JPH05175472A - Solid-state image sensing device - Google Patents

Solid-state image sensing device

Info

Publication number
JPH05175472A
JPH05175472A JP3338247A JP33824791A JPH05175472A JP H05175472 A JPH05175472 A JP H05175472A JP 3338247 A JP3338247 A JP 3338247A JP 33824791 A JP33824791 A JP 33824791A JP H05175472 A JPH05175472 A JP H05175472A
Authority
JP
Japan
Prior art keywords
solid
light
state image
thick film
image pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3338247A
Other languages
Japanese (ja)
Other versions
JP3099914B2 (en
Inventor
Takeshi Kondo
雄 近藤
Masayuki Saito
雅之 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03338247A priority Critical patent/JP3099914B2/en
Publication of JPH05175472A publication Critical patent/JPH05175472A/en
Application granted granted Critical
Publication of JP3099914B2 publication Critical patent/JP3099914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Abstract

PURPOSE:To provide a small-sized face down-based solid-state image sensing device which is free of image effects induced by the reflection of light on its side no matter how large a board is adopted and no matter what focal distance is adopted for a lens. CONSTITUTION:In a solid state-image sensing device which is provided with a glass board 10 where a thick film wiring 11 is installed based on a screen print on a main plane and a solid-state image sensing element 20 where a light received plane side is mounted on the main plane where the thick film wiring 11 of the board 10 is formed by way of a soldered bump 31, the sides of the board 10 which exclude its light incident plane and light emission plane, are machined unevenly so that a center line average roughness Ra of the sides is set to the range of 0.05<=Ra<=5mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビデオカメラや電子ス
チルカメラ等に用いられる固体撮像装置に係わり、特に
固体撮像素子チップの実装技術の改良をはかった固体撮
像装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid-state image pickup device used for a video camera, an electronic still camera and the like, and more particularly to a solid-state image pickup device with improved mounting technology for a solid-state image pickup element chip.

【0002】[0002]

【従来の技術】従来、この種の固体撮像装置は、図6に
示すようにセラミックのパッケージ1に固体撮像素子チ
ップ2を配置し、電気的な接続はボンディングワイヤー
3によって行われていた。また、固体撮像素子チップ2
を保護するために、パッケージ1上にカバーガラス4を
接着剤等によって接着,固定し、封止するのが一般的で
あった。
2. Description of the Related Art Conventionally, in this type of solid-state image pickup device, a solid-state image pickup element chip 2 is arranged in a ceramic package 1 as shown in FIG. 6, and electrical connection is made by a bonding wire 3. In addition, the solid-state image sensor chip 2
In order to protect the above, the cover glass 4 is generally adhered and fixed on the package 1 with an adhesive or the like, and then sealed.

【0003】しかしながら、上記の方法ではワイヤーボ
ンディングのためのパッド部分や、カバーガラスを固定
するための部分が必要不可欠であり、これらがパッケー
ジ全体の大きさを決定していた。このため、撮像面方向
で比較した場合、パッケージは固体撮像素子チップより
かなり大きくならざるをえず、固体撮像装置全体が大型
化してしまう。
However, in the above method, the pad portion for wire bonding and the portion for fixing the cover glass are indispensable, and these have determined the size of the entire package. Therefore, when compared in the image pickup plane direction, the package has to be considerably larger than the solid-state image pickup element chip, and the whole solid-state image pickup device becomes large.

【0004】これらの問題を解決するために、特開昭 6
2-8664号公報や特開昭 62-8665号公報のように、光透過
型の基板に固体撮像素子チップをバンプを用いてフェー
スダウンで実装し、基板の側面で外部回路と接続する方
法が提案されている。
To solve these problems, Japanese Unexamined Patent Publication No.
2-8664 and Japanese Unexamined Patent Publication No. 62-8665 disclose a method of mounting a solid-state image sensor chip on a light-transmissive substrate face down using bumps and connecting it to an external circuit on the side surface of the substrate. Proposed.

【0005】図7に、フェースダウン実装による固体撮
像装置の一例の断面図を示す。固体撮像素子チップ20
は、バンプ31を用いてガラス基板10上に設けられた
厚膜配線11に接続されており、さらにその厚膜配線1
1はガラス基板10の側面に回り込んでフレシキブルプ
リント基板32に接続されている。なお、チップ20と
ガラス基板10の間、さらにはチップ20の裏面はシリ
コーン系の樹脂33で封止されている。
FIG. 7 shows a sectional view of an example of a solid-state image pickup device by face-down mounting. Solid-state image sensor chip 20
Are connected to the thick film wiring 11 provided on the glass substrate 10 using the bumps 31, and the thick film wiring 1
Reference numeral 1 surrounds the side surface of the glass substrate 10 and is connected to the flexible printed circuit board 32. The space between the chip 20 and the glass substrate 10, and also the back surface of the chip 20 are sealed with a silicone resin 33.

【0006】この方法によれば、従来のセラミックパッ
ケージを用いた固体撮像装置のようにワイヤーボンディ
ングのためのパッドや、カバーガラスを固定する部分が
不要であるため、大幅な小型化が実現できる。特に、撮
像面方向で比較した場合、固体撮像素子チップと同等の
大きさで該チップを実装することができる。
According to this method, since a pad for wire bonding and a portion for fixing the cover glass are not required unlike the conventional solid-state image pickup device using a ceramic package, a large size reduction can be realized. In particular, when compared in the direction of the image pickup surface, the chip can be mounted in the same size as the solid-state image pickup element chip.

【0007】しかしながら、この方法は次に示すような
困難な問題を有している。図6に示したような構造では
固体撮像素子チップの撮像面とカバーガラスは距離が離
れており、またカバーガラス側面からの反射光はその大
部分がセラミックパッケージで遮られるため、カバーガ
ラスの側面で反射した光が固体撮像素子チップの撮像面
に入射することは比較的少なかった。しかし、図7に示
したようなフェースダウン実装による固体撮像装置の場
合には、固体撮像素子チップの撮像面とガラス基板の距
離が近いため、その側面で反射した光が撮像面に達し、
映像に影響を与えることがある。これは、固体撮像素子
チップを搭載するガラス基板の外径が小さく、その厚さ
が厚いほど、また使用するレンズの焦点距離が短いほ
ど、良く現れる現象である。
However, this method has the following difficult problems. In the structure as shown in FIG. 6, the image pickup surface of the solid-state image pickup element chip and the cover glass are separated from each other, and most of the reflected light from the side surface of the cover glass is blocked by the ceramic package. It was relatively rare for the light reflected by the above to enter the image pickup surface of the solid-state image pickup element chip. However, in the case of the solid-state imaging device by face-down mounting as shown in FIG. 7, since the distance between the imaging surface of the solid-state imaging element chip and the glass substrate is short, the light reflected by the side surface reaches the imaging surface,
It may affect the image. This is a phenomenon that appears more often as the outer diameter of the glass substrate on which the solid-state imaging device chip is mounted is smaller and the thickness thereof is thicker and the focal length of the lens used is shorter.

【0008】側面からの光が撮像面に入射した場合、そ
の光は得ようとしている映像光とは別のものであるた
め、映像画面に輝線や輝点となって現れ、固体撮像装置
の不良の原因となる。マスク等によって側面への光の入
射を最初から抑える方法も考えられるが、マスクの寸法
や位置にかなりの精度が要求されるため、実現にはコス
トの増加を伴うため適当ではない。
When the light from the side surface is incident on the image pickup surface, since the light is different from the image light to be obtained, it appears as bright lines or bright spots on the image screen, and the solid-state image pickup device is defective. Cause of. Although a method of suppressing the incidence of light on the side surface from the beginning by using a mask or the like can be considered, it is not suitable because the size and the position of the mask require considerable accuracy, and the cost is increased to realize it.

【0009】[0009]

【発明が解決しようとする課題】このように従来、フェ
ースダウンという方法によって小型の固体撮像装置を実
現しようとした場合、実装のための光透過性基板の側面
からの反射光の影響により画像品質が劣化するという問
題があった。また、側面からの反射光を抑えるために
は、基板の大きさやレンズの焦点距離等に制約を受ける
という不具合を有していた。
As described above, when it is attempted to realize a small solid-state image pickup device by the face-down method, the image quality is affected by the reflected light from the side surface of the light transmissive substrate for mounting. There was a problem of deterioration. Further, in order to suppress the reflected light from the side surface, there is a problem that the size of the substrate and the focal length of the lens are restricted.

【0010】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、フェースダウン実装で
ありながら、光透過性基板の大きさやレンズの焦点距離
等に拘らず、光透過性基板の側面での光の反射によって
画像に悪影響が生じるのを防止でき、小型で画像品質の
高い固体撮像装置を提供することにある。
The present invention has been made in consideration of the above circumstances. An object of the present invention is to achieve light transmission regardless of the size of the light transmissive substrate, the focal length of the lens, etc. even though the face down mounting is performed. An object of the present invention is to provide a small-sized solid-state imaging device that can prevent an image from being adversely affected by the reflection of light on the side surface of the flexible substrate and that has a high image quality.

【0011】[0011]

【課題を解決するための手段】本発明の骨子は、光透過
性基板の光入射面と出射面を除いた側面からの反射光の
影響を抑えるために、側面に入射した光を散乱させるこ
とにある。
The essence of the present invention is to scatter the light incident on the side surface in order to suppress the influence of the reflected light from the side surface of the light transmissive substrate excluding the light entrance surface and the exit surface. It is in.

【0012】即ち本発明は、一主面に導体パターンが設
けられた光透過性基板と、この基板の導体パターンが形
成された主面に受光面側を取り付けられる固体撮像素子
とを具備した固体撮像装置において、光透過性基板の光
入射面と光出射面を除いた側面を凹凸加工してなること
を特徴とする。
That is, the present invention provides a solid-state image sensor having a light-transmissive substrate having a conductor pattern on one main surface, and a solid-state image sensor having a light-receiving surface side attached to the main surface of the substrate on which the conductor pattern is formed. The image pickup device is characterized in that the side surface of the light transmissive substrate excluding the light incident surface and the light emitting surface is processed to be uneven.

【0013】また、本発明の望ましい実施態様として
は、次のものがあげられる。 (1) 光透過性基板の側面の中心線平均粗さRaを0.0
5μm以上に設定する。 (2) 光透過性基板の側面の中心線平均粗さRaを5μm
以下に設定する。 (3) 光透過性基板の側面の中心線平均粗さRaを、0.
05≦Ra≦5μmに設定し、この側面にスクリーン印
刷法により厚膜配線からなる導体パターンを形成し、該
側面の導体パターンに配線基板を電気的に接続する。
The following are preferred embodiments of the present invention. (1) The center line average roughness Ra of the side surface of the light transmissive substrate is 0.0
Set to 5 μm or more. (2) Center line average roughness Ra of the side surface of the light transmissive substrate is 5 μm
Set as follows. (3) The center line average roughness Ra of the side surface of the light transmissive substrate is set to 0.
The thickness is set to 05 ≦ Ra ≦ 5 μm, a conductor pattern made of thick film wiring is formed on this side surface by a screen printing method, and the wiring board is electrically connected to the conductor pattern on the side surface.

【0014】[0014]

【作用】本発明によれば、固体撮像素子チップが搭載さ
れた光透過性基板の光入射面と光出射面を除いた側面を
凹凸加工することにより、側面に入射してきた光が側面
で乱反射するため、固体撮像素子チップの撮像面に達す
ることはない。特に、側面の中心線平均粗さRaを0.
05μm以上とすると、側面の反射による影響を殆ど無
視することが可能となる。従って、固体撮像素子チップ
と略同様の大きさを持つ光透過性基板であっても、焦点
距離の短いレンズを使用しても、側面からの反射光が画
像に影響を与えることがない。
According to the present invention, the side surface of the light transmissive substrate on which the solid-state image sensor chip is mounted except for the light incident surface and the light emitting surface is processed to have irregularities so that the light incident on the side surface is irregularly reflected by the side surface. Therefore, it does not reach the image pickup surface of the solid-state image pickup element chip. In particular, the center line average roughness Ra of the side surface is set to 0.
If the thickness is 05 μm or more, it is possible to almost ignore the influence of the reflection on the side surface. Therefore, even if the light-transmissive substrate has substantially the same size as the solid-state image pickup element chip, even if a lens having a short focal length is used, reflected light from the side surface does not affect the image.

【0015】また、光透過性基板の主面のみならず側面
にも厚膜配線等からなる導体パターンを形成する場合、
Raを0.05μm以上にしておけば、側面における導
体パターンと光透過性基板との密着強度が向上するとい
う利点もある。なお、側面における導体パターンの断線
を防ぐためには、側面の中心線平均粗さRaを5μm以
下にした方が望ましい。
When a conductor pattern made of thick film wiring or the like is formed not only on the main surface of the light transmissive substrate but also on the side surface,
If Ra is 0.05 μm or more, there is also an advantage that the adhesion strength between the conductor pattern on the side surface and the light transmissive substrate is improved. In order to prevent disconnection of the conductor pattern on the side surface, it is desirable that the center line average roughness Ra of the side surface be 5 μm or less.

【0016】[0016]

【実施例】以下、図面を参照して本発明の実施例を説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】図1は、本発明の一実施例に係わる固体撮
像装置の概略構成を示す断面図である。図中10はガラ
ス基板(光透過性基板)であり、この基板10の一主面
には金ペーストを印刷,焼成して厚膜配線(導体パター
ン)11が形成されている。この厚膜配線11の一部
は、ガラス基板10の一側面に回り込んで形成されてい
る。20はCCD型の固体撮像素子チップであり、この
チップ20の一主面には撮像部21とその周辺の電極パ
ッド22が形成されている。
FIG. 1 is a sectional view showing the schematic arrangement of a solid-state image pickup device according to an embodiment of the present invention. In the figure, 10 is a glass substrate (light transmissive substrate), and a thick film wiring (conductor pattern) 11 is formed on one main surface of the substrate 10 by printing and firing a gold paste. A part of the thick film wiring 11 is formed so as to surround one side surface of the glass substrate 10. Reference numeral 20 denotes a CCD type solid-state image pickup element chip, and an image pickup section 21 and an electrode pad 22 around the image pickup section 21 are formed on one main surface of the chip 20.

【0018】ガラス基板10の主面に形成された厚膜配
線11には、固体撮像素子チップ20の電極パッド22が
半田バンプ31を介して接続されている。また、ガラス
基板10の側面に回り込んだ厚膜配線11にはフレシキ
ブルプリント基板32が接続されている。そして、ガラ
ス基板10と固体撮像素子チップ20との間及びチップ
20の裏面は、シリコーン樹脂33で封止されている。
The electrode pads 22 of the solid-state image pickup device chip 20 are connected to the thick film wiring 11 formed on the main surface of the glass substrate 10 via solder bumps 31. A flexible printed circuit board 32 is connected to the thick film wiring 11 that extends around the side surface of the glass substrate 10. The space between the glass substrate 10 and the solid-state imaging device chip 20 and the back surface of the chip 20 are sealed with a silicone resin 33.

【0019】ここまでの基本構成は、図7に示した従来
装置と同様であるが、本実施例ではこれに加え、ガラス
基板10の光入射面と光出射面を除く側面に、入射光が
乱反射するような凹凸加工を施している。即ち、ガラス
基板10の側面を、中心線平均粗さRaが0.05〜5
μm、例えば1μmとなるように加工した。具体的に
は、ガラス基板10の側面を#1000程度の研磨材で
研磨する方法や、光入射面と光出射面をレジストで保護
し、直径1μm以下の粉体と一緒にミキシングする方法
等があげられる。
The basic structure up to this point is the same as that of the conventional apparatus shown in FIG. 7, but in addition to this, in this embodiment, incident light is incident on the side surfaces of the glass substrate 10 excluding the light incident surface and the light emitting surface. It has an uneven surface that causes irregular reflection. That is, the center line average roughness Ra of the side surface of the glass substrate 10 is 0.05 to 5.
It was processed to have a thickness of, for example, 1 μm. Specifically, there are a method of polishing the side surface of the glass substrate 10 with an abrasive material of about # 1000, a method of protecting the light incident surface and the light emitting surface with a resist, and a method of mixing with a powder having a diameter of 1 μm or less. can give.

【0020】中心線平均粗さRaは、図2に示すよう
に、断面形状を粗さ曲線f(x)として表し、粗さ曲線
f(x)の上下の面積が等しくなるように中心線を決定
して、これをx軸とし、測定長さをLとすると、
As shown in FIG. 2, the center line average roughness Ra represents the cross-sectional shape as a roughness curve f (x), and the center line is set so that the upper and lower areas of the roughness curve f (x) are equal. Let's decide, let this be the x-axis, and let the measurement length be L,

【0021】[0021]

【数1】 [Equation 1]

【0022】で定義される。これは、中心線で粗さ曲線
の谷の部分を折り返してできた曲線を平滑化したときに
できる直線の中心からの距離であり、f(x)の絶対偏
差平均である。また、最大高さRmax とRaとの間に
は、Rmax ≦4・Raの関係がある。
Is defined by This is the distance from the center of the straight line formed when the curve formed by folding back the valley portion of the roughness curve at the center line is smoothed, and is the average absolute deviation of f (x). Further, there is a relation of Rmax ≦ 4 · Ra between the maximum heights Rmax and Ra.

【0023】図3に、固体撮像素子チップの撮像面への
側面からの反射光入射率と中心線平均粗さRaとの関係
の一例を示す。Raが0.05μm以下の場合、即ち鏡
面に近い状態では側面で反射したかなりの量の光が撮像
面に達することが分かる。このことにより、側面からの
反射光の影響を抑えるにはRaが0.05μm以上の状
態が望ましいといえる。
FIG. 3 shows an example of the relationship between the incidence rate of reflected light from the side surface to the image pickup surface of the solid-state image pickup element chip and the centerline average roughness Ra. It can be seen that when Ra is 0.05 μm or less, that is, in a state close to the mirror surface, a considerable amount of light reflected on the side surface reaches the imaging surface. Therefore, it can be said that Ra is preferably 0.05 μm or more in order to suppress the influence of reflected light from the side surface.

【0024】また、本実施例では前述したように、表面
に金の厚膜配線11をスクリーン印刷により形成し、こ
の厚膜配線11を半田バンプ31によって固体撮像素子
チップ20の電極パッド21と接続した。さらに、厚膜
配線11は側面の1つに回り込んでおり、側面でフレシ
キブルプリント基板32を用いて外部回路と接続してい
る。
In this embodiment, as described above, the thick film wiring 11 of gold is formed on the surface by screen printing, and the thick film wiring 11 is connected to the electrode pad 21 of the solid-state image pickup device chip 20 by the solder bump 31. did. Further, the thick film wiring 11 wraps around one of the side surfaces, and is connected to an external circuit using the flexible printed board 32 on the side surface.

【0025】一般に、厚膜に限らずガラス基板に対して
配線の密着強度を高めることは難しく、配線の膜剥がれ
によって不良が発生することがあるが、表面に形成され
た配線については封止樹脂33によって封止をするた
め、直接配線に大きな力が掛かることがなく、不良は発
生しにくい。しかし、本実施例のように側面に配線し、
プリント基板32を接続するような場合には、側面配線
に直接、剪断や引っ張り等の力が掛かる。従って、より
強い密着強度が要求される。
Generally, it is difficult to increase the adhesion strength of the wiring to the glass substrate, not limited to the thick film, and a defect may occur due to the peeling of the wiring film. However, for the wiring formed on the surface, the sealing resin is used. Since the sealing is performed by 33, a large force is not applied directly to the wiring, and a defect is unlikely to occur. However, as in this example, wiring on the side surface,
When the printed circuit board 32 is connected, a force such as shearing or pulling is directly applied to the side wiring. Therefore, stronger adhesion strength is required.

【0026】図4に、側面配線の密着強度と中心線平均
粗さRaとの関係の一例を示す。密着強度は反射光入射
率の場合と同様に、Raが0.05μm以上になると大
きくなる。従って、ガラス基板10の側面に厚膜配線1
1を形成し、これにプリント基板32を接続しようとす
る場合も、その接続面のRaが0.05μm以上である
方が望ましい。
FIG. 4 shows an example of the relationship between the adhesion strength of the side wiring and the center line average roughness Ra. As in the case of the incident rate of reflected light, the adhesion strength increases when Ra is 0.05 μm or more. Therefore, the thick film wiring 1 is formed on the side surface of the glass substrate 10.
When forming 1 and connecting the printed circuit board 32 to this, Ra of the connecting surface is preferably 0.05 μm or more.

【0027】図5に、厚膜配線の接続不良発生率と中心
線平均粗さRaとの関係の一例を示す。接続不良発生率
とは、配線の断線等によるオープンや接続抵抗の増加の
発生率を示している。これを見ると、Raが5μm以上
になると不良の発生が急激に多くなることが分かる。一
般に、厚膜配線の膜厚は数μmから20μm程度であ
り、Raが5μm以上になると最大高さRmax は20μ
mとなり、表面の凹凸による断面、若しくは配線膜が薄
くなることが十分考えられる。従って、側面に配線を施
す場合、単純にRaが大きければ良いわけではなく、配
線の断線を防ぐためにRaを5μm以下に抑える必要が
ある。
FIG. 5 shows an example of the relationship between the incidence of defective connection of thick film wiring and the average roughness Ra of the center line. The connection failure occurrence rate indicates an occurrence rate of open or increase in connection resistance due to disconnection of wiring. From this, it can be seen that when Ra becomes 5 μm or more, the occurrence of defects rapidly increases. Generally, the film thickness of the thick film wiring is about several μm to 20 μm, and when Ra is 5 μm or more, the maximum height Rmax is 20 μm.
Therefore, it is fully conceivable that the cross section due to the unevenness of the surface or the wiring film becomes thin. Therefore, when wiring is provided on the side surface, Ra does not have to be simply large, and Ra must be suppressed to 5 μm or less in order to prevent disconnection of the wiring.

【0028】このように本実施例によれば、ガラス基板
10の光入射面と光出射面を除いた側面に中心線平均粗
さRaが0.05〜5μm、例えば1μmとなるように
凹凸加工を施すことにより、基板の大きさや、レンズの
焦点距離を選ばず、側面での光の反射によって画像に影
響を受けることのない、小型,軽量の固体撮像装置を実
現することが可能となる。また、側面の中心線平均粗さ
Raを0.05μm以上としているので、側面に形成す
る厚膜配線11の密着強度を十分高めることができ、厚
膜配線11の剥がれを防止することができる。さらに、
Raを5μm以下としているので、厚膜配線11の段切
れを防止することもできる。
As described above, according to the present embodiment, the concavo-convex processing is performed on the side surfaces of the glass substrate 10 excluding the light incident surface and the light emitting surface so that the center line average roughness Ra is 0.05 to 5 μm, for example, 1 μm. By performing the above, it is possible to realize a small-sized and lightweight solid-state imaging device that does not affect the image by the reflection of light on the side surface, regardless of the size of the substrate or the focal length of the lens. Further, since the center line average roughness Ra of the side surface is set to 0.05 μm or more, the adhesion strength of the thick film wiring 11 formed on the side surface can be sufficiently increased, and the thick film wiring 11 can be prevented from peeling off. further,
Since Ra is set to 5 μm or less, disconnection of the thick film wiring 11 can be prevented.

【0029】なお、本発明は上述した実施例に限定され
るものではない。実施例では、実装基板としてガラス基
板を用いたが、これに限らず主面に導体パターンを形成
できる光透過性基板であれば用いることができる。ま
た、導体パターンはスクリーン印刷による厚膜に限ら
ず、他の方法による厚膜、さらに蒸着やスパッタ等によ
る薄膜であってもよい。その他、本発明の要旨を逸脱し
ない範囲で、種々変形して実施することができる。
The present invention is not limited to the above embodiment. Although the glass substrate is used as the mounting substrate in the embodiments, the present invention is not limited to this, and any light transmissive substrate capable of forming a conductor pattern on the main surface can be used. The conductor pattern is not limited to a thick film formed by screen printing, and may be a thick film formed by another method or a thin film formed by vapor deposition, sputtering or the like. In addition, various modifications can be made without departing from the scope of the present invention.

【0030】[0030]

【発明の効果】以上詳述したように本発明によれば、光
入射面と光出射面を除いた側面の中心線平均粗さRaが
0.05μm以上5μm以下のガラス基板に固体撮像素
子チップをフリップチップ接続することによって、基板
の大きさや、レンズの焦点距離を選ばず、側面での光の
反射によって画像に影響を受けることのない、小型,軽
量の固体撮像装置を実現することが可能となる。
As described above in detail, according to the present invention, the solid-state image pickup device chip is mounted on the glass substrate having the center line average roughness Ra of the side surface excluding the light incident surface and the light emitting surface of 0.05 μm or more and 5 μm or less. By flip-chip connection, it is possible to realize a small and lightweight solid-state imaging device that does not affect the image due to the reflection of light on the side surface, regardless of the size of the substrate or the focal length of the lens. Becomes

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係わる固体撮像装置の概略
構成を示す断面図、
FIG. 1 is a sectional view showing a schematic configuration of a solid-state imaging device according to an embodiment of the present invention,

【図2】中心線平均粗さRaの定義を説明するための模
式図、
FIG. 2 is a schematic diagram for explaining the definition of centerline average roughness Ra,

【図3】実施例における反射光入射率と中心線平均粗さ
Raとの関係を示す特性図、
FIG. 3 is a characteristic diagram showing a relationship between an incident rate of reflected light and a centerline average roughness Ra in an example,

【図4】実施例における配線密着強度と中心線平均粗さ
Raとの関係を示す特性図、
FIG. 4 is a characteristic diagram showing the relationship between wiring adhesion strength and centerline average roughness Ra in the example,

【図5】実施例における不良発生率と中心線平均粗さR
aとの関係を示す特性図、
FIG. 5 shows the defect occurrence rate and center line average roughness R in the example.
a characteristic diagram showing the relationship with a,

【図6】従来のワイヤーボンディングによる固体撮像装
置の概略構成を示す断面図、
FIG. 6 is a sectional view showing a schematic configuration of a conventional solid-state imaging device by wire bonding,

【図7】従来のフリップチップ実装された固体撮像装置
の概略構成を示す断面図。
FIG. 7 is a cross-sectional view showing a schematic configuration of a conventional flip-chip mounted solid-state imaging device.

【符号の説明】[Explanation of symbols]

10…ガラス基板(光透過性基板)、 11…厚膜配線(導体パターン)、 20…固体撮像素子チップ、 21…撮像部、 22…電極パッド、 31…半田バンプ、 32…フレキシブリプリント基板(配線基板)、 33…封止樹脂。 DESCRIPTION OF SYMBOLS 10 ... Glass substrate (light transmissive substrate), 11 ... Thick film wiring (conductor pattern), 20 ... Solid-state image sensor chip, 21 ... Imaging part, 22 ... Electrode pad, 31 ... Solder bump, 32 ... Flexible printed circuit board (wiring) Substrate), 33 ... Sealing resin.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】一主面に導体パターンが設けられた光透過
性基板と、この基板の導体パターンが形成された主面に
受光面側を取り付けられた固体撮像素子チップとを具備
した固体撮像装置において、 前記光透過性基板の光入射面と光出射面を除いた側面を
凹凸加工してなることを特徴とする固体撮像装置。
1. A solid-state imaging device comprising: a light-transmissive substrate having a conductor pattern on one main surface; and a solid-state image sensor chip having a light-receiving surface side attached to the main surface of the substrate on which the conductor pattern is formed. The solid-state imaging device according to claim 1, wherein side surfaces of the light-transmissive substrate, excluding a light-incident surface and a light-emitting surface, are processed to have an uneven surface.
【請求項2】前記光透過性基板の側面の中心線平均粗さ
Raが、0.05≦Ra≦5μmであり、この側面に厚
膜配線からなる導体パターンが形成され、該側面の導体
パターンに配線基板が電気的に接続されていることを特
徴とする請求項1記載の固体撮像装置。
2. The center line average roughness Ra of the side surface of the light transmissive substrate is 0.05 ≦ Ra ≦ 5 μm, and a conductor pattern made of thick film wiring is formed on the side surface, and the conductor pattern on the side surface is formed. The solid-state imaging device according to claim 1, wherein a wiring board is electrically connected to the.
JP03338247A 1991-12-20 1991-12-20 Solid-state imaging device Expired - Fee Related JP3099914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03338247A JP3099914B2 (en) 1991-12-20 1991-12-20 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03338247A JP3099914B2 (en) 1991-12-20 1991-12-20 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPH05175472A true JPH05175472A (en) 1993-07-13
JP3099914B2 JP3099914B2 (en) 2000-10-16

Family

ID=18316314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03338247A Expired - Fee Related JP3099914B2 (en) 1991-12-20 1991-12-20 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP3099914B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041074A1 (en) * 2004-10-12 2006-04-20 Nippon Electric Glass Co., Ltd. Cover glass for solid image pickup device and process for producing the same
JP2006140458A (en) * 2004-10-12 2006-06-01 Nippon Electric Glass Co Ltd Cover glass for solid imaging device, and its manufacturing method
JP2007142194A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state image pickup device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006041074A1 (en) * 2004-10-12 2006-04-20 Nippon Electric Glass Co., Ltd. Cover glass for solid image pickup device and process for producing the same
JP2006140458A (en) * 2004-10-12 2006-06-01 Nippon Electric Glass Co Ltd Cover glass for solid imaging device, and its manufacturing method
JP2007142194A (en) * 2005-11-18 2007-06-07 Matsushita Electric Ind Co Ltd Solid-state image pickup device

Also Published As

Publication number Publication date
JP3099914B2 (en) 2000-10-16

Similar Documents

Publication Publication Date Title
EP1081944B1 (en) Imaging element, imaging device, camera module and camera system
US7540672B2 (en) Digital still camera module
US5786589A (en) Photoelectric converting device with anisotropically conductive film for connecting leads of wiring board and electrode pads of photoelectric converting device
US7737562B2 (en) Semiconductor element mount, semiconductor device, imaging device, light emitting diode component and light emitting diode
US6737292B2 (en) Method of fabricating an image sensor module at the wafer level and mounting on circuit board
US7038287B2 (en) Electronic package of photo-sensing semiconductor devices, and the fabrication and assembly thereof
US6346432B2 (en) Semiconductor element having external connection terminals, method of manufacturing the semiconductor element, and semiconductor device equipped with the semiconductor element
EP1670238B1 (en) Camera module
US20110045869A1 (en) Imaging apparatus
JP2001111873A (en) Image pickup device and camera system
JPH05268535A (en) Visual sensor
JP2008235686A (en) Optical device, camera module, mobile phone, digital still camera, and medical endoscope
JPH0927606A (en) Solid-state image pick-up element of cog structure
JP3099914B2 (en) Solid-state imaging device
KR100756245B1 (en) Camera module
JPH04137663A (en) Solid-state image sensor
WO2024009694A1 (en) Semiconductor device, electronic apparatus, and method for producing semiconductor device
JPH11191864A (en) Solid-state image pickup device
JPH04114456A (en) Photoelectric converter
WO2023058413A1 (en) Semiconductor device and electronic equipment
JPH01228178A (en) Solid state image sensor
JP2684861B2 (en) Solid-state imaging device
JP2000307907A (en) Image pickup device and picture photographing device
JP2002100751A (en) Solid-state image pickup device
EP0475370A2 (en) Compact imaging apparatus for electronic endoscope with improved optical characteristics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070818

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080818

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090818

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees