JP3173365B2 - Stress measurement method using magnetostriction effect - Google Patents

Stress measurement method using magnetostriction effect

Info

Publication number
JP3173365B2
JP3173365B2 JP06271996A JP6271996A JP3173365B2 JP 3173365 B2 JP3173365 B2 JP 3173365B2 JP 06271996 A JP06271996 A JP 06271996A JP 6271996 A JP6271996 A JP 6271996A JP 3173365 B2 JP3173365 B2 JP 3173365B2
Authority
JP
Japan
Prior art keywords
stress
measured
magnetostrictive sensor
max
electromotive force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP06271996A
Other languages
Japanese (ja)
Other versions
JPH09257599A (en
Inventor
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP06271996A priority Critical patent/JP3173365B2/en
Publication of JPH09257599A publication Critical patent/JPH09257599A/en
Application granted granted Critical
Publication of JP3173365B2 publication Critical patent/JP3173365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪効果によって
生じる磁気異方性を利用して鋼構造物や機械部品に負荷
されている応力、特に、短時間に周期的に繰り返し負荷
されている応力を非破壊的に測定する方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a stress applied to a steel structure or a mechanical part by utilizing magnetic anisotropy caused by a magnetostriction effect, and more particularly to a stress applied periodically and repeatedly in a short time. A non-destructive measurement method.

【0002】[0002]

【従来の技術】鉄鋼材料などの強磁性材料に負荷されて
いる応力を測定する方法として、磁歪効果、すなわち応
力によって磁気的性質が変化する現象を利用した応力測
定方法がある。なかでも、磁歪効果によって生じる磁気
異方性を利用する応力測定方法は、鋼構造物や機械部品
に負荷されている応力を非破壊で、しかも比較的簡便に
測定できる方法として、特開昭62ー121325号公
報、実開平1ー135338号公報、特開平7ー110
270号公報あるいは文献1〔境等:土木学会第50回
年次学術講演会予稿集、P662〜663(1995.
9)〕などに紹介されている。
2. Description of the Related Art As a method for measuring a stress applied to a ferromagnetic material such as a steel material, there is a stress measuring method utilizing a magnetostrictive effect, that is, a phenomenon in which magnetic properties are changed by the stress. Above all, a stress measurement method utilizing magnetic anisotropy caused by the magnetostriction effect is disclosed in Japanese Patent Laid-Open No. JP-A-121325, JP-A-1-135338, JP-A-7-110
No. 270 or Reference 1 [Sakai et al .: Proceedings of the 50th Annual Scientific Lecture Meeting of the Japan Society of Civil Engineers, P662-663 (1995.
9)].

【0003】この方法は次のような原理に基づいてい
る。図7に、磁歪効果によって生じる磁気異方性を利用
する応力測定方法の原理図を示す。図7で、1は磁歪セ
ンサー、11は励磁用コイルを巻いたコの字型のヨー
ク、11a、11bはヨーク11の開口端、12は検出
用コイルを巻いたコの字型のヨーク、12a、12bは
ヨーク12の開口端、13は交流電源、14は電圧計、
20は被測定物(磁性材料)、30は磁束の流れる方向
を表す。ここで、磁歪センサー1とはヨーク11、ヨー
ク12、交流電源13、電圧計14の総体を指す。ま
た、ヨーク11とヨーク12は互いにヨーク鞍部の中央
部で直交している。
[0003] This method is based on the following principle. FIG. 7 shows a principle diagram of a stress measurement method using magnetic anisotropy generated by the magnetostriction effect. In FIG. 7, 1 is a magnetostrictive sensor, 11 is a U-shaped yoke wound with an exciting coil, 11a and 11b are open ends of the yoke 11, 12 is a U-shaped yoke wound with a detecting coil, 12a. , 12b are open ends of the yoke 12, 13 is an AC power supply, 14 is a voltmeter,
Reference numeral 20 denotes an object to be measured (magnetic material), and reference numeral 30 denotes a direction in which a magnetic flux flows. Here, the magnetostrictive sensor 1 indicates the whole of the yoke 11, the yoke 12, the AC power supply 13, and the voltmeter 14. The yoke 11 and the yoke 12 are orthogonal to each other at the center of the yoke saddle.

【0004】いま、被測定物20のX軸方向に引張応力
σX が作用すると、磁性材料である被測定物20のX、
Y軸方向の透磁率μX 、μY には、磁歪効果により下記
の式(5)の関係、すなわち磁気異方性が生じる μX >μY ・・・(5)
Now, when a tensile stress σ X acts on the X-axis direction of the DUT 20, X, X,
The magnetic permeability μ X , μ Y in the Y-axis direction is related by the following equation (5) due to the magnetostrictive effect, that is, magnetic anisotropy occurs: μ X > μ Y (5)

【0005】このような状態にある被測定物20に磁歪
センサー1を接近させ、この磁歪センサー1のヨーク1
1に巻かれた励磁用コイルに交流電流を流して被測定物
20を励磁すると、ヨーク11の開口端11aから出た
磁束の大部分は直接ヨーク11の開口端11bへ向かう
が、被測定物20には引張応力σX により式(5)のよ
うな磁気異方性が生じているため、磁束の一部はヨーク
12を経由してヨーク11の開口端11bへ流れる。そ
のため、ヨーク12に巻かれた検出用コイルには下記の
式(6)に示す起電力Vが誘起される。 V=M0 ・(μX −μY )・COS[2・(θ−π/4)]・・・(6) ここで、Vは検出用コイルに誘起される交流起電力の整
流値、M0 は励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数、COS[2・(θ−π/
4)]は余弦関数、θはヨーク12の開口端12aと12
bを結ぶ直線とX軸のなす角である。
[0005] The magnetostrictive sensor 1 is brought close to the measured object 20 in such a state, and the yoke 1 of the magnetostrictive sensor 1 is moved.
When an object to be measured 20 is excited by passing an alternating current through the exciting coil wound around the coil 1, most of the magnetic flux emitted from the open end 11a of the yoke 11 goes directly to the open end 11b of the yoke 11, but Since a magnetic anisotropy as shown in the equation (5) is generated in 20 by the tensile stress σ X , a part of the magnetic flux flows to the opening end 11 b of the yoke 11 via the yoke 12. Therefore, an electromotive force V represented by the following equation (6) is induced in the detection coil wound around the yoke 12. V = M 0 · (μ X −μ Y ) · COS [2 · (θ−π / 4)] (6) where V is a rectified value of the AC electromotive force induced in the detection coil, M 0 is a constant determined by excitation conditions, coil conditions, magnetic characteristics of the device under test 20, etc., and COS [2 · (θ−π /
4)] is a cosine function, and θ is the open ends 12a and 12 of the yoke 12.
The angle between the straight line connecting b and the X axis.

【0006】透磁率の差(μX −μY )は応力の差(σ
X −σY )に比例するので、式(6)は下記の式(7)
のように書換えできる。 V=M・(σX −σY )・COS[2・(θ−π/4)]・・・(7) ここで、Mは励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数である。
The difference in magnetic permeability (μ X −μ Y ) is the difference in stress (σ
X− σ Y ), the equation (6) is calculated by the following equation (7).
Can be rewritten as V = M · (σ X −σ Y ) · COS [2 · (θ−π / 4)] (7) where M is an excitation condition, a coil condition, and a magnetic characteristic of the DUT 20. It is a constant determined by the above.

【0007】式(7)より、Vを測定することにより被
測定物に負荷されている応力を求めることができる。
From the equation (7), the stress applied to the measured object can be obtained by measuring V.

【0008】図8に、ある被測定物の同一箇所に繰り返
し応力を負荷したときの応力付加時と除去時に得られる
磁歪センサーの起電力と付加応力の関係を示す。
FIG. 8 shows the relationship between the electromotive force of the magnetostrictive sensor and the applied stress obtained when a stress is repeatedly applied to the same portion of an object to be measured and when the stress is removed.

【0009】負荷応力と磁歪センサーの起電力は、応力
の付加側と除去側で同一の応力に対して同一の起電力を
示さない、いわゆる履歴曲線を形成している。したがっ
て、応力が繰り返し負荷される場合は、測定される磁歪
センサーの起電力から一義的に応力を求めることができ
ない。
The load stress and the electromotive force of the magnetostrictive sensor form a so-called hysteresis curve that does not show the same electromotive force for the same stress on the side where the stress is added and on the side where the stress is removed. Therefore, when the stress is repeatedly applied, the stress cannot be uniquely obtained from the measured electromotive force of the magnetostrictive sensor.

【0010】この履歴曲線が生じる原因は、繰り返し測
定時に材料に蓄積される残留磁化による。実公平5ー1
0337号公報には、交流脱磁処理法によりこの被測定
物の残留磁化を消去してから応力測定する方法が提案さ
れている。
[0010] This hysteresis curve is caused by residual magnetization accumulated in the material during repeated measurement. 5-1
No. 0337 proposes a method of measuring the stress after erasing the residual magnetization of the DUT by an AC demagnetization method.

【0011】図9に、前記特許公報に記載の交流脱磁処
理法を示す。図9の符号は、図7の符号と同じものを表
す。
FIG. 9 shows an AC demagnetization treatment method described in the above-mentioned patent publication. 9 denote the same components as those in FIG.

【0012】被測定物20の応力測定を行う前に、被測
定物20に励磁コイルを巻いたヨーク11をあて、この
ヨーク11に交流電源13により交流電流をその振幅を
除々に減衰させながら流し、被測定物20の残留磁化を
消去する。
Before measuring the stress of the device under test 20, a yoke 11 around which an exciting coil is wound is placed on the device under test 20, and an alternating current is supplied to the yoke 11 by an AC power supply 13 while gradually attenuating its amplitude. Then, the residual magnetization of the device under test 20 is erased.

【0013】図10に、交流脱磁処理後の負荷応力と磁
歪センサーの起電力の関係を示す。交流脱磁処理を行う
ことにより履歴曲線を示さず、測定される磁歪センサー
の起電力から一義的に応力を求められる。
FIG. 10 shows the relationship between the load stress after the AC demagnetization treatment and the electromotive force of the magnetostrictive sensor. By performing the AC demagnetization treatment, a hysteresis curve is not shown, and the stress can be uniquely obtained from the measured electromotive force of the magnetostrictive sensor.

【0014】[0014]

【発明が解決しようとする課題】しかしながら、実公平
5ー10337号公報に記載の方法は、1回の脱磁処理
が数秒の時間を要するため、繰り返し負荷される応力の
周期が脱磁処理時間より長い場合には問題なく適用でき
るが、疲労試験などのようにこの周期が脱磁処理時間よ
り短い場合は、以下に示すように適用できない。
However, in the method described in Japanese Utility Model Publication No. 5-10337, since one demagnetization process requires several seconds, the cycle of the stress repeatedly applied is equal to the demagnetization time. If the period is shorter than the demagnetization treatment time as in a fatigue test, it cannot be applied as shown below.

【0015】図11に、鋼材に10±5kgf/mm2
の範囲に1Hzの周期で変化する負荷応力を与え、上記
の脱磁処理を併用した校正曲線を用いて測定される磁歪
センサーの起電力から応力を求めた結果を示す。
FIG. 11 shows that 10 ± 5 kgf / mm 2
The results obtained by applying a load stress that changes at a cycle of 1 Hz to the range described above and obtaining the stress from the electromotive force of the magnetostrictive sensor measured using the calibration curve that combines the demagnetization treatment described above.

【0016】このように短い周期で応力が負荷される場
合は、歪みゲージで測定した実際の負荷応力とは著しく
異なり、脱磁処理が有効でないことがわかる。
When the stress is applied in such a short cycle, the demagnetization treatment is not effective because the stress is significantly different from the actual applied stress measured by the strain gauge.

【0017】本発明はこのような課題を解決するために
なされたもので、繰り返し負荷される応力の周期が短時
間でも、正確な応力測定が可能な磁歪効果を利用した応
力測定方法を提供することを目的とする。
The present invention has been made in order to solve such a problem, and provides a stress measurement method using the magnetostriction effect that enables accurate stress measurement even when a cycle of stress repeatedly applied is short. The purpose is to:

【0018】[0018]

【課題を解決するための手段】上記課題は、励磁用コイ
ルを巻いたコの字型のヨークと検出用コイルを巻いたコ
の字型のヨークを互いにヨーク鞍部の中央部で直交する
ように配置し、前記コの字型のヨークの開口端側を被測
定物に接近させ、前記励磁用コイルに交流電流を流して
前記被測定物を励磁し、前記検出用コイルに誘起される
起電力を測定して前記被測定物の負荷応力を測定可能な
磁歪センサーを用いた磁歪効果を利用した応力測定方法
において、下記の手法により周期的負荷応力を測定する
ことを特徴とする磁歪効果を利用した応力測定方法。
An object of the present invention is to provide a U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detection coil is wound, so that they are orthogonal to each other at the center of the yoke saddle. In this case, the open end side of the U-shaped yoke is brought close to the object to be measured, an alternating current is applied to the exciting coil to excite the object to be measured, and an electromotive force induced in the detecting coil. In the stress measuring method using a magnetostrictive effect using a magnetostrictive sensor capable of measuring the load stress of the object to be measured by measuring the load stress, the magnetostrictive effect is characterized in that a periodic load stress is measured by the following method. Stress measurement method.

【0019】(イ)前記周期的負荷応力の応力付加側の
応力については、予め求めておいた前記磁歪センサーの
起電力と応力の校正曲線から求める。
(A) The stress on the side of the periodic load stress to which the stress is applied is obtained from a calibration curve of the electromotive force and the stress of the magnetostrictive sensor which has been obtained in advance.

【0020】(ロ)前記周期的負荷応力の応力除去側の
応力については、 i)前記磁歪センサーで測定される起電力Vx を下記の
式(4)に代入して、規格化したVs を求め、 ii)前記Vx に対応した負荷応力σx を下記の式
(3)で規格化したσs と前記Vs の関係を下記のn次
の多項式(1)で表したときの係数Ck を、前記磁歪セ
ンサーにより測定される最大負荷応力σmax を前記Ck
と前記σmax の関係を表した下記のn次の多項式(2)
に代入して求め、 iii)前記Vs と前記式(1)からσs を求め、 iv)前記σs と前記式(3)からσx を算出する。
(B) Regarding the stress on the stress-removing side of the periodic load stress, i) Substituting the electromotive force V x measured by the magnetostrictive sensor into the following equation (4) to standardize V s Ii) a coefficient when the relationship between V s and σ s in which the applied stress σ x corresponding to V x is normalized by the following equation (3) is expressed by the following n-th order polynomial (1): the C k, the maximum load stress sigma max measured by the magnetostrictive sensor C k
The following n-order polynomial that represents the relationship between the sigma max and (2)
By substituting the determined, iii) obtains the V s in the formula (1) from sigma s, iv) calculating the sigma x from the sigma s and the formula (3).

【0021】Vs =Σ(Ck ・σk s )・・・(1) Ck =Σ(Gk ・σk max )・・・(2) ただし、 k=0 、1、2・・・・・n σs =σx /(σ max−σ min)・・・(3) Vs =Vx /(V max−V min)・・・(4) ここで、σ minは最小負荷応力、V maxは磁歪センサー
で測定される最大起電力、V minは磁歪センサーで測定
される最小起電力、Gk は式(2)の係数である。
V s = Σ (C k · σ k s ) (1) C k = Σ (G k · σ k max ) (2) where k = 0, 1, 2,... ... N s = σ x / (σ max −σ min ) (3) V s = V x / (V max −V min ) (4) where σ min is the minimum load The stress, V max is the maximum electromotive force measured by the magnetostrictive sensor, V min is the minimum electromotive force measured by the magnetostrictive sensor, and G k is the coefficient of equation (2).

【0022】図2に、脱磁処理を行わず最大負荷応力を
変えて周期的な応力を負荷したときの負荷応力と磁歪セ
ンサーの起電力の関係を示す。
FIG. 2 shows the relationship between the applied stress and the electromotive force of the magnetostrictive sensor when a periodic stress is applied by changing the maximum applied stress without performing the demagnetization process.

【0023】応力付加側では、繰り返しの応力を負荷し
ても、また、その負荷応力の最大値を変えても、負荷応
力と磁歪センサーの起電力の関係は一つの曲線で表され
る。したがって、これを校正曲線に用いれば測定される
磁歪センサーの起電力から一義的に負荷応力を求めるこ
とができる。
On the stress application side, the relationship between the applied stress and the electromotive force of the magnetostrictive sensor is represented by a single curve even if the applied stress is repeated or the maximum value of the applied stress is changed. Therefore, if this is used for the calibration curve, the load stress can be uniquely obtained from the measured electromotive force of the magnetostrictive sensor.

【0024】一方、応力徐去側では、応力付加側とは異
なる履歴曲線を形成するため、測定される磁歪センサー
の起電力から一義的に負荷応力を求めることができな
い。また、この履歴曲線は最大負荷応力によっても異な
っている。したがって、最大負荷応力に対応した応力徐
去側における曲線を何らかの方法で決定できれば、それ
を校正曲線に用いることにより測定される磁歪センサー
の起電力から負荷応力を一義的に求めることができる。
以下にその手法を説明する。
On the other hand, since a hysteresis curve different from that on the stress application side is formed on the stress relief side, the load stress cannot be uniquely determined from the measured electromotive force of the magnetostrictive sensor. This hysteresis curve also differs depending on the maximum load stress. Therefore, if a curve on the stress relief side corresponding to the maximum load stress can be determined by any method, the load stress can be uniquely obtained from the electromotive force of the magnetostrictive sensor measured by using the curve as a calibration curve.
The method will be described below.

【0025】まず、数学的処理を容易にするために、応
力除去側における負荷応力σx と磁歪センサーで測定さ
れる交流起電力の整流値Vx を上記の式(3)、式
(4)のように規格化する。
First, in order to facilitate the mathematical processing, the load stress σ x on the stress removing side and the rectified value V x of the AC electromotive force measured by the magnetostrictive sensor are calculated by the above equations (3) and (4). Standardize as follows.

【0026】図3に、図2を式(3)、式(4)にした
がって規格化した応力と起電力を用いて書き換えた図を
示す。
FIG. 3 is a diagram in which FIG. 2 is rewritten using stress and electromotive force normalized according to the equations (3) and (4).

【0027】規格化することにより負荷応力と磁歪セン
サーの起電力は無次元化される。図3の応力除去側の曲
線を上記のn次の多項式(1)で表す。
By normalizing, the load stress and the electromotive force of the magnetostrictive sensor are made dimensionless. The curve on the stress relief side in FIG. 3 is represented by the above-described n-th order polynomial (1).

【0028】予め被測定物を構成する材料を用い、最大
負荷応力σmax を変化させて最大起電力V maxを測定
し、式(1)の係数Ck と最大負荷応力σmax の関係を
表す上記のn次の多項式(2)を求めておく。
The maximum electromotive force V max is measured by changing the maximum load stress σ max using the material constituting the object to be measured in advance, and represents the relationship between the coefficient C k of equation (1) and the maximum load stress σ max. The above-mentioned n-th order polynomial (2) is obtained.

【0029】応力付加側の校正曲線を用い、磁歪センサ
ーの起電力から最大負荷応力σmaxを測定し、このσ
max を式(2)へ代入しCk を求め、式(1)を決定す
る。
Using the calibration curve on the stress application side, the maximum load stress σ max is measured from the electromotive force of the magnetostrictive sensor.
By substituting max into Expression (2) to obtain C k , Expression (1) is determined.

【0030】応力徐去時に測定される磁歪センサーの起
電力Vx を式(4)により規格化してVs を求め、この
s を式(1)へ代入して規格化された応力σs を求め
る。
The electromotive force V x of the magnetostrictive sensor measured at the time of the stress elimination is standardized by equation (4) to obtain V s , and this V s is substituted into equation (1) to standardize the stress σ s Ask for.

【0031】このσs を式(3)に代入することによ
り、応力徐去時に測定される磁歪センサーの起電力Vx
に対応した負荷応力σx を算出することができる。
By substituting this σ s into the equation (3), the electromotive force V x of the magnetostrictive sensor measured when the stress is released is calculated.
It is possible to calculate the applied stress sigma x corresponding to.

【0032】[0032]

【発明の実施の形態】上記の式(1)および式(2)の
多項式の次数nは、大きいほど測定精度が向上するので
好ましいが、n=3であれば鋼構造物や機械部品に負荷
されている応力の評価には充分である。
BEST MODE FOR CARRYING OUT THE INVENTION The degree n of the polynomials of the above equations (1) and (2) is preferably as large as possible, because the measurement accuracy is improved. It is sufficient for evaluation of the applied stress.

【0033】図3のデータをもとにn=3のときに得ら
れるCk と最大負荷応力σmax の関係を図4(C3 )、
図5(C2 )、図6(C1 )にそれぞれ示す。ただし、
0は充分小さいので省略してある。
FIG. 4 (C 3 ) shows the relationship between C k and the maximum load stress σ max obtained when n = 3 based on the data of FIG.
These are shown in FIG. 5 (C 2 ) and FIG. 6 (C 1 ), respectively. However,
C 0 is omitted because it is sufficiently small.

【0034】この関係に基づき、磁歪センサーにより測
定される最大負荷応力σmax より3次の多項式(1)が
決定され、応力除去側の曲線が求まる。したがって、応
力除去側においても測定される磁歪センサーの起電力か
ら一義的に負荷応力を算出できることになる。
Based on this relationship, a third-order polynomial (1) is determined from the maximum load stress σ max measured by the magnetostrictive sensor, and a curve on the stress relieving side is obtained. Therefore, the load stress can be uniquely calculated from the electromotive force of the magnetostrictive sensor measured also on the stress removing side.

【0035】[0035]

【実施例】鋼材に10±5kgf/mm2 の範囲に1H
zの周期で変化する負荷応力を与え、その応力を歪みゲ
ージと本発明方法により測定した。
Example: 1H in the range of 10 ± 5 kgf / mm 2 for steel
A load stress that changes in a cycle of z was applied, and the stress was measured by a strain gauge and the method of the present invention.

【0036】図1に、本発明方法により算出した周期的
な負荷応力を示す。本発明方法により算出した負荷応力
は歪みゲージで測定される実際の応力とほぼ一致してい
ることがわかる。
FIG. 1 shows the periodic load stress calculated by the method of the present invention. It can be seen that the applied stress calculated according to the method of the present invention substantially matches the actual stress measured by the strain gauge.

【0037】[0037]

【発明の効果】本発明は以上説明したように構成されて
いるので、繰り返し負荷される応力の周期が短時間で
も、正確な応力測定が可能な磁歪効果を利用した応力測
定方法を提供できる。
Since the present invention is configured as described above, it is possible to provide a stress measuring method utilizing the magnetostrictive effect, which enables accurate stress measurement even when the cycle of the stress repeatedly applied is short.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法により算出した周期的な負荷応力を
示す図である。
FIG. 1 is a diagram showing periodic load stress calculated by the method of the present invention.

【図2】脱磁処理を行わず最大負荷応力を変えて周期的
に応力負荷したときの負荷応力と磁歪センサーの起電力
の関係を示す図である。
FIG. 2 is a diagram illustrating a relationship between a load stress and an electromotive force of a magnetostrictive sensor when a periodic stress is applied while changing a maximum load stress without performing a demagnetization process.

【図3】図2を、規格化した応力と起電力を用いて書き
換えた図である。
FIG. 3 is a diagram obtained by rewriting FIG. 2 using normalized stress and electromotive force.

【図4】C3 と最大負荷応力σmax の関係を示す図であ
る。
FIG. 4 is a diagram showing a relationship between C 3 and a maximum load stress σ max .

【図5】C2 と最大負荷応力σmax の関係を示す図であ
る。
FIG. 5 is a diagram showing a relationship between C 2 and a maximum load stress σ max .

【図6】C1 と最大負荷応力σmax の関係を示す図であ
る。
FIG. 6 is a diagram showing a relationship between C 1 and a maximum load stress σ max .

【図7】磁歪効果によって生じる磁気異方性を利用する
応力測定方法の原理図である。
FIG. 7 is a principle diagram of a stress measurement method using magnetic anisotropy generated by a magnetostriction effect.

【図8】繰り返し応力を負荷したときの応力付加時と除
去時に得られる磁歪センサーの起電力と負荷応力の関係
を示す図である。
FIG. 8 is a diagram showing a relationship between an electromotive force and a load stress of a magnetostrictive sensor obtained at the time of adding and removing stress when a repeated stress is applied.

【図9】実公平5ー10337号公報に示された交流脱
磁処理法の説明図である。
FIG. 9 is an explanatory diagram of an AC demagnetization processing method disclosed in Japanese Utility Model Publication No. 5-10337.

【図10】交流脱磁処理後の負荷応力と磁歪センサーの
起電力の関係を示す図である。
FIG. 10 is a diagram illustrating a relationship between a load stress after an AC demagnetization process and an electromotive force of a magnetostrictive sensor.

【図11】短い周期の応力を負荷したときの従来の脱磁
処理を併用した校正曲線を用いた応力測定結果を示す図
である。
FIG. 11 is a diagram showing a result of stress measurement using a calibration curve using a conventional demagnetization process when a short-cycle stress is applied.

【符号の説明】[Explanation of symbols]

1 磁歪センサー 11 励磁用コイルを巻いたコの字型のヨーク 11a ヨーク11の開口端 11b ヨーク11の開口端 12 検出用コイルを巻いたコの字型のヨーク 12a ヨーク12の開口端 12b ヨーク12の開口端 13 交流電源 14 電圧計 20 被測定物 30 磁束の流れる方向 Reference Signs List 1 Magnetostrictive sensor 11 U-shaped yoke wound with exciting coil 11a Open end of yoke 11b Open end of yoke 11 12 U-shaped yoke wound with detection coil 12a Open end of yoke 12 12b Yoke 12 Open end 13 AC power supply 14 Voltmeter 20 DUT 30 Direction of magnetic flux

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) G01L 1/00 G01L 1/12 ──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 7 , DB name) G01L 1/00 G01L 1/12

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励磁用コイルを巻いたコの字型のヨーク
と検出用コイルを巻いたコの字型のヨークを互いにヨー
ク鞍部の中央部で直交するように配置し、前記コの字型
のヨークの開口端側を被測定物に接近させ、前記励磁用
コイルに交流電流を流して前記被測定物を励磁し、前記
検出用コイルに誘起される起電力を測定して前記被測定
物の負荷応力を測定可能な磁歪センサーを用いた磁歪効
果を利用した応力測定方法において、下記の手法により
周期的負荷応力を測定することを特徴とする磁歪効果を
利用した応力測定方法。 (イ)前記周期的負荷応力の応力付加側の応力について
は、予め求めておいた前記磁歪センサーの起電力と応力
の校正曲線から求める。 (ロ)前記周期的負荷応力の応力除去側の応力について
は、 i)前記磁歪センサーで測定される起電力Vx を下記の
式(4)に代入して、規格化したVs を求め、 ii)前記Vx に対応した負荷応力σx を下記の式
(3)で規格化したσs と前記Vs の関係を下記のn次
の多項式(1)で表したときの係数Ck を、前記磁歪セ
ンサーにより測定される最大負荷応力σmax を前記Ck
と前記σmax の関係を表した下記のn次の多項式(2)
に代入して求め、 iii)前記Vs と前記式(1)からσs を求め、 iv)前記σs と前記式(3)からσx を算出する。 Vs =Σ(Ck ・σk s )・・・(1) Ck =Σ(Gk ・σk max )・・・(2) ただし、 k=0 、1、2・・・・・n σs =σx /(σ max−σ min)・・・(3) Vs =Vx /(V max−V min)・・・(4) ここで、 σ minは最小負荷応力、 V maxは磁歪センサーで測定される最大起電力、 V minは磁歪センサーで測定される最小起電力、 Gk は式(2)の係数である。
1. A U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detection coil is wound are arranged so as to be orthogonal to each other at the center of a yoke saddle. The yoke's open end side is brought close to the DUT, an alternating current is applied to the excitation coil to excite the DUT, and the electromotive force induced in the detection coil is measured to measure the DUT. A stress measuring method using a magnetostrictive effect using a magnetostrictive sensor capable of measuring a load stress of a sample, wherein a periodic load stress is measured by the following method. (A) The stress on the stress-applied side of the periodic load stress is obtained from a previously obtained electromotive force of the magnetostrictive sensor and a calibration curve of the stress. (B) Stress stress relief side of the cyclic loading stress, i) the electromotive force V x to be measured by magnetostrictive sensor into Equation (4) below, it obtains the V s normalized, ii) A coefficient C k when the relationship between V s and σ s obtained by standardizing the applied stress σ x corresponding to the above V x by the following equation (3) and the following n-th order polynomial (1) is , the maximum load stress sigma max measured by the magnetostrictive sensor wherein C k
The following n-order polynomial that represents the relationship between the sigma max and (2)
By substituting the determined, iii) obtains the V s in the formula (1) from sigma s, iv) calculating the sigma x from the sigma s and the formula (3). V s = Σ (C k · σ k s ) (1) C k = Σ (G k · σ k max ) (2) where k = 0, 1, 2,... n σ s = σ x / ( σ max -σ min) ··· (3) V s = V x / (V max -V min) ··· (4) where, sigma min minimum load stress, V max is the minimum emf, G k is the maximum electromotive, V min, as measured by a magnetostrictive sensor that is measured by the magnetostrictive sensor is a coefficient of the formula (2).
JP06271996A 1996-03-19 1996-03-19 Stress measurement method using magnetostriction effect Expired - Fee Related JP3173365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06271996A JP3173365B2 (en) 1996-03-19 1996-03-19 Stress measurement method using magnetostriction effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06271996A JP3173365B2 (en) 1996-03-19 1996-03-19 Stress measurement method using magnetostriction effect

Publications (2)

Publication Number Publication Date
JPH09257599A JPH09257599A (en) 1997-10-03
JP3173365B2 true JP3173365B2 (en) 2001-06-04

Family

ID=13208447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06271996A Expired - Fee Related JP3173365B2 (en) 1996-03-19 1996-03-19 Stress measurement method using magnetostriction effect

Country Status (1)

Country Link
JP (1) JP3173365B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115031893A (en) * 2022-06-06 2022-09-09 中国矿业大学 Calibration method for detecting residual stress field based on magnetic anisotropy

Also Published As

Publication number Publication date
JPH09257599A (en) 1997-10-03

Similar Documents

Publication Publication Date Title
US20080221810A1 (en) Method and Apparatus for Measuring the Stress or Strain of a Portion of a Ferro-Magnetic Member
Kypris et al. Experimental verification of the linear relationship between stress and the reciprocal of the peak Barkhausen voltage in ASTM A36 steel
CA2325222C (en) Nondestructive fatigue test method for ferromagnetic construction materials
JPS58501966A (en) Method for non-destructively measuring fatigue strength of ferromagnetic materials
JPH0466863A (en) Residual stress measuring method by steel working
JP6352321B2 (en) Non-contact stress measuring method and measuring apparatus by composite resonance method
JP3173365B2 (en) Stress measurement method using magnetostriction effect
JP3223596B2 (en) Method and apparatus for detecting deformation behavior in metal material
US6345534B1 (en) Nondestructive fatigue test method for ferromagnetic construction materials
JP3191726B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP3500966B2 (en) Stress measurement method and method for specifying approximate function
US20110112789A1 (en) Reversible Permeability Measuring Device
JP3159132B2 (en) Method for measuring stress in steel pipes
JPH01297546A (en) Method of diagnosing deterioration of conductive material
JP7454165B2 (en) Magnetic material measurement probe and magnetic material measurement device
JPH01269049A (en) Method of inspecting deterioration of metallic material
JP4634628B2 (en) Degradation diagnosis method for steel
Augustyniak et al. Assessment with mechanical Barkhausen effect of residual stress in grain oriented polycrystalline 3% Si-Fe sheet
JP3500967B2 (en) Stress measurement method and method for specifying approximate function
RU2073856C1 (en) Method of determination of mechanical stresses and magneto-elastic transducer for determination of mechanical stresses
JP3644628B2 (en) Stress measuring method and apparatus using magnetic anisotropy sensor
JPH06308092A (en) Material deterioration inspection device
SU1114938A1 (en) Method of measuring mechanical stresses in ferromagnetic objects
JPS604856A (en) Method and apparatus for non-destructive testing of toughness and strength of ferromagnetic material by acoustic analysis

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080330

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees