JPH05177413A - Covered cermet cutting tool and its manufacture - Google Patents

Covered cermet cutting tool and its manufacture

Info

Publication number
JPH05177413A
JPH05177413A JP35757291A JP35757291A JPH05177413A JP H05177413 A JPH05177413 A JP H05177413A JP 35757291 A JP35757291 A JP 35757291A JP 35757291 A JP35757291 A JP 35757291A JP H05177413 A JPH05177413 A JP H05177413A
Authority
JP
Japan
Prior art keywords
coating layer
cutting tool
cermet
layer
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP35757291A
Other languages
Japanese (ja)
Inventor
Katsuya Uchino
克哉 内野
Hideki Moriguchi
秀樹 森口
Masuo Nakado
益男 中堂
Akinori Kobayashi
晄徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP35757291A priority Critical patent/JPH05177413A/en
Publication of JPH05177413A publication Critical patent/JPH05177413A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a cover cutting tool excellent both in corrosion resistance and in chipping resistance, where a hard cover layer is provided on the surface of a cermet parent material, and its manufacture. CONSTITUTION:This covered cermet cutting tool is equipped with a hard cover layer consisting of an inner cover layer 0.5-15mum thick, which is a single layer or plural layers of compounds of Ti, Zr, or Hf provided on the surface side of a cermet parent material by chemical deposition method or Al2O3 and has tensile residual stress or does not have residual stress, and an outer cover layer 0.3-5mum thick, which is a single layer or plural layers of compounds of Ti, Zr, or Hf provided on the inner cover layer by physical deposition method, Al2O3, TiAlN, or the like and has compression residual stress.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、サーメットの母材上に
硬質セラミックスの被覆層を備えた被覆サーメット切削
工具、及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coated cermet cutting tool provided with a hard ceramic coating layer on a base material of a cermet, and a method for producing the same.

【0002】[0002]

【従来の技術】サーメットからなる切削工具は鋳鉄等の
切削加工に使用されているが、近年では切削効率を高め
るために切削速度を従来よりも引き上げる傾向にある。
このため、切削中における切削工具の刃先温度は800℃
以上になり、熱による変形や逃げ面摩耗が促進され、切
削工具の寿命が著しく低下している。
2. Description of the Related Art Cutting tools made of cermet have been used for cutting cast iron and the like, but in recent years, there has been a tendency to increase the cutting speed in order to improve cutting efficiency.
Therefore, the cutting edge temperature of the cutting tool during cutting is 800 ℃.
As described above, the deformation due to heat and flank wear are promoted, and the life of the cutting tool is significantly reduced.

【0003】この様な状況下で切削工具の耐摩耗性を改
善するため、例えば特開平2−4972号公報等に記載
されるごとく、切削工具のサーメット母材の表面に、イ
オンスパッタリング法等の物理的蒸着法又はCVD法等
の化学的蒸着法により、硬質セラミックスの単層又は複
層からなる被覆層を形成することが提案されている。し
かし、物理的蒸着法による被覆層はサーメット母材との
密着強度が不足することから高速高送りの切削加工では
被覆層の剥離が発生し、被覆層の効果が十分に発揮でき
なかった。又、化学的蒸着法による被覆層では、耐摩耗
性は向上するものの刃先強度が低下するため欠損が頻発
し、実用に至っていない。
In order to improve the wear resistance of the cutting tool in such a situation, as described in, for example, Japanese Patent Application Laid-Open No. 2-4972, the surface of the cermet base material of the cutting tool is subjected to an ion sputtering method or the like. It has been proposed to form a coating layer composed of a single layer or multiple layers of hard ceramics by a physical vapor deposition method or a chemical vapor deposition method such as a CVD method. However, since the coating layer formed by the physical vapor deposition method has insufficient adhesion strength with the cermet base material, peeling of the coating layer occurs in high-speed and high-feed cutting, and the effect of the coating layer cannot be sufficiently exerted. Further, in the coating layer formed by the chemical vapor deposition method, although the wear resistance is improved, the strength of the cutting edge is lowered and the chipping frequently occurs, which is not practical.

【0004】一般的に化学的蒸着法により形成した被覆
層は、サーメット母材との間に拡散を伴うため母材との
密着強度が非常に強く、従ってかかる被覆層を有する被
覆切削工具は他のものより耐摩耗性が非常に優れてい
る。しかしその一方で、この種の被覆切削工具は、被覆
層を有しないサーメット切削工具に比較して刃先強度が
低下し、耐欠損性に劣る。その理由は、切削時における
欠損は被覆層の表面を起点として発生した亀裂が母材で
あるサーメットへ伝播することにより発生するが、表面
を被覆したバインダーを含まない硬質セラミックスの被
覆層は靭性に乏しいことから亀裂が発生しやすく、又被
覆層と母材が強固に密着しているので被覆層に発生した
亀裂が母材に伝播しやすいためである。
Generally, a coating layer formed by a chemical vapor deposition method has a very high adhesion strength with the base material because it is diffused with the cermet base material. Abrasion resistance is much better than that of On the other hand, however, this type of coated cutting tool has a lower cutting edge strength and poorer fracture resistance than a cermet cutting tool having no coating layer. The reason for this is that the defects during cutting occur when cracks originating from the surface of the coating layer propagate to the cermet, which is the base material, but the coating layer of hard ceramics that does not contain a binder that covers the surface is tough. This is because cracks are likely to occur because they are scarce, and because the coating layer and the base material are firmly adhered to each other, cracks that occur in the coating layer are likely to propagate to the base material.

【0005】又、化学的蒸着法の場合には被覆温度が通
常約1000℃と高温であるため、被覆後室温(約20
℃)まで冷却するとサーメット母材と被覆層との熱膨張
係数の差によって被覆層に引張残留応力が働くことにな
り、この引張残留応力が亀裂の伝播を助長する。現在一
般に使用されている被覆切削工具の被覆層の膜厚が約数
μmから約10数μmの範囲であるのは、被覆層の膜厚
を厚くするほど耐摩耗性が向上するものの、同時にまた
上記の理由から厚い被覆層ほど引張残留応力が大きくな
って耐欠損性が低下するからである。
Further, in the case of the chemical vapor deposition method, the coating temperature is usually as high as about 1000 ° C., so that the room temperature (about 20
When cooled to ℃), tensile residual stress acts on the coating layer due to the difference in thermal expansion coefficient between the cermet base material and the coating layer, and this tensile residual stress promotes the propagation of cracks. The coating layer thickness of the coating cutting tool currently generally used is in the range of about several μm to about several tens of μm, although the wear resistance increases as the coating layer thickness increases, but at the same time For the above reason, the thicker the coating layer, the larger the tensile residual stress and the lower the fracture resistance.

【0006】一方、特開平1−252305号には、超
硬合金からなる母材の上に化学的蒸着法によりTiC等
の内層を被覆し、この内層上にイオンプレーティング法
等の物理的蒸着法によりTiCN等の外層を被覆するこ
とによって、切削工具の耐摩耗性を向上させることが提
案されている。しかしこの提案の被覆切削工具は、母材
が靭性に優れた超硬合金であり、中高速の粗切削用途で
の超硬合金工具の安定寿命向上を図るものであるのに対
して、中高速の仕上げ加工に使用するサーメット工具は
超硬合金工具とは切削加工の条件が全く異なる脆性材料
である。
On the other hand, in JP-A-1-252305, a base material made of cemented carbide is coated with an inner layer such as TiC by a chemical vapor deposition method, and the inner layer is physically vapor-deposited by an ion plating method or the like. It has been proposed to improve the wear resistance of a cutting tool by coating an outer layer such as TiCN by a method. However, in the proposed coated cutting tool, the base material is a cemented carbide with excellent toughness, and it aims to improve the stable life of the cemented carbide tool for medium- and high-speed rough cutting applications. The cermet tool used for the finishing process is a brittle material whose cutting conditions are completely different from those of the cemented carbide tool.

【0007】従って、サーメット母材上に化学的蒸着法
により形成した硬質セラミックス被覆層の耐欠損性を向
上させることが出来れば、この被覆層本来の優れた耐摩
耗性と相俟って、従来よりも一層優れた切削特性を備え
た被覆サーメット切削工具が得られ、従来の同種サーメ
ット工具では刃先の欠損が極めて多く実用的でなかった
加工領域、例えばフライス加工や溝付き材の旋削加工等
の断続的荷重の負荷される切削加工や高速切削又は高送
りの切削加工においても、安定して使用でき又は工具寿
命を改善向上させることが可能となる。
Therefore, if it is possible to improve the fracture resistance of the hard ceramics coating layer formed on the cermet base material by the chemical vapor deposition method, in combination with the excellent abrasion resistance of this coating layer, A coated cermet cutting tool with even better cutting characteristics can be obtained. Even in the cutting process in which an intermittent load is applied, high-speed cutting or high-feed cutting process, it can be stably used or the tool life can be improved and improved.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、サーメットの母材に硬質セラミックスの被
覆層を形成し、サーメット母材に被覆層による良好な耐
摩耗性を付与し、且つ被覆層を設けることにより従来避
けられなかった耐欠損性の低下を改善することにより、
耐摩耗性と耐欠損性の両方に優れた被覆サーメット切削
工具を提供すること、及びその製造方法を提供すること
を目的とする。
In view of such conventional circumstances, the present invention forms a hard ceramic coating layer on the base material of the cermet, and imparts good wear resistance to the cermet base material by the coating layer, and By providing a coating layer to improve the decrease in fracture resistance, which was inevitable in the past,
An object of the present invention is to provide a coated cermet cutting tool excellent in both wear resistance and fracture resistance, and to provide a manufacturing method thereof.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するた
め、本発明のサーメットからなる母材の表面上に硬質被
覆層を設けた被覆サーメット切削工具においては、前記
硬質被覆層が、母材表面側に設けたTi、Zr、Hfの
炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、ホ
ウ窒化物、ホウ炭窒化物、及びAl23の少なくとも1
種から選ばれた単層又は複層で、膜厚が0.5〜15μ
mの引張残留応力を有するか又は残留応力を有しない内
側被覆層と、内側被覆層の上に設けたTi、Zr、Hf
の炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、
及びAl23、窒化チタンアルミニウム、酸窒化チタン
アルミニウムの少なくとも1種から選ばれた単層又は複
層で、膜厚が0.3〜5μmの圧縮残留応力を有する外
側被覆層とからなることを特徴とする。
In order to achieve the above object, in a coated cermet cutting tool in which a hard coating layer is provided on the surface of a base material made of cermet of the present invention, the hard coating layer is a base material surface. At least one of Ti, Zr, and Hf carbides, nitrides, carbonitrides, carbonates, carbonitrides, boronitrides, borocarbonitrides, and Al 2 O 3 provided on the side.
Single layer or multiple layers selected from seeds with a film thickness of 0.5 to 15μ
inner coating layer having a tensile residual stress of m or no residual stress, and Ti, Zr, Hf provided on the inner coating layer
Carbide, Nitride, Carbonitride, Carbonate, Carbonitride,
And a single layer or multiple layers selected from at least one of Al 2 O 3 , titanium aluminum nitride, and titanium aluminum oxynitride, and an outer coating layer having a compressive residual stress of 0.3 to 5 μm. Is characterized by.

【0010】又、本発明の被覆サーメット切削工具の製
造方法においては、化学的蒸着法によりサーメットから
なる母材表面上に、Ti、Zr、Hfの炭化物、窒化
物、炭窒化物、炭酸化物、炭酸窒化物、ホウ窒化物、ホ
ウ炭窒化物、及びAl23の少なくとも1種から選ばれ
た単層又は複層で、膜厚が0.5〜15μmの内側被覆
層を形成し、全体を室温まで冷却した後、物理的蒸着法
により内側被覆層の上に、Ti、Zr、Hfの炭化物、
窒化物、炭窒化物、炭酸化物、炭酸窒化物、及びAl2
3、窒化チタンアルミニウム、酸窒化チタンアルミニ
ウムの少なくとも1種から選ばれた単層又は複層で、膜
厚が0.3〜5μmの外側被覆層を形成することを特徴
とする。
Further, in the method for producing a coated cermet cutting tool of the present invention, Ti, Zr, Hf carbides, nitrides, carbonitrides, and carbonates are formed on the surface of a base material made of cermet by a chemical vapor deposition method. A single layer or multiple layers selected from at least one kind of carbonitride, boronitride, borocarbonitride, and Al 2 O 3 and forming an inner coating layer having a thickness of 0.5 to 15 μm, Of the Ti, Zr, and Hf carbides on the inner coating layer by physical vapor deposition after cooling to room temperature.
Nitride, carbonitride, carbon oxide, carbonitride, and Al 2
The outer coating layer having a thickness of 0.3 to 5 μm is formed of a single layer or multiple layers selected from at least one of O 3 , titanium aluminum nitride, and titanium aluminum oxynitride.

【0011】[0011]

【作用】母材であるサーメットに化学的蒸着法により被
覆層を形成した場合、通常は母材であるサーメットの破
壊強度が5〜9MN/m3/2程度であるのに対し、被覆
層の破壊強度は例えばAl23で約4MN/m3/2と劣
るので、被覆層が薄膜であるとはいえ若干の強度低下は
免れない。
When the coating layer is formed on the base material cermet by the chemical vapor deposition method, the fracture strength of the base material cermet is usually about 5 to 9 MN / m 3/2 , whereas the coating layer Since the breaking strength of Al 2 O 3 is inferior, for example, about 4 MN / m 3/2 , even if the coating layer is a thin film, some reduction in strength is unavoidable.

【0012】又、母材であるサーメットの熱膨張係数が
通常6.5〜7.5×10-6-1程度であるのに対して、
被覆層の熱膨張係数は例えばTiCで約7.6×10-6
-1及びAl23で約7.9×10-6-1と同等以上で
あるから、化学的蒸着法で被覆層を形成する際の被覆温
度約1000℃から被覆層形成後に室温まで冷却すると
被覆層に引張応力が発生する。通常この応力は被覆層の
破壊強度を越えるので、被覆層に平均間隔100〜40
0μmの亀裂が発生し、応力の一部が解放されるか条件
によっては全応力が解放される。しかし、通常は被覆層
になお0.5〜1.0GPa程度の歪みが残留し、これが
切削時の亀裂の伝播を助長するのである。
Further, the coefficient of thermal expansion of the base material cermet is usually about 6.5 to 7.5 × 10 -6 K -1 , whereas
The thermal expansion coefficient of the coating layer is about 7.6 × 10 −6 for TiC, for example.
Since K −1 and Al 2 O 3 are equal to or higher than about 7.9 × 10 −6 K −1 , the coating temperature when forming the coating layer by the chemical vapor deposition method is about 1000 ° C. to room temperature after forming the coating layer. When cooled down, tensile stress is generated in the coating layer. Since this stress usually exceeds the breaking strength of the coating layer, the average spacing of 100 to 40 is applied to the coating layer.
A crack of 0 μm occurs, and part of the stress is released, or the total stress is released depending on conditions. However, usually, a strain of about 0.5 to 1.0 GPa remains in the coating layer, which promotes the propagation of cracks during cutting.

【0013】そこで本発明では、イオンプレーティング
法等の物理的蒸着法により形成した硬質セラミックスの
被覆層には一般に1.5〜2.0GPa程度の圧縮応力が
残留することを利用し、上記のごとく化学的蒸着法によ
り母材上に形成した引張残留応力を有するか又は残留応
力を有しない内側被覆層の上に、更に物理的蒸着法によ
り形成した圧縮残留応力を有する外側被覆層を設けるこ
とによって、内側被覆層の引張残留応力を打ち消し被覆
層全体で適度な圧縮応力が残留するようにした。
Therefore, in the present invention, the compressive stress of about 1.5 to 2.0 GPa generally remains in the hard ceramic coating layer formed by the physical vapor deposition method such as the ion plating method. Providing an outer coating layer having a compressive residual stress formed by physical vapor deposition on an inner coating layer having a tensile residual stress or no residual stress formed on a base material by a chemical vapor deposition method as described above. Thus, the tensile residual stress of the inner coating layer was canceled so that an appropriate compressive stress remained in the entire coating layer.

【0014】具体的には、サーメットの母材表面側にT
iCやAl23等の単層又は複層からなり膜厚が0.5
〜15μmの内側被覆層を化学的蒸着法により形成し、
全体を室温まで冷却して内側被覆層に亀裂を発生させた
後、その内側被覆層の上に物理的蒸着法によりTiNや
TiCN等の単層又は複層からなり膜厚が0.3μm以
上の外側被覆層を形成すれば、内側被覆層と外側被覆層
の各々の残留応力が打ち消し合い、結果的に被覆層全体
に圧縮応力が残留することがX線回折により確認でき、
この残留する圧縮応力は0.2〜2.0GPaの範囲が好
ましいことも分かった。
Specifically, T is formed on the surface of the base material of the cermet.
It consists of a single layer or multiple layers such as iC and Al 2 O 3 and has a film thickness of 0.5.
Forming an inner coating layer of ˜15 μm by chemical vapor deposition,
After the whole is cooled to room temperature and cracks are generated in the inner coating layer, a physical vapor deposition method is used to form a single layer or multiple layers of TiN, TiCN, etc. on the inner coating layer, and the film thickness is 0.3 μm or more. If the outer coating layer is formed, it can be confirmed by X-ray diffraction that the residual stresses of the inner coating layer and the outer coating layer cancel each other out, resulting in residual compressive stress in the entire coating layer.
It was also found that the residual compressive stress is preferably in the range of 0.2 to 2.0 GPa.

【0015】この様に内側被覆層と外側被覆層の残留応
力を調整することにより、被覆層の耐欠損性を向上させ
ることが可能となり、その結果サーメット母材との良好
な密着性と優れた耐摩耗性を保持したまま、同時に切削
における切刃の耐欠損性及び耐チッピング性を大幅に向
上させた被覆サーメット切削工具を得ることが出来た。
ただし、外側被覆層の膜厚が5μmを越えると、総膜厚
が厚くなり過ぎることから耐欠損性の向上が少なくなる
ので、外側被覆層の膜厚は0.3〜5.0μmの範囲が好
ましい。
By adjusting the residual stress of the inner coating layer and the outer coating layer in this manner, it becomes possible to improve the fracture resistance of the coating layer, and as a result, good adhesion to the cermet base material and excellent adhesion are obtained. It was possible to obtain a coated cermet cutting tool in which the wear resistance was maintained and at the same time, the fracture resistance and chipping resistance of the cutting edge during cutting were greatly improved.
However, if the film thickness of the outer coating layer exceeds 5 μm, the total film thickness becomes too thick, so that the improvement in fracture resistance is reduced, so that the film thickness of the outer coating layer is in the range of 0.3 to 5.0 μm. preferable.

【0016】[0016]

【実施例】型番CNGN432のチップ形状を有するI
SO P01のサーメットからなる母材を用意し、この
母材表面に公知のCVD法により通常の条件で表1に示
す単層又は複層の内側被覆層を形成し、全体を室温に冷
却した後、X線回折により内側被覆層の引張残留応力を
測定した。次に、内側被覆層の上に公知の物理的蒸着法
により通常の条件で表1に示す単層又は複層の外側被覆
層を形成し、同様に被覆層全体の圧縮残留応力を測定し
た。
[Example] I having a chip shape of model number CNGN432
A base material made of SOPET cermet was prepared, and a single-layer or multi-layer inner coating layer shown in Table 1 was formed on the surface of the base material by a known CVD method under normal conditions, and the whole was cooled to room temperature. The residual tensile stress of the inner coating layer was measured by X-ray diffraction. Next, a single-layer or multiple-layer outer coating layer shown in Table 1 was formed under ordinary conditions on the inner coating layer by a known physical vapor deposition method, and the compressive residual stress of the entire coating layer was similarly measured.

【0017】[0017]

【表1】 内側被覆層と膜厚 外側被覆層と膜厚 内側被覆層の 被覆層全体の試料 母材→ (μm) →外側 (μm) 引張残留応力 圧縮残留応力 1* なし なし なし なし 2* TiCN/Al2O3 なし 0.3GPa −0.3GPa 10.0 5.0 3* TiCN/Al2O3 TiAlN 0.3GPa 0GPa 10.0 5.0 0.2 4* TiCN/Al2O3 TiCN/TiN 0.3GPa 1.7GPa 10.0 5.0 4.0 2.0 5* TiCN/Al2O3 TiCN/TiN 0.35GPa 1.4GPa 10.0 6.0 2.0 3.0 6* ZrN TiCN/TiN 0GPa 1.1GPa 0.3 1.0 1.0 7 HfC/Al2O3 TiCN/TiN 0.3GPa 1.4GPa 10.0 5.0 2.0 3.0 8 ZrN/HfCN TiCN/TiN 0GPa 1.2GPa 0.3 0.2 1.0 1.5 9 TiCN/Al2O3 TiAlN 0.3GPa 0.2GPa 10.0 5.0 0.3 10 TiCN/TiBCN/TiBN/Al2O3 HfCO/TiAlNO 0.3GPa 0.2GPa 6.0 2.0 2.0 5.0 0.1 0.2 11 TiC/TiCO/Al2O3 ZrCNO/ZrN 0.3GPa 1.2GPa 9.5 0.5 0.5 2.0 3.0 (注)*を付した試料1〜6は比較例である(以下同
じ)。
[Table 1] Inner coating layer and film thickness Outer coating layer and film thickness Inner coating layer Sample material of the entire coating layer → (μm) → Outer (μm) Tensile residual stress Compressive residual stress 1 * None None None None 2 * TiCN / Al 2 O 3 None 0.3GPa −0.3GPa 10.0 5.0 3 * TiCN / Al 2 O 3 TiAlN 0.3GPa 0GPa 10.0 5.0 0.2 4 * TiCN / Al 2 O 3 TiCN / TiN 0.3GPa 1.7GPa 10.0 5.0 4.0 2.0 5 * TiCN / Al 2 O 3 TiCN / TiN 0.35GPa 1.4GPa 10.0 6.0 2.0 3.0 6 * ZrN TiCN / TiN 0GPa 1.1GPa 0.3 1.0 1.0 7 HfC / Al 2 O 3 TiCN / TiN 0.3GPa 1.4GPa 10.0 5.0 2.0 3.0 8 ZrN / HfCN TiCN / TiN 0GPa 1.2GPa 0.3 0.2 1.0 1.5 9 TiCN / Al 2 O 3 TiAlN 0.3GPa 0.2GPa 10.0 5.0 0.3 10 TiCN / TiBCN / TiBN / Al 2 O 3 HfCO / TiAlNO 0.3GPa 0.2GPa 6.0 2.0 2.0 5.0 0.1 0.2 11 TiC / TiCO / Al 2 O 3 ZrCNO / ZrN 0.3GPa 1.2GPa 9.5 0.5 0.5 2.0 3.0 (Note) Samples 1 to 6 marked with * are comparative examples (same below).

【0018】得られた各被覆サーメット切削工具を用い
て、下記切削条件による切削試験を行って切削性能をそ
れぞれ評価し、結果を表2に示した。耐摩耗性 被 削 材: SCM415 切削速度: 250m/min. 送 り: 0.3mm/rev. 切 込 み: 1.5mm 切削時間: 20min.耐欠損性 被 削 材: SCM435溝付き材(外周上等間隔に長
手方向の溝4本) 切削速度: 100m/min. 送 り: 0.15〜0.25mm/rev. 切 込 み: 2.0mm 切削時間: 0.5min.
Using each of the obtained coated cermet cutting tools, a cutting test was performed under the following cutting conditions to evaluate the cutting performance, and the results are shown in Table 2. Wear resistance Work material: SCM415 Cutting speed: 250 m / min. Delivery: 0.3 mm / rev. Depth of cut: 1.5 mm Cutting time: 20 min. Fracture resistance Work material: SCM435 grooved material (4 grooves in the longitudinal direction at equal intervals on the outer circumference) Cutting speed: 100 m / min. Sending: 0.15-0.25 mm / rev. Depth of cut: 2.0 mm Cutting time: 0.5 min.

【0019】[0019]

【表2】 [Table 2]

【0020】試料1と2の比較から化学的蒸着法による
被覆層を設けるだけでは耐摩耗性は向上するが耐欠損性
が低下してしまうこと、試料3では外側被覆層が薄いた
め十分な圧縮残留応力が得られないので耐欠損性に劣る
こと、試料4と5では外側被覆層又は内側被覆層が厚す
ぎるため耐欠損性の向上が十分でないこと、又試料6で
は内側被覆層が薄すぎるため耐摩耗性に劣ることが分か
る。これに対して本発明例の試料7〜11では、被覆層
に適度な圧縮残留応力が残り、耐摩耗性及び耐欠損性の
両方が向上していることが分かる。
From the comparison of Samples 1 and 2, abrasion resistance is improved but chipping resistance is lowered only by providing the coating layer by the chemical vapor deposition method. In Sample 3, the outer coating layer is thin, so that sufficient compression is achieved. Residual stress cannot be obtained, resulting in poor fracture resistance. In Samples 4 and 5, the outer coating layer or inner coating layer is too thick, so improvement in fracture resistance is not sufficient, and in Sample 6, the inner coating layer is too thin. Therefore, it is understood that the wear resistance is poor. On the other hand, in Samples 7 to 11 of the examples of the present invention, it can be seen that an appropriate compressive residual stress remains in the coating layer, and both wear resistance and fracture resistance are improved.

【0021】[0021]

【発明の効果】本発明によれば、サーメット母材への被
覆層として、化学的蒸着法により形成した引張残留応力
を適度に有する内側被覆層と、この内側被覆層の上に物
理的蒸着法により形成した圧縮残留応力を有する外側被
覆層とを積層してあるので、内側被覆層のサーメット母
材への優れた密着強度と被覆層全体での好適な圧縮応力
の残留により、優れた耐摩耗性を有すると同時に耐欠損
性を大幅に向上させた被覆サーメット切削工具を提供す
ることが出来る。
According to the present invention, as a coating layer on the cermet base material, an inner coating layer having a suitable tensile residual stress formed by a chemical vapor deposition method, and a physical vapor deposition method on the inner coating layer. Since it is laminated with the outer coating layer having a compressive residual stress formed by, the inner coating layer has excellent adhesion strength to the cermet base material and excellent compressive stress remains in the entire coating layer, resulting in excellent wear resistance. It is possible to provide a coated cermet cutting tool which has the property of improving fracture resistance at the same time.

【0022】従って、本発明の被覆サーメット切削工具
によれば、従来のサーメット切削工具では適用が困難で
あった切削条件、例えばフライス加工や溝付き材の旋削
加工等の断続的荷重の負荷される切削加工や高速切削又
は高送りの切削加工においても、工具寿命が長くなり、
安定して使用することが出来る。
Therefore, according to the coated cermet cutting tool of the present invention, cutting conditions which are difficult to apply to the conventional cermet cutting tool, for example, intermittent load such as milling and turning of grooved material are applied. Even in cutting, high-speed cutting or high-feed cutting, the tool life will increase,
It can be used stably.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 晄徳 兵庫県伊丹市昆陽北一丁目1番1号 住友 電気工業株式会社伊丹製作所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akinori Kobayashi 1-1-1 Kunyokita, Itami City, Hyogo Prefecture Sumitomo Electric Industries, Ltd. Itami Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 サーメットからなる母材の表面上に硬質
被覆層を設けた被覆サーメット切削工具において、前記
硬質被覆層が、母材表面側に設けたTi、Zr、Hfの
炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、ホ
ウ窒化物、ホウ炭窒化物、及びAl23の少なくとも1
種から選ばれた単層又は複層で、膜厚が0.5〜15μ
mの引張残留応力を有するか又は残留応力を有しない内
側被覆層と、内側被覆層の上に設けたTi、Zr、Hf
の炭化物、窒化物、炭窒化物、炭酸化物、炭酸窒化物、
及びAl23、窒化チタンアルミニウム、酸窒化チタン
アルミニウムの少なくとも1種から選ばれた単層又は複
層で、膜厚が0.3〜5μmの圧縮残留応力を有する外
側被覆層とからなることを特徴とする被覆サーメット切
削工具。
1. A coated cermet cutting tool in which a hard coating layer is provided on the surface of a base material made of cermet, wherein the hard coating layer is a carbide, nitride of Ti, Zr, or Hf provided on the surface side of the base material. At least one of carbonitride, carbon oxide, carbonitride, boronitride, borocarbonitride, and Al 2 O 3 .
Single layer or multiple layers selected from seeds with a film thickness of 0.5 to 15μ
inner coating layer having a tensile residual stress of m or no residual stress, and Ti, Zr, Hf provided on the inner coating layer
Carbide, Nitride, Carbonitride, Carbonate, Carbonitride,
And a single layer or multiple layers selected from at least one of Al 2 O 3 , titanium aluminum nitride, and titanium aluminum oxynitride, and an outer coating layer having a compressive residual stress of 0.3 to 5 μm. A coated cermet cutting tool characterized by.
【請求項2】 内側被覆層と外側被覆層からなる被覆層
全体で0.2〜2.0GPaの圧縮応力が残留しているこ
とを特徴とする、請求項1記載の被覆サーメット切削工
具。
2. The coated cermet cutting tool according to claim 1, wherein a compressive stress of 0.2 to 2.0 GPa remains in the entire coating layer including the inner coating layer and the outer coating layer.
【請求項3】 化学的蒸着法によりサーメットからなる
母材表面上に、Ti、Zr、Hfの炭化物、窒化物、炭
窒化物、炭酸化物、炭酸窒化物、ホウ窒化物、ホウ炭窒
化物、及びAl23の少なくとも1種から選ばれた単層
又は複層で、膜厚が0.5〜15μmの内側被覆層を形
成し、全体を室温まで冷却した後、物理的蒸着法により
内側被覆層の上に、Ti、Zr、Hfの炭化物、窒化
物、炭窒化物、炭酸化物、炭酸窒化物、及びAl23
窒化チタンアルミニウム、酸窒化チタンアルミニウムの
少なくとも1種から選ばれた単層又は複層で、膜厚が
0.3〜5μmの外側被覆層を形成することを特徴とす
る被覆サーメット切削工具の製造方法。
3. A Ti, Zr, Hf carbide, nitride, carbonitride, carbon oxide, carbonitride, boronitride, borocarbonitride on a surface of a base material made of cermet by a chemical vapor deposition method. And an inner coating layer having a thickness of 0.5 to 15 μm, which is a single layer or multiple layers selected from at least one of Al 2 O 3 and is cooled to room temperature, and then subjected to physical vapor deposition to form an inner layer. On top of the coating layer, Ti, Zr, Hf carbides, nitrides, carbonitrides, carbonates, carbonitrides, and Al 2 O 3 ,
A method for producing a coated cermet cutting tool, which comprises forming an outer coating layer having a film thickness of 0.3 to 5 μm with a single layer or multiple layers selected from at least one of titanium aluminum nitride and titanium aluminum oxynitride. .
JP35757291A 1991-12-26 1991-12-26 Covered cermet cutting tool and its manufacture Pending JPH05177413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35757291A JPH05177413A (en) 1991-12-26 1991-12-26 Covered cermet cutting tool and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35757291A JPH05177413A (en) 1991-12-26 1991-12-26 Covered cermet cutting tool and its manufacture

Publications (1)

Publication Number Publication Date
JPH05177413A true JPH05177413A (en) 1993-07-20

Family

ID=18454812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35757291A Pending JPH05177413A (en) 1991-12-26 1991-12-26 Covered cermet cutting tool and its manufacture

Country Status (1)

Country Link
JP (1) JPH05177413A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006082191A (en) * 2004-09-16 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
WO2006064724A1 (en) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. Surface-covered cutting tool
JP2007296624A (en) * 2006-04-04 2007-11-15 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer for exhibiting excellent abrasion resistance in high speed cutting
JP2007314853A (en) * 2006-05-29 2007-12-06 Hitachi Tool Engineering Ltd Hard film-coated member
JP2010137315A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2010137314A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
US7803464B2 (en) 2004-12-27 2010-09-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US7838132B2 (en) 2004-09-10 2010-11-23 Sandvik Intellectual Property Ab PVD-coated cutting tool insert
JP2011079134A (en) * 2010-11-18 2011-04-21 Sumitomo Electric Hardmetal Corp Method for manufacturing surface coated cutting tool
US8012611B2 (en) 2004-10-29 2011-09-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
AU2014271742B2 (en) * 2013-05-30 2016-06-16 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus of exhaust gas purification apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7838132B2 (en) 2004-09-10 2010-11-23 Sandvik Intellectual Property Ab PVD-coated cutting tool insert
JP2006082191A (en) * 2004-09-16 2006-03-30 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
US8012611B2 (en) 2004-10-29 2011-09-06 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
WO2006064724A1 (en) 2004-12-14 2006-06-22 Sumitomo Electric Hardmetal Corp. Surface-covered cutting tool
US7972714B2 (en) 2004-12-14 2011-07-05 Sumitomo Electric Hardmetal Corp. Coated cutting tool
US7803464B2 (en) 2004-12-27 2010-09-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2007296624A (en) * 2006-04-04 2007-11-15 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer for exhibiting excellent abrasion resistance in high speed cutting
JP2007314853A (en) * 2006-05-29 2007-12-06 Hitachi Tool Engineering Ltd Hard film-coated member
JP4566158B2 (en) * 2006-05-29 2010-10-20 日立ツール株式会社 Hard coating coated member
JP2010137314A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2010137315A (en) * 2008-12-10 2010-06-24 Sumitomo Electric Hardmetal Corp Surface coated cutting tool
JP2011079134A (en) * 2010-11-18 2011-04-21 Sumitomo Electric Hardmetal Corp Method for manufacturing surface coated cutting tool
AU2014271742B2 (en) * 2013-05-30 2016-06-16 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus of exhaust gas purification apparatus

Similar Documents

Publication Publication Date Title
JP3866305B2 (en) Composite high hardness material for tools
EP1952920B1 (en) Cutting tip of cutting edge replacement type
JP3452726B2 (en) Multi-layer coated hard tool
US5364209A (en) CVD and PVD coated cutting tools
US6337152B1 (en) Cutting tool made of A12O3-coated cBN-based sintered material
EP0149024B2 (en) Surface-coated wear-resistant member of cermet and process for producing same
JP3420024B2 (en) Laminated coating member including crystal oriented hard film
JPH05177413A (en) Covered cermet cutting tool and its manufacture
JPH05177411A (en) Cover cutting tool and its manufacture
JPH05177412A (en) Covered ceramics cutting tool and its manufacture
KR102600870B1 (en) Cutting tool having hard coating layer with ecellent wear resistance and toughness
JPH10225804A (en) Surface-coated cemented carbide cutting tool excellent in chipping resistance and manufacture therefor
JP5070621B2 (en) Surface coated cutting tool
JP3358696B2 (en) High strength coating
JP3130734B2 (en) Heat resistant coating
JP2002273607A (en) Multilayer coat tool
JP2556089B2 (en) Surface coated cemented carbide cutting tool for high speed cutting
JPH1158104A (en) Cutting tool made of surface-coated cemented carbide excellent in chip resistance
JPH05222551A (en) Manufacture of coated cermet cutting tool
JP2556116B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance
JPH1076408A (en) Hard tool covered with multiple layers
JP3391264B2 (en) Milling tool with excellent fracture resistance
JPH11277304A (en) Milling tool excellent in wear resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JPH09291353A (en) Surface coated end mill