Inventor
Yuji Yoshida
雄二 吉田
Shozo Funakura
正三 船倉
Kazuo Nakatani
和生 中谷
Minoru Tagashira
實 田頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3171033A priority Critical patent/JPH0517744A/en
Publication of JPH0517744A publication Critical patent/JPH0517744A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To provide a working fluid comprising fluoro compounds such as difluoromethane and trifluoroethane in specific amounts, respectively, further reduced in the affection of the fluoro compounds on the ozone layer of the stratosphere, and capable of being used as a substitute for R22. CONSTITUTION:The objective working fluid comprises a mixture of three kinds of Freon gases consisting of (A) difluoromethane (R32), (B) trifluoroethane [e.g. 1,1,1-trifluoroethane (R/43a)], and (C) dichlorotrifluoroethane [e.g. 2,2- dichloro-1,1,1trifluoroethane (R/23)]. The mixture exists e.g. in a gas-liquid saturation state (having substantially the same vapor pressure as R22) within a region surrounded by the saturated gas phase line (the upper side) and the saturated liquid phase line (the lower side) of the gas-liquid equilibrium line 1 (corresponding to R22 at 0 deg.C) in a constant concentration under a constant pressure and by the saturated gas phase line (the points A1-C1) and the saturated liquid phase line (the points D1-F1) of a gas liquid equilibrium line 2 (corresponding to R22 at 50 deg.C. This mixture comprises <=90wt.% (preferably <=85wt.%) of the component A, <=95wt.% of the component B and 5-65 wt.% (preferably 5-85wt.%) of the component C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エアコン・冷凍機等の
ヒートポンプ装置に使用される作動流体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a working fluid used in heat pump devices such as air conditioners and refrigerators.

【0002】[0002]

【従来の技術】従来、エアコン・冷凍機等のヒートポン
プ装置においては、作動流体としてフロン類(以下R○
○またはR○○○と記す)と呼ばれるハロゲン化炭化水
素が知られており、利用温度としては凝縮温度および/
または蒸発温度が略0〜略50℃の範囲において通常使
用される。中でもクロロジフルオロメタン(CHClF
2、R22)は家庭用エアコン、ビル用エアコンや大型
冷凍機等の作動流体として幅広く用いられている。
2. Description of the Related Art Conventionally, heat pumps for air conditioners, refrigerators, etc.
In the device, CFCs (hereinafter R ○
Halogenated hydrocarbon water called ◯ or R ○○○)
The element is known and its usage temperature is the condensation temperature and / or
Or when the evaporation temperature is in the range of about 0 to about 50 ° C
Used. Among them, chlorodifluoromethane (CHClF
2, R22) are home air conditioners, building air conditioners and large
Widely used as a working fluid for refrigerators and the like.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、近年フ
ロンによる成層圏オゾン層破壊が地球規模の環境問題と
なっており、成層圏オゾン破壊能力が大であるフロン類
(以下、特定フロンと記す)については、すでに国際条
約によって使用量及び生産量の規制がなされ、さらに将
来的には特定フロンの使用・生産を廃止しようという動
きがある。さて、R22はオゾン破壊係数(トリクロロ
フルオロメタン(CCl3F)の成層圏オゾン破壊能力
を1としたときの成層圏オゾン破壊能力、以下ODPと
記す)が0.05と微少であり、特定フロンではないも
のの将来的に使用量の増大が予想され、冷凍・空調機器
が広く普及した現在、R22の使用量及び生産量の増大
が人類の生活環境に与える影響も大きくなるものと予想
されている。従って、成層圏オゾン破壊能力が小である
ものの、若干の破壊能力があるとされるR22の代替と
なる作動流体の早期開発も強く要望されている。
However, in recent years, the depletion of the stratospheric ozone layer due to CFCs has become a global environmental problem, and regarding CFCs (hereinafter referred to as "specific CFCs") that have great ozone depletion potential in the stratosphere, The amount of use and the amount of production have already been regulated by international treaties, and there is a movement to abolish the use and production of specified CFCs in the future. By the way, R22 has a very small ozone depletion coefficient (stratospheric ozone depletion capacity when the stratospheric ozone depletion capacity of trichlorofluoromethane (CCl 3 F) is set to 1, hereinafter referred to as ODP), which is as small as 0.05, not a specific CFC. However, it is expected that the usage amount will increase in the future, and now that the refrigeration / air-conditioning equipment has spread widely, it is expected that the increase in the usage amount and the production amount of R22 will greatly affect the living environment of humankind. Therefore, there is a strong demand for early development of a working fluid that is a substitute for R22, which has a small ozone depletion ability in the stratosphere but is said to have some depletion ability.

【0004】本発明は、上述の問題に鑑みて試されたも
ので、成層圏オゾン層に及ぼす影響がさらに小さい、R
22の代替となる作動流体を提供するものである。
The present invention has been tried in view of the above-mentioned problems, and has a smaller influence on the stratospheric ozone layer.
22 to provide an alternative working fluid.

【0005】[0005]

【課題を解決するための手段】本発明は上述の課題を解
決するため、少なくとも、ジフルオロメタン(CH
22)とトリフルオロエタン(C233)とジクロロ
トリフルオロエタン(C2HCl23)の三種のフロン
類を含み、ジフルオロメタン0〜略90重量%、トリフ
ルオロエタン0〜略95重量%、ジクロロトリフルオロ
エタン略5〜略65重量%の組成範囲であることを特徴
とするものであり、特に、ジフルオロメタン0〜〜略8
5重量%、トリフルオロエタン0〜略95重量%、ジク
ロロトリフルオロエタン略5〜略60重量%の組成範囲
が望ましいものである。
In order to solve the above problems, the present invention provides at least difluoromethane (CH
2 F 2 ), trifluoroethane (C 2 H 3 F 3 ), and dichlorotrifluoroethane (C 2 HCl 2 F 3 ), including three types of CFCs, and 0 to approximately 90% by weight of difluoromethane and 0 of trifluoroethane. To about 95% by weight and dichlorotrifluoroethane of about 5 to about 65% by weight, particularly, difluoromethane 0 to about 8% by weight.
A composition range of 5% by weight, trifluoroethane 0 to approximately 95% by weight, and dichlorotrifluoroethane approximately 5 to approximately 60% by weight is preferable.

【0006】[0006]

【作用】本発明は、上述の組合せによって、作動流体
を、オゾン破壊能力のほとんどない、分子構造中に塩素
を含まないフロン類であるジフルオロメタン(ODP=
0)とトリフルオロエタン(ODP=0)、およびオゾ
ン破壊能力の極めて低い分子構造中に塩素・水素を共に
含むフロン類であるジクロロトリフルオロエタン(OD
P=0.02)の混合物となすことにより、成層圏オゾ
ン層に及ぼす影響をR22よりもさらに小さくすること
を可能とするものである。特に、ジフルオロメタンとト
リフルオロエタンは可燃性であるが、ジクロロトリフル
オロエタンは不燃性であるため、ジクロロトリフルオロ
エタンを混合することにより、可燃性を低減できるもの
であり、本発明のようにR22の代替となる組成範囲を
特定したものは初めてである。
According to the present invention, the working fluid can be treated with difluoromethane (ODP = ODP), which is a CFC having almost no ozone depleting ability and containing no chlorine in its molecular structure.
0) and trifluoroethane (ODP = 0), and dichlorotrifluoroethane (OD) which is a CFC containing both chlorine and hydrogen in the molecular structure with extremely low ozone depletion potential.
By using a mixture of P = 0.02), the influence on the stratospheric ozone layer can be made smaller than that of R22. In particular, difluoromethane and trifluoroethane are flammable, but dichlorotrifluoroethane is non-flammable. Therefore, by mixing dichlorotrifluoroethane, the flammability can be reduced, and as in the present invention, This is the first time that a composition range as an alternative to R22 has been specified.

【0007】また、本発明は上述の組成範囲とすること
によって、エアコン・冷凍機等のヒートポンプ装置の利
用温度である略0〜略50℃においてR22と同程度の
蒸気圧を有し、R22の代替として現行機器で使用可能
な作動流体を提供することを可能とするものである。従
って上述の組合せおよび組成範囲におけるODPも0.
001〜0.013と予想され、R22の代替として極
めて有望な作動流体となるものである。またかかる混合
物は非共沸混合物となり、凝縮過程および蒸発過程にお
いて温度勾配をもつため、熱源流体との温度差を近接さ
せたロレンツサイクルを構成することにより、R22よ
りも高い成績係数を期待できるものである。
Further, according to the present invention, by setting the above composition range, the vapor pressure of R22 is about the same as that of R22 at about 0 to about 50 ° C., which is the use temperature of heat pump devices such as air conditioners and refrigerators. Alternatively, it is possible to provide a working fluid that can be used in existing equipment. Therefore, the ODP in the above combination and composition range is also 0.
It is expected to be 001 to 0.013, which is an extremely promising working fluid as an alternative to R22. Further, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, a coefficient of performance higher than that of R22 can be expected by constructing a Lorentz cycle in which the temperature difference with the heat source fluid is close. Is.

【0008】また一般に、成層圏オゾン破壊能力がある
フロン類は、そのODPの値の大きさにつれて地球温暖
化の効果も大きい傾向があるが、本発明による作動流体
はODPが極めて小さいフロン類のみの三種以上から成
る混合物によって構成されているため、地球温暖化の効
果はR22と同程度あるいはR22未満と推定され、最
近世界的問題となっている地球温暖化への寄与を小とす
ることをも可能とするものである。
In general, CFCs having a stratospheric ozone depletion ability tend to have a great effect on global warming as the ODP value increases. However, the working fluid according to the present invention includes only CFCs having an extremely small ODP. Since it is composed of a mixture of three or more kinds, it is estimated that the effect of global warming is similar to R22 or less than R22, and it is possible to reduce the contribution to global warming, which has become a global problem recently. It is possible.

【0009】[0009]

【実施例】以下、本発明による作動流体の実施例につい
て、図を用いて説明する。図1は、ジフルオロメタン
(R32)、1,1,1−トリフルオロエタン(R14
3a)、2,2−ジクロロ−1,1,1−トリフルオロ
エタン(R123)の三種のフロン類の混合物によって
構成される作動流体の、一定温度・一定圧力における平
衡状態を三角座標を用いて示したものである。本三角座
標においては、三角形の各頂点に、上側頂点を基点とし
て反時計回りに沸点の低い順に単一物質を配置してお
り、座標平面上のある点における各成分の組成比(重量
比)は、点と三角形の各辺との距離の比で表される。ま
たこのとき、点と三角形の辺との距離は、辺に相対する
側にある三角座標の頂点に記された物質の組成比に対応
する。図1において1は、温度0℃・圧力4.044k
g/cm2Gにおける混合物の気液平衡線であり、この
温度・圧力はR22の飽和状態に相当する。気液平衡線
(R22 0℃相当)1の上側の線は飽和気相線、気液
平衡線(R22 0℃相当)1の下側の線は飽和液相線
を表わし、この両線で挟まれた範囲においては気液平衡
状態となる。また2は、温度50℃・圧力18.782
kg/cm2Gにおける混合物の気液平衡線であり、こ
の温度・圧力もR22の飽和状態に相当する。図からわ
かるように、R32、R143a及びR123がそれぞ
れ0〜略90重量%、0〜略95重量%、略5〜略65
重量%となるような組成範囲は、略0〜略50℃の利用
温度においてR22とほぼ同等の蒸気圧を有するため望
ましい。さらに、R32、R143a及びR123がそ
れぞれ0〜略85重量%、0〜略95重量%、略5〜略
60重量%となるような組成範囲は、0℃と50℃の間
のすべての利用温度においてR22とほぼ同等の蒸気圧
を有するため特に望ましい。
Embodiments of the working fluid according to the present invention will be described below with reference to the drawings. FIG. 1 shows difluoromethane (R32), 1,1,1-trifluoroethane (R14).
3a), the equilibrium state of a working fluid composed of a mixture of three freons of 2,2-dichloro-1,1,1-trifluoroethane (R123) at a constant temperature and a constant pressure, using triangular coordinates. It is shown. In this triangular coordinate, single substances are arranged counterclockwise starting from the upper vertex at each vertex of the triangle in descending order of boiling point, and the composition ratio (weight ratio) of each component at a certain point on the coordinate plane. Is represented by the ratio of the distance between the point and each side of the triangle. At this time, the distance between the point and the side of the triangle corresponds to the composition ratio of the substance described at the apex of the triangular coordinate on the side opposite to the side. In FIG. 1, 1 indicates a temperature of 0 ° C. and a pressure of 4.044 k.
It is a vapor-liquid equilibrium line of the mixture at g / cm 2 G, and this temperature / pressure corresponds to the saturated state of R22. The upper line of the vapor-liquid equilibrium line (corresponding to R22 0 ° C.) 1 represents the saturated vapor phase line, and the lower line of the vapor-liquid equilibrium line (R22 0 ° C. equivalent) 1 represents the saturated liquid phase line. The vapor-liquid equilibrium state is reached in the range that is set. In addition, 2 is temperature 50 ℃, pressure 18.782
It is a vapor-liquid equilibrium line of the mixture at kg / cm 2 G, and this temperature / pressure also corresponds to the saturated state of R22. As can be seen from the figure, R32, R143a, and R123 are 0 to about 90% by weight, 0 to about 95% by weight, and about 5 to about 65%, respectively.
The composition range such that the weight percent is obtained is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of approximately 0 to approximately 50 ° C. Furthermore, the composition range in which R32, R143a, and R123 are 0 to about 85% by weight, 0 to about 95% by weight, and about 5 to about 60% by weight, respectively, should be used at all temperatures between 0 ° C and 50 ° C. Is particularly desirable because it has a vapor pressure almost equal to that of R22.

【0010】図1中の点A1〜点F1における作動流体の
組成を(表1)に示す。
The composition of the working fluid at points A 1 to F 1 in FIG. 1 is shown in (Table 1).

【0011】[0011]

【表1】 [Table 1]

【0012】点A1〜点C1は気液平衡線(R22 50
℃相当)2の飽和気相線上に、点D 1〜点F1は気液平衡
線(R22 50℃相当)2の飽和液線上にあり、共に
気液平衡線(R22 0℃相当)1の飽和気相線及び気
液平衡線(R22 0℃相当)1の飽和液相線の両線で
挟まれた範囲にあることから、温度0℃・圧力4.04
4kg/cm2G(R22の飽和状態に相当)において
は気液平衡状態となる。従って、(表1)に示された組
成を有する作動流体は、0℃・50℃におけるR22の
飽和蒸気圧の条件下で飽和状態あるいは気液平衡状態を
実現し、略0〜略50℃の利用温度において、同温度に
おけるR22の飽和蒸気圧で操作することにより、R2
2とほぼ等しい凝縮温度・蒸発温度を得ることが可能と
なるものである。
Point A1~ Point C1Is the vapor-liquid equilibrium line (R2250
On the saturated vapor phase line of 2) 1~ Point F1Is vapor-liquid equilibrium
It is on the saturated liquid line of line 2 (equivalent to R22 50 ° C), and both
Gas-liquid equilibrium line (equivalent to R220 ° C) 1 saturated vapor phase line and gas
Liquid equilibrium line (equivalent to R220 ° C) 1 saturated liquidus line
Since it is in the sandwiched range, the temperature is 0 ° C and the pressure is 4.04.
4 kg / cm2At G (corresponding to the saturated state of R22)
Becomes vapor-liquid equilibrium. Therefore, the set shown in (Table 1)
Working fluid with composition of R22 at 0 ℃ ・ 50 ℃
Saturated state or vapor-liquid equilibrium state under the condition of saturated vapor pressure
Realized at the same temperature at operating temperatures of about 0 to about 50 ° C.
By operating at the saturated vapor pressure of R22 in
It is possible to obtain the condensation temperature and evaporation temperature that are almost equal to 2.
It will be.

【0013】ここでは、気液平衡線(R22 50℃相
当)2上の点についてのみ説明したが、点A1〜点F1
内側にある点、すなわち、温度0℃・圧力4.044k
g/cm2G及び温度50℃・圧力18.782kg/
cm2G(両者ともR22の飽和状態に相当)において
気液平衡状態となる組成を有する作動流体についても同
様に操作することにより、略0〜略50℃の利用温度に
おいてR22とほぼ等しい凝縮温度・蒸発温度を得るこ
とが可能となるものである。
Although only the points on the gas-liquid equilibrium line (R22 at 50 ° C.) 2 are described here, points inside the points A 1 to F 1 , that is, temperature 0 ° C. and pressure 4.044 k.
g / cm 2 G, temperature 50 ° C, pressure 18.782 kg /
By similarly operating a working fluid having a composition in a vapor-liquid equilibrium state at cm 2 G (both corresponding to the saturated state of R22), a condensation temperature substantially equal to R22 at a use temperature of approximately 0 to approximately 50 ° C. -It is possible to obtain the evaporation temperature.

【0014】図2は、R32、R143a、1,2−ジ
クロロトリフルオロエタン(R123a)の三種のフロ
ン類の混合物によって構成される作動流体の、一定温度
・一定圧力における平衡状態を三角座標を用いて示した
ものである。図2において3は、温度0℃・圧力4.0
44kg/cm2Gにおける混合物の気液平衡線であ
り、また4は、温度50℃・圧力18.782kg/c
2Gにおける混合物の気液平衡線である。この場合に
は、R32、R143a及びR123aがそれぞれ0〜
略90重量%、0〜略95重量%、略5〜略65重量%
となるような組成範囲が、R22とほぼ同等の蒸気圧を
有するため望ましく、R32、R143a及びR123
aがそれぞれ0〜略85重量%、0〜略95重量%、略
5〜略60重量%となるような組成範囲が、特に望まし
い。
FIG. 2 shows the equilibrium state of a working fluid composed of a mixture of three freons of R32, R143a and 1,2-dichlorotrifluoroethane (R123a) at a constant temperature and a constant pressure by using triangular coordinates. Is shown. In FIG. 2, 3 indicates a temperature of 0 ° C. and a pressure of 4.0.
4 is a vapor-liquid equilibrium line of the mixture at 44 kg / cm 2 G, and 4 is a temperature of 50 ° C. and a pressure of 18.782 kg / c.
3 is a vapor-liquid equilibrium line of the mixture at m 2 G. In this case, R32, R143a and R123a are 0 to
About 90% by weight, 0 to about 95% by weight, about 5 to about 65% by weight
The composition range such that R2, R143a and R123 is desirable because it has a vapor pressure almost equal to that of R22.
Composition ranges in which a is 0 to about 85% by weight, 0 to about 95% by weight, and about 5 to about 60% by weight are particularly desirable.

【0015】図2中の点A2〜点F2における作動流体の
組成を(表2)に示す。
The composition of the working fluid at points A 2 to F 2 in FIG. 2 is shown in (Table 2).

【0016】[0016]

【表2】 [Table 2]

【0017】点A2〜点C2は気液平衡線(R22 50
℃相当)4の飽和気相線上に、点D 2〜点F2は気液平衡
線(R22 50℃相当)4の飽和液相線上にあり、共
に気液平衡線(R22 0℃相当)3の飽和気相線及び
気液平衡線(R22 0℃相当)3の飽和液相線の両線
で挟まれた範囲にあることから、温度0℃・圧力4.0
44kg/cm2G(R22の飽和状態に相当)におい
ては気液平衡状態となる。従って、(表2)に示された
組成を有する作動流体は、0℃・50℃におけるR22
の飽和蒸気圧の条件下で飽和状態あるいは気液平衡状態
を実現し、略0〜略50℃の利用温度において、同温度
におけるR22の飽和蒸気圧で操作することにより、R
22とほぼ等しい凝縮温度・蒸発温度を得ることが可能
となるものである。
Point A2~ Point C2Is the vapor-liquid equilibrium line (R2250
On the saturated vapor phase line of 4) 2~ Point F2Is vapor-liquid equilibrium
Line (R22 50 ° C equivalent) is on the saturated liquidus line 4 and
The saturated liquidus of the vapor-liquid equilibrium line (corresponding to R220 ° C) 3 and
Both lines of saturated liquidus of vapor-liquid equilibrium line (R220 equivalent to 0 ° C) 3
The temperature is 0 ° C and the pressure is 4.0 because it is in the range sandwiched by
44 kg / cm2G (corresponding to saturation of R22) odor
The gas-liquid equilibrium state. Therefore, as shown in (Table 2)
The working fluid having the composition is R22 at 0 ° C / 50 ° C.
State or vapor-liquid equilibrium state under the condition of saturated vapor pressure
And the same temperature at operating temperatures of approximately 0 to approximately 50 ° C.
By operating at the saturated vapor pressure of R22 at
It is possible to obtain condensation temperature and evaporation temperature almost equal to 22.
It will be.

【0018】ここでは、気液平衡線(R22 50℃相
当)4上の点についてのみ説明したが、点A2〜点F2
内側にある点、すなわち、温度0℃・圧力4.044k
g/cm2G及び温度50℃・圧力18.782kg/
cm2G(両者ともR22の飽和状態に相当)において
気液平衡状態となる組成を有する作動流体についても同
様に操作することにより、略0〜略50℃の利用温度に
おいてR22とほぼ等しい凝縮温度・蒸発温度を得るこ
とが可能となるものである。
Although only the point on the vapor-liquid equilibrium line (R22 at 50 ° C.) 4 is described here, the point inside the points A 2 to F 2 , that is, temperature 0 ° C. and pressure 4.044 k.
g / cm 2 G, temperature 50 ° C, pressure 18.782 kg /
By similarly operating a working fluid having a composition in a vapor-liquid equilibrium state at cm 2 G (both corresponding to the saturated state of R22), a condensation temperature substantially equal to R22 at a use temperature of approximately 0 to approximately 50 ° C. -It is possible to obtain the evaporation temperature.

【0019】以上の実施例においては作動流体は三種の
フロン類の混合物によって構成されているが、構造異性
体を含めて四種以上のフロンの混合物によって作動流体
を構成することも勿論可能であり、この場合、ジフルオ
ロメタン0〜略90重量%、トリフルオロエタン0〜略
95重量%、ジクロロトリフルオロエタン略5〜略65
重量%となるような組成範囲は、略0〜略50℃の利用
温度においてR22とほぼ同等の蒸気圧を有するため望
ましい。さらに、ジフルオロメタン0〜略85重量%、
トリフルオロエタン0〜略95重量%、ジクロロトリフ
ルオロエタン略5〜略60重量%となるような組成範囲
は、0℃と50℃の間のすべての利用温度においてR2
2とほぼ同等の蒸気圧を有するため特に望ましい。特に
上述の組合せおよび組成範囲におけるODPも0.00
1〜0.013と予想され、R22の代替として極めて
有望な作動流体となるものである。またかかる混合物は
非共沸混合物となり、凝縮過程および蒸発過程において
温度勾配をもつため、熱源流体との温度差を近接させた
ロレンツサイクルを構成することにより、R22よりも
高い成績係数を期待できるものである。
In the above embodiments, the working fluid is composed of a mixture of three types of freons, but it is of course possible to form the working fluid by a mixture of four or more types of freon including structural isomers. , In this case, difluoromethane 0 to approximately 90% by weight, trifluoroethane 0 to approximately 95% by weight, dichlorotrifluoroethane approximately 5 to approximately 65%
The composition range such that the weight percent is obtained is desirable because it has a vapor pressure almost equal to that of R22 at a use temperature of approximately 0 to approximately 50 ° C. Furthermore, 0 to approximately 85% by weight of difluoromethane,
The composition range such that trifluoroethane is 0 to about 95% by weight and dichlorotrifluoroethane is about 5 to about 60% by weight is R2 at all use temperatures between 0 ° C and 50 ° C.
It is particularly desirable because it has a vapor pressure almost equal to 2. Especially, ODP in the above-mentioned combination and composition range is also 0.00
It is expected to be 1 to 0.013 and is a very promising working fluid as an alternative to R22. Further, since such a mixture becomes a non-azeotropic mixture and has a temperature gradient in the condensation process and the evaporation process, a coefficient of performance higher than that of R22 can be expected by constructing a Lorentz cycle in which the temperature difference with the heat source fluid is close. Is.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
は、作動流体を、分子構造中に塩素を含まない二種のフ
ロン類と、分子構造中に塩素・水素を共に含みオゾン破
壊能力の極めて小さい一種のフロン類の三種以上から成
る混合物となし、その組成範囲を特定したことにより、 (1)成層圏オゾン層に及ぼす影響をR22よりもさら
に小さくする作動流体の選択の幅を拡大することが可能
である。 (2)分子構造中に塩素・水素を共に含みオゾン破壊能
力の極めて小さい一種のフロン類として、ジクロロトリ
フルオロエタンを選択したから、分子構造中に塩素を含
まない二種のフロン類として選択したジフルオロメタ
ン、トリフルオロエタンの可燃性を低減させることがで
きる。 (3)機器の利用温度においてR22と同程度の蒸気圧
を有し、R22の代替として現行機器で使用可能であ
る。 (4)非共沸混合物の温度勾配の性質を利用して、R2
2よりも高い成績係数を期待できる。 等の効果を有するものである。
EFFECTS OF THE INVENTION As is clear from the above description, according to the present invention, the working fluid contains two types of CFCs containing no chlorine in the molecular structure and chlorine and hydrogen in the molecular structure, and has an ozone depletion ability. (1) Expanding the range of choice of working fluid that makes the influence on the stratospheric ozone layer even smaller than R22 by defining a composition range consisting of three or more types of CFCs with extremely small It is possible. (2) Dichlorotrifluoroethane was selected as one of the CFCs containing both chlorine and hydrogen in the molecular structure and having an extremely low ozone depletion ability, so it was selected as two CFCs containing no chlorine in the molecular structure. The flammability of difluoromethane and trifluoroethane can be reduced. (3) It has a vapor pressure similar to that of R22 at the operating temperature of the equipment, and can be used in existing equipment as an alternative to R22. (4) Utilizing the property of the temperature gradient of the non-azeotropic mixture, R2
A coefficient of performance higher than 2 can be expected. And so on.

【図面の簡単な説明】[Brief description of drawings]

【図1】三種のフロン類の混合物によって構成される作
動流体の、一定温度・一定圧力における平衡状態を示す
三角座標図
FIG. 1 is a triangular coordinate diagram showing an equilibrium state of a working fluid composed of a mixture of three types of CFCs at a constant temperature and a constant pressure.

【図2】三種のフロン類の混合物によって構成される作
動流体の、一定温度・一定圧力における平衡状態を示す
三角座標図
FIG. 2 is a triangular coordinate diagram showing an equilibrium state of a working fluid composed of a mixture of three types of freons at a constant temperature and a constant pressure.

【符号の説明】[Explanation of symbols]

1 気液平衡線(R22 0℃相当) 2 気液平衡線(R22 50℃相当) 3 気液平衡線(R22 0℃相当) 4 気液平衡線(R22 50℃相当) 1 vapor-liquid equilibrium line (R220 equivalent to 0 ° C) 2 Gas-liquid equilibrium line (R22 50 ° C equivalent) 3 Gas-liquid equilibrium line (R220 equivalent to 0 ° C) 4 Gas-liquid equilibrium line (R22 50 ° C equivalent)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田頭 實 大阪府門真市大字門真1006番地 松下電器 産業株式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Minor Tagashi, the inventor             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ジフルオロメタン90重量%以下、トリ
フルオロエタン95重量%以下、ジクロロトリフルオロ
エタン5〜65重量%以下の少なくとも三種のフロン類
を含む作動流体。
1. A working fluid containing at least three types of CFCs in an amount of 90% by weight or less of difluoromethane, 95% by weight or less of trifluoroethane, and 5 to 65% by weight or less of dichlorotrifluoroethane.
【請求項2】 ジフルオロメタン85重量%以下、トリ
フルオロエタン95重量%以下、ジクロロトリフルオロ
エタン5〜60重量%以下であることを特徴とする作動
流体。
2. A working fluid comprising 85% by weight or less of difluoromethane, 95% by weight or less of trifluoroethane, and 5 to 60% by weight or less of dichlorotrifluoroethane.
JP3171033A 1991-07-11 1991-07-11 Working fluid Pending JPH0517744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3171033A JPH0517744A (en) 1991-07-11 1991-07-11 Working fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3171033A JPH0517744A (en) 1991-07-11 1991-07-11 Working fluid

Publications (1)

Publication Number Publication Date
JPH0517744A true JPH0517744A (en) 1993-01-26

Family

ID=15915845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3171033A Pending JPH0517744A (en) 1991-07-11 1991-07-11 Working fluid

Country Status (1)

Country Link
JP (1) JPH0517744A (en)

Similar Documents

Publication Publication Date Title
JP2568774B2 (en) Working fluid
JPH0655942B2 (en) Working fluid
JP2580350B2 (en) Working fluid
JP2548411B2 (en) Working fluid
JP2579001B2 (en) Working fluid
JP2568775B2 (en) Working fluid
JPH0665561A (en) Working fluid
JP2532697B2 (en) Working fluid
JP2548412B2 (en) Working fluid
JPH03170593A (en) Working fluid
JPH0517750A (en) Working fluid
JPH0517755A (en) Working fluid
JPH0517744A (en) Working fluid
JPH0517753A (en) Working fluid
JPH0517747A (en) Working fluid
JPH0517746A (en) Working fluid
JPH0517743A (en) Working fluid
JPH03170589A (en) Working fluid
JP2532696B2 (en) Working fluid
JP2532736B2 (en) Working fluid
JPH0655943B2 (en) Working fluid
JPH05117649A (en) Working fluid
JPH0517742A (en) Working fluid
JPH0517745A (en) Working fluid
JPH05117647A (en) Working fluid