JPH05174813A - Zinc negative plate and its manufacture and zinc-dioxide lead-acid battery - Google Patents
Zinc negative plate and its manufacture and zinc-dioxide lead-acid batteryInfo
- Publication number
- JPH05174813A JPH05174813A JP3344586A JP34458691A JPH05174813A JP H05174813 A JPH05174813 A JP H05174813A JP 3344586 A JP3344586 A JP 3344586A JP 34458691 A JP34458691 A JP 34458691A JP H05174813 A JPH05174813 A JP H05174813A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- plate
- cathode plate
- battery
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、亜鉛陰極板及びその製
造方法並びに亜鉛−二酸化鉛蓄電池に関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zinc cathode plate, a method for manufacturing the same, and a zinc-lead dioxide storage battery.
【0002】[0002]
【従来の技術】電池に用いられる亜鉛陰極板は、重量エ
ネルギ密度が大きく安価であり、しかも無公害物質であ
るという理由から、ポータブルタイプ電池用陰極板とし
ての実用化に向けて研究開発が行われている。しかしな
がら、亜鉛は電解液である酸性溶液またはアルカリ性溶
液に溶けやすい上、交流電流密度が低く結晶の生成が結
晶核の生成よりも大きいため樹枝状析出(デントライト
化)を起こしやすい。そのため、亜鉛板は電池用陰極板
としての実用化には至っていない。例えば電解液に酸性
溶液を用いる電池では、亜鉛陰極板の亜鉛は電池放電時
に電解液中に亜鉛イオン(Zn2+)として溶解し、電
池充填時に亜鉛陰極板表面上に電析する。しかしなが
ら、電池に充放電を繰り返すと亜鉛の電析反応は不均一
になり析出した亜鉛は樹枝状に析出してデントライトに
なりやすい。そのため、電池に充放電が繰り返される
と、活物質は形状変形を起こし、亜鉛陰極板の反応面積
は減少する。しかもデントライトの生成により短絡がお
きるため電池の容量は低下する。また、亜鉛陰極板を電
池に用いると、電池は水素過電圧が低下しやすくなる。
例えば、電解液としてPH1以下の硫酸等の酸性溶液を
用い、陽極板として二酸化鉛を用いる亜鉛−二酸化鉛蓄
電池においては、極板及び電解液に含まれている不純物
または添加材[ヒ素(As),アンチモン(Sb),銅
(Cu),鉄(Fe),バナジウム(V),マンガン
(Mn)等]が局部電池を形成するため電池の水素過電
圧が著しく低下して、水素が発生しやすくなる。そこ
で、このようなデントライトの発生及び水素過電圧が低
下する問題を解決するために、亜鉛陰極板の表面部に水
銀を擦りつける等してこう化(アマルガム化)を行い、
該表面部にアマルガム層を形成することが検討された。
亜鉛陰極板の表面部にアマルガム層を形成するとアマル
ガム層の表面で還元された亜鉛がアマルガム層内を拡散
するため、亜鉛は結晶生成をせずデントライトの発生は
抑制される。また、アマルガム層は表面が平滑なため、
アマルガム層表面の面積が小さくなり電流密度が高くな
る。そのため、水素に対して放電をおこしにくくなる。
しかも、水銀自体が水素に対して放電をおこしにくい性
質を有しているため亜鉛陰極板の表面部にアマルガム層
を形成すると水素過電圧が上がる。2. Description of the Related Art Zinc cathode plates used for batteries have large weight energy density, are inexpensive, and are non-polluting substances. Therefore, research and development have been carried out for practical use as cathode plates for portable type batteries. It is being appreciated. However, zinc is easily dissolved in an acidic solution or an alkaline solution which is an electrolytic solution, and since the alternating current density is low and the crystal formation is larger than the crystal nucleus formation, dendritic precipitation (dentrite formation) is likely to occur. Therefore, the zinc plate has not been put to practical use as a battery cathode plate. For example, in a battery using an acidic solution as an electrolytic solution, zinc in the zinc cathode plate is dissolved as zinc ions (Zn 2+ ) in the electrolytic solution when the battery is discharged, and is deposited on the surface of the zinc cathode plate when the battery is filled. However, when the battery is repeatedly charged and discharged, the zinc electrodeposition reaction becomes non-uniform, and the deposited zinc is likely to be dendritic to form dendrites. Therefore, when the battery is repeatedly charged and discharged, the active material undergoes shape deformation, and the reaction area of the zinc cathode plate decreases. Moreover, the capacity of the battery is reduced because a short circuit occurs due to the generation of dendrite. Further, when a zinc cathode plate is used in a battery, the hydrogen overvoltage of the battery tends to decrease.
For example, in a zinc-lead dioxide storage battery in which an acidic solution such as sulfuric acid having a pH of 1 or less is used as an electrolytic solution and lead dioxide is used as an anode plate, impurities or additives contained in the electrode plate and the electrolytic solution [arsenic (As)] , Antimony (Sb), copper (Cu), iron (Fe), vanadium (V), manganese (Mn), etc.] form a local battery, so that the hydrogen overvoltage of the battery is significantly lowered and hydrogen is easily generated. .. Therefore, in order to solve such a problem of generation of dendrite and reduction of hydrogen overvoltage, mercury (eg, amalgamation) is performed by rubbing mercury on the surface of the zinc cathode plate,
It was considered to form an amalgam layer on the surface portion.
When an amalgam layer is formed on the surface of the zinc cathode plate, zinc reduced on the surface of the amalgam layer diffuses in the amalgam layer, so that zinc does not form crystals and the generation of dentrite is suppressed. Also, since the amalgam layer has a smooth surface,
The area of the amalgam layer surface becomes smaller and the current density becomes higher. Therefore, it becomes difficult to discharge hydrogen.
Moreover, since mercury itself has a property of being less likely to generate a discharge with respect to hydrogen, hydrogen overvoltage increases when an amalgam layer is formed on the surface of the zinc cathode plate.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、亜鉛は
融点が比較的高いため、水銀と固溶しにくい。そのた
め、亜鉛陰極板の表面部を直接水銀でこう化すると、水
銀が亜鉛陰極板内部に向かって拡散するため、多量の水
銀を用いなければならなかった。また、亜鉛陰極板の表
面部を直接水銀でこう化してもアマルガム層の亜鉛陰極
板に対する定着性が低いため、特に高率の充放電を電池
に繰り返すとアマルガム層が脱落しやすくなるという問
題があった。However, since zinc has a relatively high melting point, it is difficult to form a solid solution with mercury. Therefore, if the surface of the zinc cathode plate is directly subjected to mercury in this way, the mercury diffuses toward the inside of the zinc cathode plate, so a large amount of mercury must be used. Further, even if the surface of the zinc cathode plate is directly agglomerated with mercury, since the fixability of the amalgam layer to the zinc cathode plate is low, there is a problem that the amalgam layer tends to come off when the battery is repeatedly charged and discharged at a high rate. there were.
【0004】本発明は、上記課題を解決してアマルガム
層の亜鉛陰極板に対する定着性が高い亜鉛陰極板及びそ
の製造方法並びに水素過電圧が高く長寿命の亜鉛−二酸
化鉛蓄電池を提供することにある。The present invention solves the above problems and provides a zinc cathode plate having a high fixing property of the amalgam layer on the zinc cathode plate, a method for producing the same, and a zinc-lead dioxide storage battery having a high hydrogen overvoltage and a long life. ..
【0005】[0005]
【課題を解決するための手段】請求項1の発明は、表面
部にアマルガム層を有する亜鉛陰極板の製造方法を対象
とする。そして本発明では亜鉛板の表面部に亜鉛より低
融点の金属を置換析出させた後、亜鉛板のこう化処理を
行ってアマルガム層を形成する。尚、亜鉛板は、極板と
して機能するものであれば、その形状はなんでもよく、
完全に板状のものに限定されるものではない。また「こ
う化処理」とは、具体的には置換析出された亜鉛より低
融点の金属と亜鉛との合金層をアマルガム化することを
意味するものである。The invention according to claim 1 is directed to a method for producing a zinc cathode plate having an amalgam layer on the surface thereof. Then, in the present invention, after a metal having a melting point lower than that of zinc is substituted and deposited on the surface of the zinc plate, the zinc plate is subjected to the aging treatment to form an amalgam layer. The zinc plate may have any shape as long as it functions as an electrode plate,
The shape is not limited to the plate shape. Further, the “agglomeration treatment” specifically means to amalgamate an alloy layer of zinc and a metal having a melting point lower than that of zinc deposited by substitution.
【0006】請求項2の発明では、請求項1の発明の製
造方法において、亜鉛より低融点の金属として、インジ
ウム、タリウム、鉛、カドミウムから選択された少なく
とも1つの金属を用いる。According to a second aspect of the invention, in the manufacturing method of the first aspect, at least one metal selected from indium, thallium, lead and cadmium is used as the metal having a melting point lower than that of zinc.
【0007】請求項3の発明は、表面部にアマルガム層
を有する亜鉛陰極板を対象とする。そして本発明では、
アマルガム層を、亜鉛板の表面部に置換析出された亜鉛
より低融点の金属と亜鉛と水銀との合金層から構成す
る。The invention of claim 3 is directed to a zinc cathode plate having an amalgam layer on the surface thereof. And in the present invention,
The amalgam layer is composed of an alloy layer of a metal having a melting point lower than that of zinc deposited on the surface of the zinc plate by substitution and an alloy of zinc and mercury.
【0008】請求項4の発明は、二酸化鉛陽極板と亜鉛
陰極板とを組合わせてなる電極群を有する亜鉛−二酸化
鉛蓄電池を対象とする。そして本発明では、亜鉛陰極板
として亜鉛板の表面部に置換析出された亜鉛より低融点
の金属と亜鉛と水銀との合金層からなるアマルガム層を
有するものを用い、二酸化鉛陽極板としてアンチモン及
びヒ素を含まないものを用い、亜鉛陰極板の亜鉛板とし
て99.99%以上の純度を有するものを用い、電解液
として水素過電圧を下げる物質を実質的に含まない硫酸
水溶液を用いる。The invention of claim 4 is directed to a zinc-lead dioxide storage battery having an electrode group formed by combining a lead dioxide anode plate and a zinc cathode plate. And in the present invention, as a zinc cathode plate, using a thing having an amalgam layer formed of an alloy layer of a metal having a melting point lower than zinc and zinc and mercury substituted and deposited on the surface of the zinc plate, antimony and a lead dioxide anode plate. An arsenic-free one is used, a zinc plate having a purity of 99.99% or more is used as the zinc cathode plate, and an aqueous sulfuric acid solution which does not substantially contain a substance that reduces hydrogen overvoltage is used as the electrolytic solution.
【0009】請求項5の発明では、請求項4の発明の亜
鉛−二酸化鉛蓄電池において、電極群を渦巻型電極群で
構成する。According to a fifth aspect of the invention, in the zinc-lead dioxide storage battery according to the fourth aspect of the invention, the electrode group is composed of a spiral electrode group.
【0010】[0010]
【作用】請求項1の発明のように、亜鉛板の表面部に亜
鉛より低融点の金属を置換析出させると、亜鉛板の表面
部に亜鉛より低融点の金属と亜鉛との合金層が形成され
る。亜鉛より低融点の金属は、亜鉛と比較すると水銀に
対して固溶しやすいため、この合金層も水銀と固溶しや
すい性質を有している。そこで、本発明のように置換析
出の後にこう化処理を行うと従来のように多量の水銀を
用いなくてもこう化が行える。しかもこのようにして形
成したアマルガム層の亜鉛陰極板に対する定着性は高
く、電池に充放電を繰り返してもアマルガム層は脱落し
にくい。特にインジウム、タリウム、鉛、カドミウム等
の金属は水銀と固溶しやすいため、請求項2の発明のよ
うに、亜鉛より低融点の金属として、インジウム、タリ
ウム、鉛、カドミウムから選択された少なくとも1つの
金属を用いると、こう化を容易に行える。ちなみにイン
ジウムを用いて置換析出を行うと下記の反応式により亜
鉛板の表面部にインジウム(2In)が析出される。When the metal having a melting point lower than that of zinc is substituted and deposited on the surface of the zinc plate, an alloy layer of the metal having a melting point lower than that of zinc and zinc is formed on the surface of the zinc plate. To be done. Since a metal having a melting point lower than that of zinc is more likely to form a solid solution with mercury than zinc, this alloy layer also has a property of forming a solid solution with mercury. Therefore, as in the present invention, when the aging treatment is performed after the substitution precipitation, the aging can be performed without using a large amount of mercury as in the conventional case. Moreover, the amalgam layer thus formed has a high fixing property on the zinc cathode plate, and the amalgam layer is unlikely to fall off even if the battery is repeatedly charged and discharged. In particular, since metals such as indium, thallium, lead, and cadmium are likely to form a solid solution with mercury, at least one selected from indium, thallium, lead, and cadmium as a metal having a melting point lower than that of zinc, as in the invention of claim 2. This can be easily done by using one metal. By the way, when indium is used for substitutional deposition, indium (2In) is deposited on the surface of the zinc plate according to the following reaction formula.
【0011】3Zn+2In 3+→2In+3Zn 2+ 請求項3の発明のように、アマルガム層を亜鉛板の表面
部に置換析出された金属と亜鉛と水銀との合金層から構
成すると、アマルガム層の亜鉛陰極板に対する定着性が
高く、電池に充放電を繰り返してもアマルガム層は脱落
しにくい。3Zn + 2In 3+ → 2In + 3Zn 2+ As in the invention of claim 3, when the amalgam layer is composed of an alloy layer of metal and zinc / mercury deposited by substitution on the surface of the zinc plate, the amalgam layer is used for the zinc cathode plate. The fixability is high, and the amalgam layer does not easily fall off even when the battery is repeatedly charged and discharged.
【0012】請求項4の発明のように亜鉛−二酸化鉛蓄
電池を構成すると、電池内にある不純物によって局部電
池が発生するのを抑制できるため、電池の水素過電圧が
高くなる。特に二酸化鉛陽極板がアンチモン及びヒ素を
含まないため、アンチモン及びヒ素が溶解析出して水素
過電圧が低下することにより起こる自己放電及びガスの
発生を防ぐことができる。When the zinc-lead dioxide storage battery is constructed as in the invention of claim 4, it is possible to suppress the generation of a local battery due to impurities in the battery, so that the hydrogen overvoltage of the battery becomes high. In particular, since the lead dioxide anode plate does not contain antimony and arsenic, it is possible to prevent self-discharge and generation of gas which are caused by dissolution and precipitation of antimony and arsenic and a decrease in hydrogen overvoltage.
【0013】請求項5の発明のように、電極群を渦巻型
にすると電極群が所定の圧力で厚み方向に加圧されるた
めアマルガム層の脱落を抑制できる。そのため、電池の
長寿命化を図ることができる。また活物質の単位重量あ
たりの極板面積を大きくすることができ、また略均一に
加圧できるため電位勾配も均一にすることができ、高率
放電時の放電容量を向上することができる。When the electrode group is formed in a spiral shape as in the fifth aspect of the invention, the electrode group is pressed in the thickness direction at a predetermined pressure, so that the amalgam layer can be prevented from falling off. Therefore, the life of the battery can be extended. Further, the electrode plate area per unit weight of the active material can be increased, and since the pressure can be applied almost uniformly, the potential gradient can be made uniform, and the discharge capacity at the time of high rate discharge can be improved.
【0014】[0014]
【実施例】以下、本発明の実施例を図面を参照して詳細
に説明する。本発明の実施例の亜鉛陰極板及び亜鉛−二
酸化鉛蓄電池を次のように製造した。図1(a)〜
(d)は、インジウム(In)を用いて置換析出を行い
亜鉛陰極板を製造する場合の過程を示す模式図である。
まず、極板の有効表面の寸法が34mm×65mm×0.5
mmになるように切断した純度99.99%以上望ましく
は純度99.999%以上の亜鉛板をエメリペーパー等
で充分に研磨し、1%硫酸溶液中に5分間浸漬して活性
化した。次に、図1(a),(b)に示されるように、
50mg/dm 3 に調整したIn2 SO4 水溶液からなる硫
酸塩溶液に亜鉛板を5秒間浸漬して亜鉛板の表面部にあ
る亜鉛(Zn)の一部とIn2 SO4 溶液中のIn 3+
イオンとを置換して、亜鉛より低融点の金属であるIn
を亜鉛板の表面部に置換析出させ、Zn−In合金層を
形成した。硫酸塩水溶液としてはIn2 SO4 水溶液以
外ではMen (SO4 ) m [Me;タリウム(Tl),
鉛(Pb),カドミウム(Cd)]水溶液を用いるとよ
い。これらの水溶液を用いるとTl,Pb,Cdを亜鉛
板の表面部に置換析出させることができる。また、各種
硫酸塩水溶液を混合して用いてもよい。次に、Zn−I
n合金層を形成した亜鉛板を50 g/dm 3 に調整した塩
化第二水銀(HgCl2 )水溶液からなる水銀塩水溶液
に60秒間浸漬してZn−In合金層をこう化(アマル
ガム化)処理して亜鉛板の表面部にZnとInとHgと
の合金層からなるアマルガム層を形成して亜鉛陰極板を
製造した[図1(c),(d)参照]。尚、水銀塩水溶
液への浸漬条件により図1(c)に示されるように、ア
マルガム層(Zn−In−Hg合金層)とZn−In合
金層との二層が形成される場合と、図1(d)に示され
るように、アマルガム層(Zn−In−Hg合金層)の
みが形成される場合とがある。ちなみに、亜鉛陰極板の
表面部を直接水銀でアマルガム化する従来の方法では亜
鉛に対する水銀量が50〜1000μg/gであるのに
対して、本実施例では1〜10μg/gの極微量の水銀
量でアマルガム層を形成することができた。この量であ
れば、水銀による環境汚染をマンガン電池程度まで下げ
ることができる。また本実施例では水銀塩水溶液でこう
化を行ったが、金属水銀を用いてこう化を行っても構わ
ない。その場合はZn−In合金層の表面に金属水銀を
塗布すればよい。Embodiments of the present invention will now be described in detail with reference to the drawings. The zinc cathode plate and the zinc-lead dioxide storage battery of the examples of the present invention were manufactured as follows. 1 (a)-
(D) is a schematic diagram showing a process in the case of producing a zinc cathode plate by performing displacement precipitation using indium (In).
First, the size of the effective surface of the electrode plate is 34 mm x 65 mm x 0.5
A zinc plate having a purity of 99.99% or more, preferably 99.999% or more, which was cut to have a size of mm, was sufficiently polished with emery paper or the like, and immersed in a 1% sulfuric acid solution for 5 minutes for activation. Next, as shown in FIGS. 1 (a) and 1 (b),
The zinc plate was immersed for 5 seconds in a sulfate solution composed of an In 2 SO 4 aqueous solution adjusted to 50 mg / dm 3 to partially zinc (Zn) on the surface of the zinc plate and In 3 + in the In 2 SO 4 solution.
In, which is a metal having a melting point lower than that of zinc by substituting ions
Was deposited on the surface of the zinc plate by substitution to form a Zn-In alloy layer. As the sulfate aqueous solution, other than the In 2 SO 4 aqueous solution, Me n (SO 4 ) m [Me; thallium (Tl),
It is preferable to use an aqueous solution of lead (Pb) and cadmium (Cd). By using these aqueous solutions, Tl, Pb, and Cd can be substituted and deposited on the surface of the zinc plate. Further, various sulfate aqueous solutions may be mixed and used. Next, Zn-I
The zinc plate on which the n-alloy layer is formed is dipped in a mercury salt aqueous solution composed of a mercuric chloride (HgCl 2 ) aqueous solution adjusted to 50 g / dm 3 for 60 seconds to subject the Zn-In alloy layer to iodization (amalgamation). Then, an amalgam layer made of an alloy layer of Zn, In and Hg was formed on the surface of the zinc plate to manufacture a zinc cathode plate [see FIGS. 1 (c) and 1 (d)]. In addition, as shown in FIG. 1 (c), a case where two layers of an amalgam layer (Zn-In-Hg alloy layer) and a Zn-In alloy layer are formed depending on the immersion conditions in the mercury salt aqueous solution, and As shown in 1 (d), there is a case where only the amalgam layer (Zn-In-Hg alloy layer) is formed. By the way, in the conventional method in which the surface of the zinc cathode plate is directly amalgamated with mercury, the amount of mercury with respect to zinc is 50 to 1000 μg / g, whereas in the present embodiment, a very small amount of mercury of 1 to 10 μg / g is used. The amalgam layer could be formed in a quantity. With this amount, environmental pollution due to mercury can be reduced to the level of a manganese battery. Further, in the present embodiment, the aging was carried out with the mercury salt aqueous solution, but the aging may be carried out using metallic mercury. In that case, metallic mercury may be applied to the surface of the Zn—In alloy layer.
【0015】次に上述のように製造した亜鉛陰極板と、
該亜鉛陰極板と同寸法でアンチモン(Sb)及びヒ素
(As)を含まない純鉛からなる未化成陽極板(化成後
における二酸化鉛陽極板)とを厚さ1.2mmの微孔性ガ
ラス繊維からなるリテーナを介して渦巻型に捲回して渦
巻型電極群を形成した。その後、渦巻型電極群を電槽に
挿入した後、鉄(Fe),バナジウム(V)等の水素過
電圧を下げる物質を実質的に含まない硫酸からなる硫酸
水溶液(比重1.320)7c.c.を電解液として電槽内
に注入して本発明の実施例の亜鉛−二酸化鉛蓄電池を製
造した。Next, a zinc cathode plate manufactured as described above,
An unformed anode plate made of pure lead that does not contain antimony (Sb) and arsenic (As) with the same dimensions as the zinc cathode plate (lead dioxide anode plate after chemical conversion) and has a thickness of 1.2 mm The spirally wound electrode group was formed by spirally winding it through a retainer consisting of. Then, after inserting the spirally wound electrode group into a battery case, a sulfuric acid aqueous solution (specific gravity: 1.320) 7c.c consisting of sulfuric acid that does not substantially contain substances that reduce hydrogen overvoltage such as iron (Fe) and vanadium (V). Was injected into a battery case as an electrolytic solution to manufacture a zinc-lead dioxide storage battery of an example of the present invention.
【0016】本実施例の亜鉛−二酸化鉛蓄電池の特性を
調べるために製造した各電池A〜Dは次の通りである。
電池Aは本実施例の電池である。電池Bは本実施例の電
池Aの電極群を捲回せずに製造した別の実施例の電池で
ある。電池Bは、次のように製造した。まず弁部を有す
る極柱を接続した本実施例の亜鉛陰極板及び陽極板をリ
テーナを介して積層して平板状の電極群を構成し、該電
極群を極柱部の弁部を残してラミネートフィルム内に配
置し、ラミネートフィルムを下端部を除いて熱溶着し
た。次に、該下端部より硫酸を注入した後、ラミネート
フィルム全体を熱溶着させて製造した。電池Cは亜鉛板
の表面部を置換析出を行うことなく直接水銀でアマルガ
ム化してアマルガム層を形成した亜鉛陰極板を用いた従
来の電池である。電池Cの亜鉛陰極板は亜鉛板に水銀を
擦りつけて製造した。電池Dは亜鉛板の表面部にアマル
ガム層を形成しない亜鉛陰極板を用いた従来の電池であ
る。尚、電池C,Dは電池Bと同様に電極群を捲回せず
に製造した。また電池A〜Dはいずれも同寸法同材質の
陰極板用亜鉛板,陽極板及びリテーナを用い、同量同材
質の電解液を用いて製造した。次に、電池A〜Dを温度
25±1℃において、3.00V定電圧制限電流150
mAで6時間充電した後に10分休止し、その後100mm
A で端子電圧が1.7Vになるまで充電をおこなう充放
電を1サイクルとして充放電サイクルを繰り返し、各サ
イクル時における放電終始電圧が1.7Vになるまでの
時間を測定した。測定結果は図2に示す通りである。
尚、放電時間が2.5時間を下回ると電池は寿命に達す
る。図2より本実施例の電池A,Bが従来の電池C,D
に比べて充放電特性が向上しているのが判る。特に亜鉛
陰極板を置換析出により形成し、電極群を渦巻型電極群
で構成した本実施例の電池Aの充放電特性が大幅に向上
しているのが判る。The batteries A to D manufactured to investigate the characteristics of the zinc-lead dioxide storage battery of this example are as follows.
Battery A is the battery of this embodiment. Battery B is a battery of another example manufactured without winding the electrode group of battery A of this example. Battery B was manufactured as follows. First, the zinc negative electrode plate and the positive electrode plate of the present example, which are connected to the poles having the valve portion, are laminated via a retainer to form a flat electrode group, and the electrode group is left with the valve portion of the pole portion remaining. It was placed in a laminate film, and the laminate film was heat-welded except for the lower end portion. Next, after injecting sulfuric acid from the lower end, the entire laminated film was heat-welded to manufacture. Battery C is a conventional battery using a zinc cathode plate in which the amalgam layer is formed by directly amalgamating the surface of the zinc plate with mercury without displacement precipitation. The zinc cathode plate of Battery C was manufactured by rubbing mercury on a zinc plate. Battery D is a conventional battery using a zinc cathode plate in which an amalgam layer is not formed on the surface of the zinc plate. The batteries C and D were manufactured in the same manner as the battery B without winding the electrode group. Each of the batteries A to D was manufactured by using a zinc plate for a cathode plate, an anode plate and a retainer of the same size and the same material, and using the same amount of the same material of the electrolytic solution. Next, the batteries A to D were heated at a temperature of 25 ± 1 ° C. and a constant voltage limiting current of 3.00 V was set to 150.
After charging for 6 hours with mA, pause for 10 minutes, then 100mm
The charging / discharging cycle in which charging / discharging was performed until the terminal voltage reached 1.7 V at A was repeated as a cycle, and the time until the end-of-discharge voltage reached 1.7 V at each cycle was measured. The measurement results are as shown in FIG.
The battery reaches the end of its life when the discharge time is less than 2.5 hours. From FIG. 2, the batteries A and B of this embodiment are the conventional batteries C and D.
It can be seen that the charging / discharging characteristics are improved compared to. In particular, it can be seen that the charge / discharge characteristics of the battery A of the present example in which the zinc cathode plate was formed by displacement deposition and the electrode group was composed of the spiral electrode group were greatly improved.
【0017】[0017]
【発明の効果】請求項1の発明によれば、従来のように
多量の水銀を用いなくてもこう化が行える。しかもアマ
ルガム層の亜鉛陰極板に対する定着性が高くなるため、
電池に充放電を繰り返してもアマルガム層は脱落しにく
い。そのため、本発明によれば、亜鉛板を電池用陰極板
として実用化することができる。According to the first aspect of the present invention, the aging can be performed without using a large amount of mercury as in the conventional case. Moreover, since the fixing property of the amalgam layer to the zinc cathode plate is increased,
The amalgam layer does not easily fall off even when the battery is repeatedly charged and discharged. Therefore, according to the present invention, the zinc plate can be put to practical use as a battery cathode plate.
【0018】請求項2の発明によれば、容易にこう化を
行って亜鉛陰極板を製造することができる。According to the second aspect of the invention, the zinc cathode plate can be manufactured by easily carrying out this aging.
【0019】請求項3の発明によれば、アマルガム層の
亜鉛陰極板に対する定着性が高く、電池に充放電を繰り
返してもアマルガム層は脱落しにくい。そのため長寿命
の亜鉛陰極板を得ることができる。According to the invention of claim 3, the fixing property of the amalgam layer on the zinc cathode plate is high, and the amalgam layer is unlikely to fall off even if the battery is repeatedly charged and discharged. Therefore, a long-life zinc cathode plate can be obtained.
【0020】請求項4の発明によれば、電池内に不純物
による局部電池の発生を抑制できるため、電池の水素過
電圧が高くなる。According to the invention of claim 4, it is possible to suppress the generation of a local battery due to impurities in the battery, so that the hydrogen overvoltage of the battery becomes high.
【0021】請求項5の発明によれば、アマルガム層の
脱落を抑制できるため、電池の長寿命化を図ることがで
き、しかも高率放電時の放電容量を向上することができ
る。According to the fifth aspect of the invention, since the amalgam layer can be prevented from falling off, the life of the battery can be extended and the discharge capacity at high rate discharge can be improved.
【図1】(a)〜(d)は、インジウムを用いて置換析
出を行い亜鉛陰極板を製造する過程を示す模式図であ
る。1A to 1D are schematic diagrams showing a process of producing a zinc cathode plate by substitution deposition using indium.
【図2】電池の寿命特性を示す図である。FIG. 2 is a diagram showing life characteristics of a battery.
Claims (5)
の製造方法であって、 亜鉛板の表面部に亜鉛より低融点の金属を置換析出させ
た後、前記亜鉛板のこう化処理を行って前記アマルガム
層を形成することを特徴とする亜鉛陰極板の製造方法。1. A method for producing a zinc cathode plate having an amalgam layer on a surface thereof, wherein a metal having a melting point lower than that of zinc is substituted and deposited on the surface of the zinc plate, and then the zinc plate is subjected to an aging treatment. Forming said amalgam layer.
ウム、タリウム、鉛、カドミウムから選択された少なく
とも1つの金属を用いることを特徴とする請求項1に記
載の亜鉛陰極板の製造方法。2. The method for producing a zinc cathode plate according to claim 1, wherein at least one metal selected from indium, thallium, lead and cadmium is used as the metal having a melting point lower than that of zinc.
であって、 前記アマルガム層が、亜鉛板の表面部に置換析出された
亜鉛より低融点の金属と亜鉛と水銀との合金層からなる
ことを特徴とする亜鉛陰極板。3. A zinc cathode plate having an amalgam layer on the surface thereof, wherein the amalgam layer comprises an alloy layer of a metal having a melting point lower than that of zinc deposited by substitution and deposition on the surface of the zinc plate, and an alloy of zinc and mercury. A zinc cathode plate characterized in that
てなる電極群を有する亜鉛−二酸化鉛蓄電池であって、 前記亜鉛陰極板として亜鉛板の表面部に置換析出された
亜鉛より低融点の金属と亜鉛と水銀との合金層からなる
アマルガム層を有するものを用い、前記二酸化鉛陽極板
としてアンチモン及びヒ素を含まないものを用い、前記
亜鉛陰極板の前記亜鉛板として99.99%以上の純度
を有するものを用い、電解液として水素過電圧を下げる
物質を実質的に含まない硫酸水溶液を用いることを特徴
とする亜鉛−二酸化鉛蓄電池。4. A zinc-lead dioxide storage battery having an electrode group formed by combining a lead dioxide anode plate and a zinc cathode plate, the zinc cathode plate being lower than zinc deposited by substitution on the surface of the zinc plate. The one having an amalgam layer composed of an alloy layer of a metal having a melting point, zinc and mercury is used, the lead dioxide anode plate not containing antimony and arsenic is used, and the zinc plate of the zinc cathode plate is 99.99%. What is claimed is: 1. A zinc-lead dioxide storage battery characterized by using an aqueous solution of sulfuric acid which does not substantially contain a substance for lowering hydrogen overvoltage, which has the above-mentioned purity.
徴とする請求項4に記載の亜鉛−二酸化鉛蓄電池。5. The zinc-lead dioxide storage battery according to claim 4, wherein the electrode group is a spiral type electrode group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3344586A JPH05174813A (en) | 1991-12-26 | 1991-12-26 | Zinc negative plate and its manufacture and zinc-dioxide lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3344586A JPH05174813A (en) | 1991-12-26 | 1991-12-26 | Zinc negative plate and its manufacture and zinc-dioxide lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05174813A true JPH05174813A (en) | 1993-07-13 |
Family
ID=18370422
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3344586A Withdrawn JPH05174813A (en) | 1991-12-26 | 1991-12-26 | Zinc negative plate and its manufacture and zinc-dioxide lead-acid battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05174813A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022014720A1 (en) * | 2020-07-17 | 2022-01-20 | 三井金属鉱業株式会社 | Metal layer-coated zinc foil and manufacturing method for same |
CN114709409A (en) * | 2022-04-01 | 2022-07-05 | 三峡大学 | Preparation method and application of zinc-mercury alloy cathode of water-based zinc ion battery |
-
1991
- 1991-12-26 JP JP3344586A patent/JPH05174813A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022014720A1 (en) * | 2020-07-17 | 2022-01-20 | 三井金属鉱業株式会社 | Metal layer-coated zinc foil and manufacturing method for same |
CN114709409A (en) * | 2022-04-01 | 2022-07-05 | 三峡大学 | Preparation method and application of zinc-mercury alloy cathode of water-based zinc ion battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6632568B1 (en) | Non-sintered nickel electrode with excellent over-discharge characteristics, an alkaline storage cell having the non-sintered nickel electrode, and a manufacturing method of the non-sintered nickel electrode | |
JP2008243487A (en) | Lead acid battery | |
JP2008130516A (en) | Liquid lead-acid storage battery | |
JPH07326353A (en) | Manufacture of hydrogen storage alloy electrode | |
US6203945B1 (en) | Nickel hydroxide active material for use in alkaline storage cell and manufacturing method of the same | |
JP2006108083A (en) | Manganese oxide for anode active substance | |
JPH05174813A (en) | Zinc negative plate and its manufacture and zinc-dioxide lead-acid battery | |
JP2959560B1 (en) | Electrode for alkaline storage battery, method for producing the same, and alkaline storage battery | |
JPH0773060B2 (en) | Secondary battery | |
JPH05144431A (en) | Zinc negative electrode active material | |
JPH0963564A (en) | Electrode for li battery, and li battery using same | |
JP2003142087A (en) | Positive electrode for alkaline storage battery and alkaline storage battery using the same | |
JP2558759B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JP2578633B2 (en) | Zinc electrode for alkaline storage batteries | |
JPH01140557A (en) | Lead-acid battery | |
JP2529308B2 (en) | Manufacturing method of cadmium negative electrode for alkaline storage battery | |
JPH0584024B2 (en) | ||
JP2001085004A (en) | Alkaline storage battery and its manufacture | |
JP2762730B2 (en) | Nickel-cadmium storage battery | |
JPS58197664A (en) | Alkaline zinc secondary battery | |
JPH0230062A (en) | Alkaline storage battery | |
JPS62108467A (en) | Alkaline zinc storage battery | |
JPS5971265A (en) | Alkali zinc lead storage battery | |
JPH0340366A (en) | Zn active substance for alkaline storage battery and manufacture thereof | |
JP2004055494A (en) | Nickel-hydrogen storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990311 |