JPH0517623A - Surface-modified ceramic particle and its production - Google Patents
Surface-modified ceramic particle and its productionInfo
- Publication number
- JPH0517623A JPH0517623A JP17357691A JP17357691A JPH0517623A JP H0517623 A JPH0517623 A JP H0517623A JP 17357691 A JP17357691 A JP 17357691A JP 17357691 A JP17357691 A JP 17357691A JP H0517623 A JPH0517623 A JP H0517623A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- material particles
- wall material
- core material
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、例えば樹脂と充填剤と
からなる成型材料の充填材として用いられるセラミック
粒子に関し、更に詳しくは表面改質セラミック粒子とそ
の製法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to ceramic particles used as a filler for a molding material composed of, for example, a resin and a filler, and more particularly to surface-modified ceramic particles and a method for producing the same.
【0002】[0002]
【従来の技術】近年、成形品の低応力化や高強度化など
の高性能化を実現するために、充填材として用いられる
セラミック粒子の表面改質が検討されている。この表面
改質の方法としては、トポケミカルな改質、コーティン
グによる改質、湿式下でのカプセル化による改質、、機
械的混合法による改質、高エネルギーによる改質など多
くの方法が検討されている。しかし、いずれの方法によ
っても、成形品の低応力化や高強度化などの高性能化の
達成レベルは不充分であるのが現状である。2. Description of the Related Art In recent years, surface modification of ceramic particles used as a filler has been studied in order to realize high performance such as low stress and high strength of molded products. As the surface modification method, many methods such as topochemical modification, modification by coating, modification by encapsulation under wet condition, modification by mechanical mixing method, modification by high energy, etc. are considered. ing. However, at present, the level of achievement of high performance such as low stress and high strength of the molded product is insufficient by any of the methods.
【0003】[0003]
【発明が解決しようとする課題】本発明の目的は成形品
の低応力化や高強度化などの高性能化に有効な表面改質
セラミック粒子とその製法を提供することである。SUMMARY OF THE INVENTION An object of the present invention is to provide surface-modified ceramic particles which are effective for high performance such as stress reduction and strength enhancement of a molded product, and a method for producing the same.
【0004】[0004]
【課題を解決するための手段】表面改質セラミック粒子
に関する発明は、カップリング剤処理が施されたセラミ
ック粒子よりなる芯材粒子の表面に、平均粒径が前記の
芯材粒子の平均粒径の1/8以下であって、且つ 5μm
以下である壁材粒子が固定化されていることを特徴とす
るものであり、表面改質セラミック粒子の製法に関する
発明は、カップリング剤処理が施されたセラミック粒子
よりなる芯材粒子と、平均粒径が前記の芯材粒子の平均
粒径の1/8以下であって、且つ 5μm以下である壁材
粒子とを、前記の壁材粒子の重量が前記の芯材粒子の重
量の1/5以下となるように配合した後、前記の芯材粒
子の表面に前記の壁材粒子を固定化させることを特徴と
するものである。The invention relating to surface-modified ceramic particles is such that the average particle size of the core particles is the average particle size on the surface of the core particles made of ceramic particles treated with a coupling agent. ⅛ or less and 5 μm
The following is characterized in that the wall material particles are fixed, the invention relating to the method for producing the surface-modified ceramic particles, the core material particles consisting of the ceramic particles subjected to the coupling agent treatment, the average. A wall material particle having a particle diameter of ⅛ or less of the average particle diameter of the core material particles and 5 μm or less, and the weight of the wall material particles is 1/1 of the weight of the core material particles. It is characterized in that the wall material particles are immobilized on the surface of the core material particles after blending so as to be 5 or less.
【0005】以下、この発明を詳しく説明する。本発明
におけるセラミック粒子の材質については特に限定はな
く、例を挙げるとシリカ粒子、アルミナ粒子、窒化アル
ミ粒子、窒化珪素粒子、炭化珪素粒子などがあげられ、
また、その粒径についても特に限定はないが、従来から
用いられている 1〜 500μm程度の粒径のものが適当で
ある。The present invention will be described in detail below. The material of the ceramic particles in the present invention is not particularly limited, and examples thereof include silica particles, alumina particles, aluminum nitride particles, silicon nitride particles, silicon carbide particles, and the like.
The particle size is also not particularly limited, but a particle size of 1 to 500 μm, which has been conventionally used, is suitable.
【0006】本発明の、上記のセラミック粒子にカップ
リング剤処理を施した芯材粒子を用いる目的は、カップ
リング剤処理によって壁材粒子が芯材粒子表面へ付着し
た際の接着強度を向上させるためである。本発明で用い
るカップリング剤については特に限定はないが、壁材粒
子の表面電荷と逆の帯電性を持つカップリング剤を用い
ると、静電引力の作用で壁材粒子が芯材粒子の表面に付
着しやすくなるので好ましい。本発明で用いるカップリ
ング剤の例を挙げると、γ−グリシドキシプロピルトリ
メトキシシラン、γ−アミノプロピルトリエトキシシラ
ンなどのシラン系カップリング剤やチタネート系カップ
リング剤などがあげられ、また、カップリング剤の添加
量については特に限定するものではないが、芯材粒子 1
00重量部に対して 0.1〜1.5 重量部の添加量が好まし
い。カップリング剤処理の方法についても特に限定はな
く、例を挙げると乾式噴霧法、湿式法、オートクレーブ
法などの方法が挙げられる。The purpose of the present invention to use the core material particles obtained by treating the ceramic particles with the coupling agent is to improve the adhesive strength when the wall material particles adhere to the surface of the core material particles by the coupling agent treatment. This is because. There is no particular limitation on the coupling agent used in the present invention, but when a coupling agent having a charge property opposite to the surface charge of the wall material particles is used, the wall material particles have a surface of the core material particles by the action of electrostatic attraction. It is preferable because it easily adheres to. Examples of the coupling agent used in the present invention include γ-glycidoxypropyltrimethoxysilane, silane coupling agents such as γ-aminopropyltriethoxysilane and titanate coupling agents, and the like. The addition amount of the coupling agent is not particularly limited, but the core particles 1
An addition amount of 0.1 to 1.5 parts by weight with respect to 00 parts by weight is preferable. The method of treating the coupling agent is not particularly limited, and examples thereof include a dry spray method, a wet method, and an autoclave method.
【0007】本発明で用いる壁材粒子の材質については
特に限定はなく、例を挙げるとシリカ粒子、アルミナ粒
子などのセラミックの粒子または樹脂粒子、金属粒子な
どが挙げられ、目的に応じて適宜選べばよい。本発明で
は、芯材粒子の表面に壁材粒子を固定化するが、そのた
めには壁材粒子の粒径は芯材粒子の粒径より格段に小さ
いことが必要であり、壁材粒子の平均粒径は芯材粒子の
平均粒径の1/8以下に制限される。即ち、1/8より
大きい場合には芯材粒子の表面に壁材粒子を固定化する
ことが困難となる。併せて、この壁材粒子は粒径が小さ
いほど芯材粒子の表面に確実に固定化されるので、その
平均粒径は 5μm以下に制限される。The material of the wall material particles used in the present invention is not particularly limited, and examples thereof include ceramic particles such as silica particles and alumina particles, resin particles, and metal particles, which can be appropriately selected according to the purpose. Good. In the present invention, the wall material particles are immobilized on the surface of the core material particles, but for that purpose the particle diameter of the wall material particles needs to be significantly smaller than the particle diameter of the core material particles. The particle size is limited to ⅛ or less of the average particle size of the core particles. That is, when it is larger than 1/8, it becomes difficult to fix the wall material particles on the surface of the core material particles. In addition, the smaller the particle size of the wall material is, the more reliably it is immobilized on the surface of the core material particle, so that the average particle size is limited to 5 μm or less.
【0008】本発明の表面改質セラミック粒子の製造の
際に、壁材粒子を余りに多く配合した場合、芯材粒子の
表面に固定化されない過剰な壁材粒子が生じ、この過剰
な壁材粒子は、本発明が目的とする粒子充填複合材の性
能改良に悪影響を及ぼすので、芯材粒子に対する壁材粒
子の配合量は、芯材粒子の重量の1/5以下の重量にと
どめることが望ましい。また、逆に芯材粒子に対する壁
材粒子の配合量が極端に少ないと、芯材粒子の表面を壁
材粒子で覆うことが困難となるので、壁材粒子の配合量
は少なくとも芯材粒子の表面を壁材粒子の単粒子層で覆
うことができる量以上を使用することが好ましい。In the production of the surface-modified ceramic particles of the present invention, if too much wall material particles are blended, excessive wall material particles that are not fixed are formed on the surface of the core material particles, and the excess wall material particles are generated. Has an adverse effect on the performance improvement of the particle-filled composite material, which is the object of the present invention, so it is desirable that the amount of the wall material particles blended with the core material particles should be ⅕ or less of the weight of the core material particles. . On the contrary, when the amount of the wall material particles to the core material particles is extremely small, it becomes difficult to cover the surface of the core material particles with the wall material particles. Therefore, the amount of the wall material particles mixed is at least that of the core material particles. It is preferable to use an amount that is more than the amount that can cover the surface with a single particle layer of wall material particles.
【0009】本発明において前記の芯材粒子の表面に前
記の壁材粒子を固定化する方法については特に限定はな
く、コーティングによる方法、湿式下でのカプセル化に
よる方法、、機械的混合法などが例示できるが、工程が
単純なことから機械的混合法によるのが好ましい。この
機械的混合方法としては、自動乳鉢による乾式単純混合
法、メカノミルによる乾式コーティング法、強力な衝撃
力を利用した高速気流中衝撃法、強力な剪断力と熱エネ
ルギーとを利用した機械化学的表面融合法などがある
が、それらの中では高速気流中衝撃法および機械化学的
表面融合法の2つの方法が、芯材粒子の表面に壁材粒子
を強固に固定化できるので好ましい。In the present invention, the method for immobilizing the wall material particles on the surface of the core material particles is not particularly limited, and a method by coating, a method by encapsulation under wet conditions, a mechanical mixing method, etc. However, it is preferable to use a mechanical mixing method because the process is simple. This mechanical mixing method includes a dry simple mixing method using an automatic mortar, a dry coating method using a mechanomill, a high-speed air current impact method that uses a strong impact force, and a mechanochemical surface that uses a strong shearing force and thermal energy. Among them, there are a fusion method and the like. Among them, the two methods of the high-speed air current impact method and the mechanochemical surface fusion method are preferable because the wall material particles can be firmly immobilized on the surface of the core material particles.
【0010】[0010]
【作用】本発明の、芯材粒子におけるカップリング剤処
理は壁材粒子が芯材粒子表面へ付着した時の接着強度を
向上させる働きをし、この接着強度の向上によって、よ
り多くの壁材粒子が芯材粒子表面に、より確実に固定化
されるようになり、従ってセラミック粒子の表面改質が
より充分に行われるようになる。The treatment of the core material particles with the coupling agent according to the present invention serves to improve the adhesive strength when the wall material particles adhere to the surface of the core material particles. The particles are more reliably fixed to the surface of the core material particles, and thus the surface modification of the ceramic particles is more sufficiently performed.
【0011】[0011]
(実施例1〜7及び比較例1〜7)芯材粒子用のセラミ
ック粒子としては、平均粒径が55μmのアルミナ粒子で
ある昭和電工社製のAL-15H、平均粒径が30μmの溶融シ
リカである徳山曹達社製のSE30を使用した。カップリン
グ剤としてはγ−アミノプロピルトリエトキシシランで
ある信越化学工業社製のKBE903とγ−グリシドキシプロ
ピルトリメトキシシランである東レシリコーン社製のSH
6040とを使用した。なお、これらの化学式をそれぞれ化
1、化2として下記に示す。(Examples 1 to 7 and Comparative Examples 1 to 7) As the ceramic particles for the core material particles, AL-15H manufactured by Showa Denko KK, which is an alumina particle having an average particle diameter of 55 μm, and fused silica having an average particle diameter of 30 μm. SE30 manufactured by Tokuyama Soda Co., Ltd. was used. As the coupling agent, γ-aminopropyltriethoxysilane KBE903 manufactured by Shin-Etsu Chemical Co., Ltd. and γ-glycidoxypropyltrimethoxysilane SH manufactured by Toray Silicone Co., Ltd.
I used 6040 and. These chemical formulas are shown below as Chemical Formula 1 and Chemical Formula 2, respectively.
【0012】[0012]
【化1】 [Chemical 1]
【0013】[0013]
【化2】 [Chemical 2]
【0014】そして、前記の芯材粒子用のセラミック粒
子と前記のカップリング剤とを表1及び表2に示す組合
せ及び配合量に従って計量し、噴霧処理法でカップリン
グ剤処理を行い、芯材粒子を得た。但し、比較例1〜3
及び7についてはカップリング剤処理を行わずにセラミ
ック粒子そのままを芯材粒子とした。Then, the ceramic particles for the core material particles and the coupling agent are weighed according to the combinations and compounding amounts shown in Tables 1 and 2, and the coupling agent treatment is performed by a spray treatment method to obtain the core material. The particles were obtained. However, Comparative Examples 1 to 3
With respect to Nos. 7 and 7, the ceramic particles were used as core particles without the coupling agent treatment.
【0015】次に、壁材粒子としてはアクリル樹脂の微
粒子である綜研化学社製のMP4951、MP1400、酸化チタン
微粒子である石原産業社製のTTO-55C 、アルミナ微粒子
である昭和電工社製のUA-5105 、銀粒子である同和鉱業
社製のG-17H 及び硬化したエポキシ樹脂の粉末である東
レ社製のEP-AD を用いた。Next, as wall material particles, MP4951 and MP1400 manufactured by Soken Chemical Industry Co., Ltd., which are fine particles of acrylic resin, TTO-55C manufactured by Ishihara Sangyo Co., Ltd., which is a titanium oxide fine particle, and UA manufactured by Showa Denko KK, which is an alumina fine particle. -5105, G-17H manufactured by Dowa Mining Co., Ltd., which is a silver particle, and EP-AD manufactured by Toray Co., Ltd., which is a powder of a cured epoxy resin, were used.
【0016】前記の芯材粒子と壁材粒子とを表1及び表
2に示す組合せ及び配合量に従って配合し、ホソカワミ
クロン社製のメカノフュージョンシステム(登録商標)
と呼ばれる機械で1000rpm 、 5分間の条件で機械化学的
表面融合法による機械的混合を行い、芯材粒子の表面に
壁材粒子が固定された表面改質セラミック粒子を得た。
(なお、表1及び表2に示す配合量はすべて重量部であ
る。)得られた表面改質セラミック粒子を走査型電子顕
微鏡(SEM)により観察し芯材粒子の表面の壁材粒子
の固定状況を観察し、その表面が完全に被覆されている
場合を改質度 100%とし、全く被覆されていない場合を
改質度 0%として、得られた表面改質セラミック粒子の
改質度を評価し、その結果を表1及び表2に示した。The above-mentioned core material particles and wall material particles are blended according to the combinations and blending amounts shown in Tables 1 and 2, and Mechanofusion System (registered trademark) manufactured by Hosokawa Micron Co., Ltd.
Machine was used to perform mechanical mixing by the mechanochemical surface fusion method at 1000 rpm for 5 minutes to obtain surface-modified ceramic particles having wall material particles fixed on the surface of core material particles.
(Note that the compounding amounts shown in Tables 1 and 2 are all parts by weight.) The obtained surface-modified ceramic particles are observed with a scanning electron microscope (SEM) to fix the wall material particles on the surface of the core material particles. By observing the situation, the degree of modification of the obtained surface-modified ceramic particles is defined as 100% when the surface is completely covered and 0% when the surface is not covered at all. The evaluation was performed and the results are shown in Tables 1 and 2.
【0017】次に、上記の得られた表面改質セラミック
粒子を用いて、表1及び表2に示す配合量に従って配合
し成形材料を得た。その際に、エポキシ樹脂は住友化学
社製のESCN-195を、硬化剤はフェノールノボラック樹脂
である荒川化学社製のタマノール 752を、硬化促進剤は
北興化学社製のトリフェニルホスフィンをそれぞれ用
い、これらの配合物をミキシングロールで10分間混練
後、粉砕して成形材料を得た。得られた成形材料を用い
て成形温度 170℃でトランスファー成形し、さらに175
℃で 4時間のアフターキュアーを行い成形品を得た。得
られた成形品の線膨張係数及び曲げ強度を測定し、その
結果を表1及び表2に示す。なお、線膨張係数はTMA
装置により圧縮法で50〜 100℃の範囲の膨張量から求
め、曲げ強度はJIS 規格のK-6911に準拠して測定した。Next, the surface-modified ceramic particles obtained above were compounded in accordance with the compounding amounts shown in Tables 1 and 2 to obtain molding materials. At that time, the epoxy resin is ESCN-195 manufactured by Sumitomo Chemical Co., Ltd., the curing agent is Tamanol 752 manufactured by Arakawa Chemical Co., which is a phenol novolac resin, and the curing accelerator is triphenylphosphine manufactured by Kitako Chemical Co., Ltd. These blends were kneaded with a mixing roll for 10 minutes and then pulverized to obtain a molding material. Transfer molding was performed using the molding material obtained at a molding temperature of 170 ° C.
After-curing was performed at ℃ for 4 hours to obtain a molded product. The linear expansion coefficient and bending strength of the obtained molded product were measured, and the results are shown in Tables 1 and 2. The coefficient of linear expansion is TMA
The flexural strength was measured according to JIS standard K-6911 by the compression method using an expansion amount in the range of 50 to 100 ° C.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】表1及び表2における、実施例1と比較例
1との比較、実施例5と比較例2との比較及び実施例7
と比較例7との比較から、カップリング剤処理を施した
芯材粒子を用いた実施例1、5、7の方がカップリング
剤処理を施していない芯材粒子を用いた比較例1、2、
7よりそれぞれ改質率及び成形品の性能が優れているこ
とがわかる。このカップリング剤処理の有効性は銀微粒
子を用いている実施例6と比較例3との改質率の比較か
らも言える。In Tables 1 and 2, comparison between Example 1 and Comparative Example 1, comparison between Example 5 and Comparative Example 2 and Example 7
From the comparison between Comparative Example 7 and Comparative Example 7, Examples 1, 5 and 7 using the core material particles treated with the coupling agent, Comparative Example 1 using the core material particles not treated with the coupling agent, 2,
7 indicates that the reforming rate and the performance of the molded product are excellent. The effectiveness of this coupling agent treatment can be said from the comparison of the modification ratios of Example 6 using silver fine particles and Comparative example 3.
【0021】また、実施例1と実施例2とを比較する
と、平均粒径 1μmの壁材粒子を用いている実施例2
は、平均粒径 0.15 μmの壁材粒子を用いた実施例1よ
り改質率及び粒子充填複合材の性能は若干低下してい
て、壁材粒子の粒径が大きくなると改質率及び成形品の
性能は低下傾向になることを示している。比較例4は実
施例1、2とは壁材粒子の材質は異なり、実施例1、2
と直接比較はできないが、平均粒径が 7μmである壁材
粒子を用いている比較例4では改質率は 0%であり、壁
材粒子の粒径が 5μを越えると望ましくないことがわか
る。Further, comparing Example 1 and Example 2, Example 2 using wall material particles having an average particle size of 1 μm
Shows that the modification ratio and the performance of the particle-filled composite material are slightly lower than those of Example 1 in which the wall material particles having an average particle diameter of 0.15 μm are used. It shows that the performance of (1) tends to decrease. The material of the wall material particles of Comparative Example 4 is different from those of Examples 1 and 2, and
Although it cannot be directly compared with, it can be seen that in Comparative Example 4 in which the wall material particles having an average particle size of 7 μm are used, the modification rate is 0%, and it is not desirable that the particle size of the wall material particles exceeds 5 μm. .
【0022】また、実施例3は壁材粒子の配合量が実施
例1の2重量部より多い5重量部とした例であり、実施
例1よりも壁材粒子の配合量の増加の影響で改質率及び
成形品の性能は若干低下している。それに対して、壁材
粒子の配合量が芯材粒子の1/5以上(重量で)となっ
ている比較例5、6ではそれぞれ壁材粒子の配合量だけ
が異なる実施例4、5に比べ改質率及び成形品の性能は
低下しており、特に改質率の低下が著しい。Further, Example 3 is an example in which the content of the wall material particles is set to 5 parts by weight, which is larger than the 2 parts by weight of Example 1, and is affected by the increase in the content of the wall material particles as compared with Example 1. The modification rate and the performance of the molded product are slightly degraded. On the other hand, in Comparative Examples 5 and 6 in which the blending amount of the wall material particles is 1/5 or more (by weight) of the core material particles, compared with Examples 4 and 5 in which only the blending amount of the wall material particles is different. The reforming rate and the performance of the molded product are reduced, and particularly the reforming rate is significantly reduced.
【0023】[0023]
【発明の効果】本発明の表面改質セラミック粒子は成型
材料に用いると、得られる成形品の線膨張係数の低下、
即ち低応力化、あるいは曲げ強度の向上、即ち高強度化
を達成する事が出来る。そして、本発明の表面改質セラ
ミック粒子の製法によれば、成型材料に用いた場合に有
用な表面改質セラミック粒子を製造することができる。When the surface-modified ceramic particles of the present invention are used as a molding material, the linear expansion coefficient of the resulting molded article is lowered,
That is, it is possible to reduce stress or improve bending strength, that is, increase strength. According to the method for producing surface-modified ceramic particles of the present invention, surface-modified ceramic particles useful when used as a molding material can be produced.
Claims (2)
ク粒子よりなる芯材粒子の表面に、平均粒径が前記の芯
材粒子の平均粒径の1/8以下であって、且つ 5μm以
下である壁材粒子が固定化されていることを特徴とする
表面改質セラミック粒子。1. The surface of core particles made of ceramic particles treated with a coupling agent has an average particle diameter of 1/8 or less of the average particle diameter of the core particles and 5 μm or less. Surface-modified ceramic particles, wherein certain wall material particles are fixed.
ク粒子よりなる芯材粒子と、平均粒径が前記の芯材粒子
の平均粒径の1/8以下であって、且つ 5μm以下であ
る壁材粒子とを、前記の壁材粒子の重量が前記の芯材粒
子の重量の1/5以下となるように配合した後、前記の
芯材粒子の表面に前記の壁材粒子を固定化させることを
特徴とする表面改質セラミック粒子の製法。2. Core particles made of ceramic particles treated with a coupling agent, and a wall having an average particle diameter of ⅛ or less of the average particle diameter of the core particles and 5 μm or less. Material particles are mixed so that the weight of the wall material particles is ⅕ or less of the weight of the core material particles, and then the wall material particles are fixed on the surface of the core material particles. A method for producing surface-modified ceramic particles, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17357691A JPH0517623A (en) | 1991-07-15 | 1991-07-15 | Surface-modified ceramic particle and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17357691A JPH0517623A (en) | 1991-07-15 | 1991-07-15 | Surface-modified ceramic particle and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0517623A true JPH0517623A (en) | 1993-01-26 |
Family
ID=15963130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17357691A Pending JPH0517623A (en) | 1991-07-15 | 1991-07-15 | Surface-modified ceramic particle and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0517623A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6230207B1 (en) * | 2016-08-25 | 2017-11-15 | ツナガルホールディングス株式会社 | Soundproof structure of apartment house and apartment house |
-
1991
- 1991-07-15 JP JP17357691A patent/JPH0517623A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6230207B1 (en) * | 2016-08-25 | 2017-11-15 | ツナガルホールディングス株式会社 | Soundproof structure of apartment house and apartment house |
JP2018035660A (en) * | 2016-08-25 | 2018-03-08 | ツナガルホールディングス株式会社 | Soundproof structure of apartment house, and apartment house |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6606628B1 (en) | Method for producing glass-coated aluminum nitride particles and method for producing a heat-dissipating resin composition containing the glass-coated aluminum nitride particles | |
JPS60501707A (en) | cementitious composite material | |
TWI679252B (en) | Glass-coated aluminum nitride particles, method for producing the same, and exothermic resin composition containing the same | |
US20030018132A1 (en) | Epoxy resin composition for semiconductor encapsulation, process for producing the same, and semiconductor device | |
JPH0517623A (en) | Surface-modified ceramic particle and its production | |
JPH06136244A (en) | Epoxy resin composition | |
JPH02300230A (en) | Electrical part and casting material for it | |
JPH032390B2 (en) | ||
JPH08245755A (en) | Epoxy resin composition and sealed device of electronic part | |
JP2773955B2 (en) | Semiconductor device | |
JPH04370159A (en) | Combination filler and epoxy resin composition compounded with the combination filler | |
JP2835473B2 (en) | Filler for sealing resin and method for producing the same | |
JPH05311047A (en) | Liquid epoxy resin composition | |
JPH05148427A (en) | Composite filler and epoxy resin composition containing the same composite filler blended therein | |
JP2947072B2 (en) | Method for producing surface-treated alumina | |
JPH0551610B2 (en) | ||
JP2896471B2 (en) | Epoxy resin composition | |
JP2003347322A (en) | Die-attach paste and semiconductor device | |
JPH05148428A (en) | Composite filler and epoxy resin composition containing the same composite filler blended therein | |
JP2937733B2 (en) | Epoxy resin composition for liquid semiconductor encapsulation | |
JPH0234658A (en) | Epoxy resin sealing composition | |
JP2658714B2 (en) | Epoxy resin sealing material | |
JPH03140322A (en) | Epoxy resin molding material for semiconductor-sealing and resin-sealed semiconductor device | |
JPS6356518A (en) | Epoxy resin composition | |
JPH02189357A (en) | Epoxy resin molding material for semiconductor sealing |