JPH05172785A - Degradation measuring device - Google Patents

Degradation measuring device

Info

Publication number
JPH05172785A
JPH05172785A JP33825491A JP33825491A JPH05172785A JP H05172785 A JPH05172785 A JP H05172785A JP 33825491 A JP33825491 A JP 33825491A JP 33825491 A JP33825491 A JP 33825491A JP H05172785 A JPH05172785 A JP H05172785A
Authority
JP
Japan
Prior art keywords
stress
measurement
calibration curve
measured
creep damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33825491A
Other languages
Japanese (ja)
Inventor
Katsuhiro Onda
勝弘 恩田
Taiji Hirasawa
泰治 平澤
Ichiro Furumura
一朗 古村
Satoshi Nagai
敏 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP33825491A priority Critical patent/JPH05172785A/en
Publication of JPH05172785A publication Critical patent/JPH05172785A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect a creep damage with a non-destractive method even at a part difficult to measure and evaluate the result. CONSTITUTION:By using a inspection head 3 easy to insert in a center hole 2 of a turbine rotor 1 which a stress is acting on at high temperature, and to fix at a specified position, measurement is performed at a low temperature and high stress part in the center hole 2 of the turbine rotor 1 and the result in input to a measurement controller 6. The load stress obtained with a calibration curve between the measured value and the stress and the measured value obtained at the object measurement part are applied to a calibration curve (relation between the creep damage and measurement value) obtained experimentally in advance, degradation is measured and creep damage is detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温環境下で長時間使用
される機器、部材の材質劣化、損傷の度合を計測する劣
化計測装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for long-term use in a high temperature environment, and a deterioration measuring apparatus for measuring the degree of material deterioration and damage of members.

【0002】[0002]

【従来の技術】高温状態で使用される例えば蒸気タービ
ンのような機器、部材においては、熱による応力が作用
した状態で長時間高温環境に晒されるため、クリープに
よる劣化、損傷を生じることが知られている。この劣
化、損傷に移行するクリープ過程は、クリープボイドの
発生、成長、合体、さらに亀裂へと成長して最終的に破
壊に至る。したがって、クリープによる材質的な劣化、
損傷度を検出してその度合を見極める上で極めて重要な
ことである。
2. Description of the Related Art It is known that equipment and members such as steam turbines that are used in a high temperature state are exposed to a high temperature environment for a long period of time under the stress of heat, so that they are deteriorated and damaged by creep. Has been. During the creep process, which progresses to deterioration and damage, creep voids are generated, grow, coalesce, and further grow into cracks, and eventually break. Therefore, deterioration of material due to creep,
It is extremely important in detecting the degree of damage and determining the degree of damage.

【0003】従来、クリープ損傷の計測法としては組織
観察によるクリープボイドの計測や硬さ計測等の各種の
方法があるが、これらの計測法はいずれも適用計測部位
が限定されており、特にタービンロータの中心孔等の円
孔を有する機器部材への適用は困難な状況であった。
Conventionally, there have been various methods for measuring creep damage, such as creep void measurement and hardness measurement by observing the structure. However, all of these measurement methods have limited application measurement sites, and particularly turbines. It has been difficult to apply to equipment members having circular holes such as the center hole of the rotor.

【0004】また、材料の磁気的性質の変化を非破壊計
測の手段として利用する方法も古くから考えられてい
る。その一例として測定対象部位に磁界を印加した場
合、磁化過程で生ずるバルクハウゼン信号の強度を測定
する手法もあるが、この方法による計測では強磁性体に
作用している応力や製造時の残留応力を計測値と結び付
けている例(特開昭59−112257号公報)が殆ど
であり、現在のところクリープ損傷の評価例がないのが
現状である。
Also, a method of utilizing a change in magnetic properties of a material as a means of nondestructive measurement has been considered for a long time. As an example, there is a method to measure the intensity of the Barkhausen signal generated in the magnetization process when a magnetic field is applied to the measurement target.However, in this method, the stress acting on the ferromagnetic material and the residual stress during manufacturing are measured. Is associated with the measured value (Japanese Patent Laid-Open No. 59-112257), and at present, there is no evaluation example of creep damage.

【0005】[0005]

【発明が解決しようとする課題】このように従来のクリ
ープ損傷の計測法では、高温環境下で長時間晒された機
器、部材、例えばタービンロータの中心孔等の円孔を有
する構造物に生ずるクリープ損傷の劣化程度を計測評価
する場合、クリープ検出器の形状、寸法および構成上か
ら制約があり、実際に劣化損傷程度を計測することは困
難であった。
As described above, according to the conventional method of measuring the creep damage, the creep damage occurs in the equipment or member exposed for a long time in the high temperature environment, for example, the structure having the circular hole such as the central hole of the turbine rotor. When measuring and evaluating the degree of deterioration of creep damage, it was difficult to actually measure the degree of deterioration damage because of the restrictions on the shape, size, and configuration of the creep detector.

【0006】本発明は上記の点に鑑みてなされたもの
で、計測が困難な形状を有する部位に対しても非破壊手
法によるクリープ損傷を検出し、評価することができる
劣化計測装置を提供することを目的とする。
The present invention has been made in view of the above points, and provides a deterioration measuring apparatus capable of detecting and evaluating creep damage by a nondestructive method even for a portion having a shape that is difficult to measure. The purpose is to

【0007】[0007]

【課題を解決するための手段】本発明は上記の目的を達
成するため、高温、高応力下で使用される強磁性体から
なる被検材に交流磁界を印加する磁化器およびこの磁化
器による被検材の磁化過程で周期的に発生する信号を検
出する検出器を備えた検査ヘッドと、この検査ヘッドを
支持し且つ前記被検材の測定部位に移動させて設置する
支持手段と、前記検査ヘッドの前記磁化器に交流電流を
供給して前記強磁性材の測定部位に所定の交流磁界を発
生させる電流供給手段と、前記検査ヘッドの前記検出器
により検出された検出信号が入力されこの検出信号を解
析処理して各種パラメータを計測する信号処理手段と、
この信号処理手段で計測された各種計測パラメータを用
いて応力を測定し、その応力値と測定値および計測パラ
メータとクリープ損傷度の関係を示す校正曲線を示す校
正曲線を作成する演算手段と、予め既知の試験材に対し
て計測された各種パラメータの計測値と応力値および各
種パラメータの計測値とクリープ損傷度に基いて作成さ
れた校正曲線が材料、温度、応力等のデータと共に格納
された記憶手段と、前記被検材の材料、温度、応力等に
該当する校正曲線を前記記憶手段より取り込んで前記演
算手段により作成された校正曲線と比較演算して前記被
検材のクリープ損傷度を計測および判定する劣化判定手
段とを備えたものである。
In order to achieve the above object, the present invention provides a magnetizer for applying an alternating magnetic field to a material to be tested which is made of a ferromagnetic material and is used under high temperature and high stress. An inspection head having a detector for detecting a signal periodically generated in the magnetization process of the material to be inspected; a supporting means for supporting the inspection head and moving the measurement head to the measurement site of the material to be inspected; Current supply means for supplying an alternating current to the magnetizer of the inspection head to generate a predetermined alternating magnetic field at the measurement site of the ferromagnetic material, and a detection signal detected by the detector of the inspection head are input. Signal processing means for analyzing and processing the detection signal to measure various parameters,
Stress is measured using various measurement parameters measured by this signal processing means, and an operation means for creating a calibration curve showing a calibration curve showing the relationship between the stress value and the measured value and the measurement parameter and the creep damage degree, and in advance. Memory that stores a calibration curve created based on the measured values and stress values of various parameters measured for known test materials and the measured values of various parameters and creep damage, along with data such as material, temperature, and stress. Means and a calibration curve corresponding to the material, temperature, stress, etc. of the material to be tested are fetched from the storage means and compared and calculated with the calibration curve created by the computing means to measure the creep damage degree of the material to be tested. And deterioration determination means for determining.

【0008】[0008]

【作用】このような構成の劣化計測装置にあっては、次
のような作用により被検材のクリープ損傷度が計測され
る。まず、検査ヘッドを支持手段により被検材の測定部
位に移動させ、その箇所に設置する。この状態で検査ヘ
ッドの磁化器により被検材に交流磁界が負荷されると、
負荷逆且つ不連続な磁壁の移動に伴って発生するバルク
ハウゼン信号が検出器により検出される。一般に強磁性
体は、異なる自発磁化ベクトルを有する磁区と呼ばれて
いる。外部磁界の印加に対して磁区が成長する過程(磁
化過程)では磁壁が不可逆且つ不連続に移動し、それに
伴ってバルクハウゼン信号が発生するが、材料の組織の
違いや組織変化により磁壁の移動に伴う信号は振幅値や
パルス数の異なる信号として出力される。
In the deterioration measuring device having such a structure, the creep damage degree of the test material is measured by the following functions. First, the inspection head is moved to the measurement site of the material to be inspected by the supporting means and installed at that site. When an AC magnetic field is applied to the test material by the magnetizer of the inspection head in this state,
The detector detects the Barkhausen signal generated by the load reverse and discontinuous movement of the domain wall. Ferromagnetic materials are generally called magnetic domains having different spontaneous magnetization vectors. The magnetic domain wall moves irreversibly and discontinuously in the process of domain growth (magnetization process) in response to the application of an external magnetic field, and the Barkhausen signal is generated accordingly, but the domain wall moves due to the difference in the structure of the material or the change in the structure. Is output as a signal having different amplitude values and different pulse numbers.

【0009】このような信号は検査ヘッドの検出器より
信号処理手段に入力され、ここでその検出信号を解析処
理して各種パラメータの計測が行われ、劣化判定手段に
与えられる。この劣化判定手段で被検材のクリープ損傷
度を計測するに当たっては、予め記憶手段に格納されて
いるデータを取込むことにより行われる。
Such a signal is input from the detector of the inspection head to the signal processing means, where the detected signal is analyzed and various parameters are measured and given to the deterioration determining means. The measurement of the degree of creep damage of the material to be inspected by the deterioration determining means is performed by fetching the data stored in advance in the storage means.

【0010】この記憶手段に格納されるデータは、予め
異なるクリープ損傷を与えた既知の試験材に対し、バル
クハウゼン法による計測パラメータ(例えば信号波形の
ピーク電圧値、パルス数等)と劣化度との関係から校正
曲線を求めておき、これをデータとしたものである。こ
の場合、応力条件の異なるクリープ試験材によるバルク
ハウゼン法の計測値は応力に依存した値を示すことが判
っているため、負荷応力値毎の校正曲線を作成できる。
The data stored in this storage means includes the measurement parameters (eg, peak voltage value of signal waveform, pulse number, etc.) and deterioration degree by the Barkhausen method with respect to known test materials that have undergone different creep damages in advance. The calibration curve is obtained from the relationship of, and this is used as data. In this case, since it is known that the measured values of the Barkhausen method using the creep test materials having different stress conditions show the values depending on the stress, it is possible to create the calibration curve for each load stress value.

【0011】次に被検材のクリープ損傷度を計測するに
は、まず低温環境下で被検材と同一の負荷応力が与えら
れている部位でバルクハウゼン法による計測を行い、計
測パラメータの解析処理により得られた計測値を応力と
計測値の校正曲線に当てはめて負荷応力を求める。ま
た、クリープ損傷の未知な測定部位に対するバルクハウ
ゼン法の計測により求められた計測値を試験材で得られ
た校正曲線に当てはめるが、そのとき低温環境下で得ら
れた負荷応力に基く校正曲線と照合し、比較演算するこ
とによりクリープ損傷度の測定が行われる。
Next, in order to measure the creep damage degree of the test material, first, measurement is performed by the Barkhausen method at a portion to which the same load stress as that of the test material is applied in a low temperature environment, and the measurement parameter is analyzed. The load stress is obtained by applying the measured value obtained by the processing to the stress and the calibration curve of the measured value. Also, the measured values obtained by the measurement of Barkhausen method for the unknown measurement site of creep damage are applied to the calibration curve obtained for the test material, and the calibration curve based on the load stress obtained under the low temperature environment at that time is applied. The creep damage degree is measured by collation and comparison calculation.

【0012】[0012]

【実施例】以下本発明の一実施例を図面を参照して説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

【0013】図1は本発明による劣化計測装置の構成例
を示すものである。図1において、3はタービンロータ
1の軸方向の中心孔内に挿入される検査ヘッドで、この
検査ヘッド3は鉄心31aにコイル31bを巻回してな
る磁化器31を配設すると共に、その内側にコア32a
に検出コイル32bを巻回してなる検出器32を配設し
たもので、これら磁化器31および検出器32はそれぞ
れの外側に磁気シールドボックス33,34で覆い、外
乱ノイズがしゃ断されるようになっている。ここで、磁
化器31はタービンロータ1の軸方向の中心孔内面に交
番磁界を印加するものであり、また検出器32はこの中
心孔内面に交番磁界を印加したときに検出コイル32に
誘導される電磁波を検出するものである。
FIG. 1 shows a structural example of a deterioration measuring apparatus according to the present invention. In FIG. 1, 3 is an inspection head that is inserted into a central hole in the axial direction of the turbine rotor 1. This inspection head 3 has a magnetizer 31 formed by winding a coil 31b around an iron core 31a, and the inside thereof. Core 32a
A detector 32 formed by winding a detection coil 32b is disposed on the outside of the magnetizer 31. The magnetizer 31 and the detector 32 are covered with magnetic shield boxes 33 and 34, respectively, so that disturbance noise is cut off. ing. Here, the magnetizer 31 applies an alternating magnetic field to the inner surface of the central hole of the turbine rotor 1 in the axial direction, and the detector 32 is guided by the detection coil 32 when the alternating magnetic field is applied to the inner surface of the central hole. The electromagnetic wave is detected.

【0014】一方、6は計測制御部で、この計測制御部
6は制御の中心を担うマイクロプロセッサ(CPU)7
と、磁化器31の電源系としてCPU7からの制御指令
により所定の発振波形(例えば三角波)および周波数を
有する信号を発生する信号発生器8およびこの信号発生
器8の出力信号を定電流化して磁化器31のコイル31
bに信号ケーブル51を通して与える定電流源9とが備
えられている。また、検出処理系としては検出センサ3
の検出コイル32bに誘起される電磁波から高周波成分
を信号(バルクハウゼン信号)として取出すフィルタ1
0と、このフィルタ10より取出された信号を増幅する
増幅器11と、この増幅器11で増幅された検出信号波
形を観察するためのCRT12および周波数解析器13
と、増幅器11で増幅された信号をCPU7からの指令
により取込む信号処理回路14を備えている。この信号
処理回路14は、ピーク振幅値の計測、しきい値レベル
以上のパルス数の計測、パルス振幅分布の計測、信号波
形の包絡線形状の計測、信号のピークパルスの発生時間
(rise time)の計測等の多種類の信号処理を施し、これ
らの計測値はバルクハウゼン法の計測パラメータとして
扱われるものである。
On the other hand, 6 is a measurement control unit, and this measurement control unit 6 is a microprocessor (CPU) 7 that plays a central role in control.
And a signal generator 8 that generates a signal having a predetermined oscillation waveform (for example, triangular wave) and frequency according to a control command from the CPU 7 as a power supply system of the magnetizer 31, and the output signal of the signal generator 8 is converted into a constant current to magnetize Coil 31 of container 31
b is provided with a constant current source 9 which is provided through a signal cable 51. Further, the detection processing system includes a detection sensor 3
Filter 1 for extracting a high-frequency component as a signal (Barkhausen signal) from the electromagnetic wave induced in the detection coil 32b of
0, an amplifier 11 that amplifies the signal extracted from the filter 10, a CRT 12 and a frequency analyzer 13 for observing the detection signal waveform amplified by the amplifier 11.
And a signal processing circuit 14 for taking in the signal amplified by the amplifier 11 according to a command from the CPU 7. The signal processing circuit 14 measures the peak amplitude value, the number of pulses above the threshold level, the pulse amplitude distribution, the envelope shape of the signal waveform, and the peak pulse generation time of the signal (rise time). Various kinds of signal processing such as measurement are performed, and these measured values are treated as measurement parameters of the Barkhausen method.

【0015】さらに、信号処理回路14で信号処理され
た結果は計測結果として記憶装置15に保存されると共
に劣化度評価演算回路16に導かれる。この劣化度評価
演算回路16は各種試験材よる測定結果のデータベース
と、応力と計測値、クリープ損傷度と計測値等の補正曲
線が温度、応力、材料等のデータと共に予め同回路16
内のメモリに格納されており、被検材の計測結果とこれ
らの校正曲線とを比較演算処理を施し、被検材のクリー
プ損傷度を判定するものである。また、この劣化度評価
演算回路16の劣化度判定結果および記憶装置15に格
納されている計測パラメータの計測結果は表示器17に
選択表示できるようになっている。これら一連の計測お
よび信号処理はすべてCPU7からの指令により管理さ
れるようになっている。次に上記のように構成された劣
化計測装置の作用について述べる。
Further, the result of signal processing by the signal processing circuit 14 is stored in the storage device 15 as a measurement result and is also guided to the deterioration degree evaluation calculation circuit 16. This deterioration degree evaluation calculation circuit 16 has a database of measurement results of various test materials, and correction curves for stress and measurement values, creep damage degree and measurement values, etc., together with data such as temperature, stress, and material, etc.
The measurement result of the test material and these calibration curves stored in the internal memory are subjected to a comparative calculation process to determine the degree of creep damage of the test material. Further, the deterioration degree determination result of the deterioration degree evaluation calculation circuit 16 and the measurement result of the measurement parameter stored in the storage device 15 can be selectively displayed on the display unit 17. All of these series of measurement and signal processing are managed by commands from the CPU 7. Next, the operation of the deterioration measuring device configured as described above will be described.

【0016】いま、検査ヘッド3が図2に示すようにタ
ービンロータ1の軸方向の中心孔2内に走査ロッド4を
介して挿入され、その中心孔2の軸方向および円周方向
の任意の位置に設定されているものとする。
Now, as shown in FIG. 2, the inspection head 3 is inserted into the axial center hole 2 of the turbine rotor 1 via a scanning rod 4, and the axial center and the circumferential direction of the center hole 2 are arbitrarily set. It is assumed to be set to the position.

【0017】このような状態で定電流源9より磁化器3
1のコイル31bに所定周波数の交流電流が与えられる
と、図3に示すように負荷電流値がマイナスからプラス
へと変化し、それに伴い磁性体であるタービンロータ1
の測定部位もそれぞれ磁化電流方向と同一方向に磁化さ
れる。即ち、磁化器31とタービンロータ1の計測部位
を通る磁化回路が形成され、磁束の向き、つまり磁化の
方向が図示矢印Sのように交互に変化することになる。
このとき計測部位では材料内の磁壁が磁界の影響を受け
て不可逆且つ不連続に移動し、この移動に伴って発生す
る信号は検出器32にて電気的な信号波形として検出さ
れる。
In such a state, the magnetizer 3 is fed from the constant current source 9.
When an alternating current having a predetermined frequency is applied to the first coil 31b, the load current value changes from negative to positive as shown in FIG.
The measurement portions of are also magnetized in the same direction as the magnetizing current direction. That is, a magnetizing circuit that passes through the magnetizer 31 and the measurement site of the turbine rotor 1 is formed, and the direction of the magnetic flux, that is, the direction of magnetization, changes alternately as shown by arrow S in the figure.
At this time, at the measurement site, the domain wall in the material moves irreversibly and discontinuously under the influence of the magnetic field, and the signal generated by this movement is detected by the detector 32 as an electrical signal waveform.

【0018】図4(a)は磁化電流および検出信号の発
生状況の模式図であり、検出信号は磁化電流の変化に伴
い周期的に発生している。この信号波形は増幅器11を
通して信号処理回路14に入力され、ここで次のような
解析処理が行われる。即ち、図4(a)に示すように各
信号の最大振幅を有するピーク電圧値Vp 、磁界H=0
および信号の立上り位置から信号のピークパルス発生位
置間の時間t1 およびt2 (rise time)、同図(b)に
示す信号波形の包絡線形状、同図(c)に示す1個の信
号波形内のしきい値レベル以上のパルス数C1 ,C2
……Cn 、同図(d)に示す信号波形のパルス振幅分布
等がバルクハウゼン法の計測パラメータとして計測およ
び解析処理されるもので、この信号波形は材料内の組織
的変化に対応して変化することが実験的に確かめられて
いる。
FIG. 4 (a) is a schematic diagram of the generation state of the magnetizing current and the detection signal, and the detection signal is periodically generated with the change of the magnetizing current. This signal waveform is input to the signal processing circuit 14 through the amplifier 11, where the following analysis processing is performed. That is, as shown in FIG. 4A, the peak voltage V p having the maximum amplitude of each signal and the magnetic field H = 0.
And the times t 1 and t 2 (rise time) between the rising position of the signal and the peak pulse generation position of the signal, the envelope shape of the signal waveform shown in FIG. 7B, and the single signal shown in FIG. The number of pulses above the threshold level in the waveform C 1 , C 2 ,
...... C n , the pulse amplitude distribution of the signal waveform shown in FIG. 7D, etc. are measured and analyzed as the measurement parameters of the Barkhausen method, and this signal waveform corresponds to the structural change in the material. It has been experimentally confirmed to change.

【0019】そこで、予め既知の異なる応力を負荷した
複数個の試験材に対して前述したバルクハウゼン法によ
る計測を行ない、信号処理を施して前記計測パラメータ
を測定し、各計測パラメータと応力値の校正曲線を作成
する。次に予めクリープ損傷度が既知の試験材を用い、
前述同様の劣化計測を行ない、前述同様に各種のパラメ
ータと劣化度の校正曲線を作成する。
Therefore, a plurality of test materials to which different known stresses are applied in advance are measured by the above-mentioned Barkhausen method, signal processing is performed to measure the measurement parameters, and the measurement parameters and stress values are Create a calibration curve. Next, using a test material with a known degree of creep damage,
The deterioration measurement similar to the above is performed, and the calibration curves of various parameters and the deterioration degree are created as described above.

【0020】このようにして作成された各計測パラメー
タと応力値の校正曲線と、各種のパラメータの劣化度の
校正曲線は劣化度評価演算回路16内のメモリに格納
し、データベース化しておく。
The calibration curves of the respective measurement parameters and stress values and the calibration curves of the deterioration degrees of the various parameters thus created are stored in the memory in the deterioration degree evaluation arithmetic circuit 16 and stored in a database.

【0021】図5は上記実施例装置を用いた劣化度評価
フローチャートを示したものであり、以下このフローに
したがってその作用を説明する。まず、測定部位に対す
る測定条件を設定する。次にクリープ損傷程度を評価す
るための計測部位に対して低温環境下で評価対象部位と
同一の応力が負荷されている低温高応力部位について計
測を行ない、各計測パラメータの計測値について前記し
たように予め応力と計測値の関係より求めた校正曲線に
当てはめて負荷応力を測定する。同図には計測パラメー
タの一例としてピーク電圧値を計測値として示してある
が、他のパラメータについても同様の処理を行なう。こ
こで、各計測パラメータで求めた負荷応力σiについて
統計処理等を行ない、負荷応力値の総合評価を行なう。
FIG. 5 shows a deterioration degree evaluation flowchart using the apparatus of the above-mentioned embodiment, and its operation will be described below according to this flow. First, the measurement conditions for the measurement site are set. Next, the measurement site for evaluating the degree of creep damage is measured in a low temperature environment at the low temperature and high stress site where the same stress as the site to be evaluated is loaded in the low temperature environment, and the measurement values of each measurement parameter are as described above. Then, the applied stress is measured by applying it to the calibration curve previously obtained from the relationship between the stress and the measured value. In the figure, the peak voltage value is shown as a measured value as an example of the measured parameter, but similar processing is performed for other parameters. Here, the load stress σi obtained by each measurement parameter is subjected to statistical processing or the like to perform a comprehensive evaluation of the load stress value.

【0022】次に前記計測に引続き、計測対象部位であ
る高温高応力部位について前述同様の計測を行ない、計
測値を予め作成してある校正曲線(A)に当てはめる
が、計測パラメータとして実験結果からピーク電圧値は
図示する如く応力異存性が認められており、負荷応力が
不明のため、この値を校正曲線(A)に当てはめること
はできない。そこで、予めデータベース化している2種
類の校正曲線を用い、負荷応力との関係で求めた計測値
を基準値(Vref) とし、クリープ損傷材で求めた計測値
(Vi) を規格化すれば同図の劣化評価曲線のようなシ
ンプルな曲線が得られる。
Next, following the above measurement, the same measurement as described above is performed for the high temperature and high stress region which is the measurement target region, and the measured value is applied to the calibration curve (A) which has been prepared in advance. As shown in the figure, it is not possible to apply the peak voltage value to the calibration curve (A) because it is recognized that the stress is different and the load stress is unknown. Therefore, using two types of calibration curves that are stored in a database in advance and using the measured value found in relation to the load stress as the reference value (Vref), the measured value (Vi) found for the creep damaged material can be standardized. A simple curve such as the deterioration evaluation curve in the figure is obtained.

【0023】従って、計測対象部位で求めた計測値と低
温高応力部位で求めた負荷応力σiを用いて劣化評価曲
線に当てはめることにより、クリープ損傷度φiを求め
ることができる。
Therefore, the creep damage degree φi can be obtained by fitting it to the deterioration evaluation curve using the measured value obtained at the measurement target portion and the load stress σi obtained at the low temperature high stress portion.

【0024】このような操作を他の計測パラメータ(例
えばパルス数、rise time)について行ない、同様にして
求められた負荷応力σiについて統計処理等を加味した
総合的な評価を行なうことにより、クリープ損傷度を求
めることができる。
Such an operation is performed for other measurement parameters (for example, the pulse number and rise time), and the load stress σi obtained in the same manner is comprehensively evaluated in consideration of statistical processing and the like, whereby creep damage is obtained. You can ask for degrees.

【0025】従って、図5に示すフローチャートに従う
プログラムを上記実施例装置に組込んで一連の計測、解
析、評価を行なうことで、対象測定部位のクリープ損傷
度が容易に検出可能となり、また計測部位の応力につい
ても計測可能となる。
Therefore, by incorporating the program according to the flow chart shown in FIG. 5 into the apparatus of the above embodiment and performing a series of measurement, analysis and evaluation, the creep damage degree of the target measurement site can be easily detected and the measurement site can be easily measured. It is possible to measure the stress of.

【0026】以上のように本実施例では、高温で且つ応
力が作用しているタービンロータ1の中心孔2への出入
れおよび所定の位置に固定設置の容易な検査ヘッドを用
いて、内面のクリープ損傷を計測し、劣化度を評価する
ようにしたものである。即ち、タービンロータ1の中心
孔2の低温高応力部位で測定した計測値およびこの計測
値と応力値の校正曲線より求めた負荷応力と対象計測部
位で求めた計測値を、予め実験で求めておいた校正曲線
(クリープ損傷度と計測値の関係)に当てはめて劣化度
を測定し、クリープ損傷の検出を可能にしたものであ
る。
As described above, in this embodiment, the inspection head which is easy to put in and out of the central hole 2 of the turbine rotor 1 at high temperature and under stress and fixedly installed at a predetermined position is used. It measures creep damage and evaluates the degree of deterioration. That is, the measurement value measured at the low temperature and high stress portion of the center hole 2 of the turbine rotor 1, the load stress obtained from the calibration curve of this measurement value and the stress value, and the measurement value obtained at the target measurement portion are obtained in advance by experiments. By applying the calibration curve (relationship between creep damage and measured value) to measure the degree of deterioration, it is possible to detect creep damage.

【0027】従って、計測が困難な形状を有する部位に
対しても非破壊手法によるクリープ損傷を検出し、評価
することができる。また、低温高応力部位の負荷応力を
についても計測が可能となり、タービンロータ1の中心
孔2のような高精度な計測が可能となり、タービンロー
タ1の中心孔2のより高精度な計測ができ、機器部材の
健全性評価および寿命評価に多大な効果をもたらし、ひ
いては適正な検査が可能となる。
Therefore, it is possible to detect and evaluate the creep damage by the nondestructive method even for a portion having a shape that is difficult to measure. Further, it becomes possible to measure the load stress in the low temperature and high stress region as well, and it becomes possible to measure with high accuracy like the center hole 2 of the turbine rotor 1 and to measure the center hole 2 of the turbine rotor 1 with higher accuracy. Therefore, it has a great effect on the soundness evaluation and the life evaluation of the device members, and thus the proper inspection can be performed.

【0028】尚、上記実施例ではタービンロータ1の中
心孔のように円形を有する構造物の劣化度を計測する場
合について述べたが、本発明はこれに限定されるもので
はなく、検査ヘッドの形状を適宜形状に変形して適用す
れば、測定部位が平面、曲面等各種形状を有する構造物
に対しても前述同様に被検材の劣化度および評価が可能
となる。
In the above embodiment, the case where the degree of deterioration of a circular structure such as the central hole of the turbine rotor 1 is measured has been described, but the present invention is not limited to this and the inspection head If the shape is transformed into an appropriate shape and applied, the degree of deterioration and evaluation of the material to be inspected can be performed in the same manner as described above even for a structure having various shapes such as a flat surface and a curved surface.

【0029】[0029]

【発明の効果】以上述べたように本発明によれば、計測
が困難な形状を有する部位に対しても非破壊手法により
クリープ損傷を検出し、評価することができる劣化計測
装置を提供できる。
As described above, according to the present invention, it is possible to provide a deterioration measuring device capable of detecting and evaluating creep damage by a nondestructive method even for a portion having a shape which is difficult to measure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による劣化計測装置の一実施例を示す構
成説明図。
FIG. 1 is a structural explanatory view showing an embodiment of a deterioration measuring device according to the present invention.

【図2】同実施例において、検査ヘッドをタービンロー
タの中心孔に挿入した状態を示す図。
FIG. 2 is a diagram showing a state in which an inspection head is inserted into a center hole of a turbine rotor in the embodiment.

【図3】同実施例において検査ヘッドによる電磁波検出
時の作用説明図。
FIG. 3 is an operation explanatory view when an inspection head detects an electromagnetic wave in the embodiment.

【図4】同実施例による検出信号の各計測パラメータの
説明図。
FIG. 4 is an explanatory diagram of each measurement parameter of a detection signal according to the same embodiment.

【図5】同実施例の劣化評価を行なうためのフローチャ
ートを示す図。
FIG. 5 is a view showing a flowchart for performing deterioration evaluation of the same embodiment.

【符号の説明】[Explanation of symbols]

1……タービンロータ、2……中心孔、3……検査ヘッ
ド、4……操作ロッド、51……ケーブル、6……計測
制御部、7……マイクロプロセッサ、8……信号発生
器、9……定電流源、10……フィルタ、11……増幅
器、12……CRT、13……周波数解析器、14……
信号処理回路、15……劣化度評価演算回路、17……
表示器。
1 ... Turbine rotor, 2 ... Center hole, 3 ... Inspection head, 4 ... Operation rod, 51 ... Cable, 6 ... Measurement controller, 7 ... Microprocessor, 8 ... Signal generator, 9 ... constant current source, 10 ... filter, 11 ... amplifier, 12 ... CRT, 13 ... frequency analyzer, 14 ...
Signal processing circuit, 15 ... Degradation degree evaluation arithmetic circuit, 17 ...
display.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 古村 一朗 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 (72)発明者 長井 敏 神奈川県横浜市鶴見区末広町2丁目4番地 株式会社東芝京浜事業所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ichiro Furumura 2-4 Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Toshiba Keihin Plant (72) Inventor Satoshi Nagai 2-cue, Suehiro-cho, Tsurumi-ku, Yokohama-shi, Kanagawa Address inside Toshiba Keihin office

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温、高応力下で使用される強磁性体か
らなる被検材に交流磁界を印加する磁化器およびこの磁
化器による被検材の磁化過程で周期的に発生する信号を
検出する検出器を備えた検査ヘッドと、この検査ヘッド
を支持し且つ前記被検材の測定部位に移動させて設置す
る支持手段と、前記検査ヘッドの前記磁化器に交流電流
を供給して前記強磁性材の測定部位に所定の交流磁界を
発生させる電流供給手段と、前記検査ヘッドの前記検出
器により検出された検出信号が入力されこの検出信号を
解析処理して各種パラメータを計測する信号処理手段
と、この信号処理手段で計測された各種計測パラメータ
を用いて応力を測定し、その応力値と測定値および計測
パラメータとクリープ損傷度の関係を示す校正曲線を作
成する演算手段と、予め既知の試験材に対して計測され
た各種パラメータの計測値と応力値および各種パラメー
タの計測値とクリープ損傷度に基いて作成された校正曲
線が材料、温度、応力等のデータと共に格納された記憶
手段と、前記被検材の材料、温度、応力等に該当する校
正曲線を前記記憶手段より取り込んで前記演算手段によ
り作成された校正曲線と比較演算して前記被検材のクリ
ープ損傷度を計測および判定する劣化判定手段とを備え
たことを特徴とする劣化計測装置。
1. A magnetizer for applying an alternating magnetic field to a material to be tested made of a ferromagnetic material used under high temperature and high stress, and a signal generated periodically during the magnetization process of the material to be tested by the magnetizer is detected. An inspection head having a detector for supporting the inspection head, supporting means for supporting the inspection head and moving the measurement head to a measurement site of the material to be installed, and supplying an alternating current to the magnetizer of the inspection head to increase the strength. A current supply means for generating a predetermined AC magnetic field at a measurement site of a magnetic material and a detection signal detected by the detector of the inspection head are input, and signal processing means for analyzing and processing the detection signal to measure various parameters. And a calculation means for measuring stress using various measurement parameters measured by the signal processing means, and creating a calibration curve showing the relationship between the stress value and the measured value and the measurement parameter and the creep damage degree, and Therefore, a calibration curve created based on the measured values and stress values of various parameters measured on known test materials and the measured values of various parameters and creep damage was stored together with data such as material, temperature, and stress. The storage device and the calibration curve corresponding to the material, temperature, stress, etc. of the test material are fetched from the storage means and are compared and calculated with the calibration curve created by the calculation means to determine the creep damage degree of the test material. A deterioration measuring device, comprising: deterioration determining means for measuring and judging.
JP33825491A 1991-12-20 1991-12-20 Degradation measuring device Pending JPH05172785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33825491A JPH05172785A (en) 1991-12-20 1991-12-20 Degradation measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33825491A JPH05172785A (en) 1991-12-20 1991-12-20 Degradation measuring device

Publications (1)

Publication Number Publication Date
JPH05172785A true JPH05172785A (en) 1993-07-09

Family

ID=18316389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33825491A Pending JPH05172785A (en) 1991-12-20 1991-12-20 Degradation measuring device

Country Status (1)

Country Link
JP (1) JPH05172785A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603216B2 (en) * 2001-09-07 2010-12-22 新日本製鐵株式会社 Fatigue damage degree diagnosis method and fatigue damage degree diagnosis system for steel materials constituting steel structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4603216B2 (en) * 2001-09-07 2010-12-22 新日本製鐵株式会社 Fatigue damage degree diagnosis method and fatigue damage degree diagnosis system for steel materials constituting steel structure

Similar Documents

Publication Publication Date Title
US4931730A (en) Method and apparatus for non-destructive materials testing and magnetostructural materials investigations
EP2707705B1 (en) Surface property inspection device and surface property inspection method
CN101246143B (en) Device for measuring ferromagnetic material internal stress by impulse electromagnetic field
WO2010050155A1 (en) Barkhausen noise inspection apparatus and inspection method
Ge et al. Analysis of signals for inclined crack detection through alternating current field measurement with a U-shaped probe
JP2766929B2 (en) Non-destructive inspection equipment
US4689558A (en) Non-destructive method of measuring the fatigue limit of ferromagnetic materials by use of the mechanical Barkhauser phenomenon
Nadzri et al. Development of eddy current testing system for welding inspection
JP2001141701A (en) Method for measuring coercive force
JP2001133440A (en) Nondestructive method for measuring aged deterioration of strength of ferromagnetic structural material
JP3639908B2 (en) Nondestructive measurement method for aging of ferromagnetic structural materials
JP3158182B2 (en) Non-destructive method for measuring the aging of the strength of ferromagnetic structural materials
US4803428A (en) Method and apparatus for non-destructive material testing, particularly for determination of thickness of coating layers on a base material by measuring electrical conductivity or magnetic permeability at the finished specimen
JPH05172785A (en) Degradation measuring device
JPS62273447A (en) Method and apparatus for measuring deterioration degree of material
Goldfine et al. Introduction to the Meandering Winding Magnetometer (MWM) and the grid measurement approach
Hang et al. Abnormal signals elimination in hardness evaluation using Barkhausen noise and tangential magnetic field
JP2002277442A (en) Non-destructive inspection method and apparatus
Betta et al. Calibration and adjustment of an eddy current based multi-sensor probe for non-destructive testing
JPH05264508A (en) Method and apparatus for nondestructive measurement of quenched and hardened range
Arismendi et al. Classification of artificial near-side cracks in aluminium plates using a GMR-based eddy current probe
Chady et al. Fusion of electromagnetic inspection methods for evaluation of stress-loaded steel samples
JP3530472B2 (en) Bar detection system
Vértesy et al. Nondestructive material evaluation by novel electromagnetic methods
Cordier et al. Accurate steel tube axis alignment in nondestructive evaluation probe