JP3191726B2 - Stress measuring method and apparatus utilizing magnetostriction effect - Google Patents

Stress measuring method and apparatus utilizing magnetostriction effect

Info

Publication number
JP3191726B2
JP3191726B2 JP12953897A JP12953897A JP3191726B2 JP 3191726 B2 JP3191726 B2 JP 3191726B2 JP 12953897 A JP12953897 A JP 12953897A JP 12953897 A JP12953897 A JP 12953897A JP 3191726 B2 JP3191726 B2 JP 3191726B2
Authority
JP
Japan
Prior art keywords
stress
magnetostrictive sensor
measured
yoke
magnetostrictive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12953897A
Other languages
Japanese (ja)
Other versions
JPH10318857A (en
Inventor
禎明 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP12953897A priority Critical patent/JP3191726B2/en
Publication of JPH10318857A publication Critical patent/JPH10318857A/en
Application granted granted Critical
Publication of JP3191726B2 publication Critical patent/JP3191726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、磁歪効果(狭義に
は逆磁歪効果)によって生じる磁気異方性を利用して鋼
構造物や機械部品に作用している応力、特に周期的に作
用する応力の最大主応力成分を非破壊的に測定する方法
およびその装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stress acting on a steel structure or a machine component, particularly a periodic action, utilizing magnetic anisotropy caused by a magnetostrictive effect (in a narrow sense, an inverse magnetostrictive effect). The present invention relates to a method and a device for non-destructively measuring the maximum principal stress component of stress.

【0002】[0002]

【従来の技術】鉄鋼材料などの強磁性材料に作用してい
る応力を測定する方法として、磁歪効果、すなわち応力
によって磁気的性質が変化する現象を利用した応力測定
方法がある。なかでも、磁歪効果によって生じる磁気異
方性を利用する応力測定方法は、鋼構造物や機械部品に
作用している応力を非破壊で、しかも比較的簡便に測定
できる方法として、特開昭62ー121325号公報、
実開平1ー135338号公報、特開平7ー11027
0号公報あるいは文献1〔境等:土木学会第50回年次
学術講演会予稿集、P662〜663(1995.
9)〕などに紹介されている。
2. Description of the Related Art As a method for measuring a stress acting on a ferromagnetic material such as a steel material, there is a stress measuring method utilizing a magnetostrictive effect, that is, a phenomenon in which magnetic properties change due to stress. Above all, the stress measurement method utilizing magnetic anisotropy generated by the magnetostriction effect is disclosed in Japanese Patent Application Laid-Open No. Sho 62 (1987) as a method for measuring stress acting on a steel structure or a mechanical part in a non-destructive and relatively simple manner. -121325,
JP-A-1-135338, JP-A-7-11027
No. 0 or Reference 1 [Sakai et al .: Proceedings of the 50th Annual Scientific Lecture Meeting of the Japan Society of Civil Engineers, P662-663 (1995.
9)].

【0003】図5に、磁歪効果によって生じる磁気異方
性を利用する応力測定方法の一例を示す。
FIG. 5 shows an example of a stress measuring method utilizing magnetic anisotropy caused by the magnetostrictive effect.

【0004】この方法では、励磁用コイルを巻いたコの
字型のヨーク11と検出用コイルを巻いたコの字型のヨ
ーク12と励磁のための交流電源13と被測定物20を
流れる磁束を検出すための電圧計14から構成され、ヨ
ーク11とヨーク12が互いにヨーク鞍部の中央部で直
交するように配置された磁歪センサー1を用い、次のよ
うな原理で応力が測定される。
In this method, a U-shaped yoke 11 wound with an exciting coil, a U-shaped yoke 12 wound with a detection coil, an AC power supply 13 for excitation, and a magnetic flux flowing through the DUT 20 are provided. The stress is measured by the following principle using a magnetostrictive sensor 1 which is composed of a voltmeter 14 for detecting the force, and in which the yokes 11 and 12 are arranged so as to be orthogonal to each other at the center of the yoke saddle portion.

【0005】いま、被測定物20のX軸方向に引張応力
σX が作用すると、磁性材料である被測定物20のX、
Y軸方向の透磁率μX 、μY には、磁歪効果により下記
の式(2)の関係、すなわち磁気異方性が生じる。 μX >μY ・・・(2)
[0005] When a tensile stress σ X acts on the X-axis direction of the DUT 20, X, X,
The magnetic permeability μ X and μ Y in the Y-axis direction have a relationship represented by the following expression (2), that is, magnetic anisotropy, due to a magnetostrictive effect. μ X > μ Y (2)

【0006】このような状態にある被測定物20に磁歪
センサー1を接近させ、この磁歪センサー1のヨーク1
1に巻かれた励磁用コイルに交流電源13より交流電流
を流して被測定物20を励磁すると、ヨーク11の開口
端11aから出た磁束の大部分は直接ヨーク11の開口
端11bへ向かうが、被測定物20には引張応力σX
より式(2)のような磁気異方性が生じているため、磁
束の一部はヨーク12を経由してヨーク11の開口端1
1bへ流れる。そのため、ヨーク12に巻かれた検出用
コイルに取付けられた電圧計14には下記の式(3)に
示す出力波形の起電力Vが誘起される。 V=M0 ・(μX −μY )・COS[2・(θ−π/4)]・・・(3) ここで、Vは検出用コイルに誘起される交流起電力の整
流値、M0 は励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数、COS[2・(θ−π/
4)]は余弦関数、θはヨーク12の開口端12aと12
bを結ぶ直線とX軸のなす角である。
[0006] The magnetostrictive sensor 1 is brought close to the measured object 20 in such a state, and the yoke 1 of the magnetostrictive sensor 1 is moved.
When an AC current is supplied from the AC power supply 13 to the exciting coil wound around the device 1 to excite the device under test 20, most of the magnetic flux emitted from the open end 11 a of the yoke 11 goes directly to the open end 11 b of the yoke 11. Since a magnetic anisotropy such as the equation (2) occurs in the device under test 20 due to the tensile stress σ X , a part of the magnetic flux passes through the yoke 12 and the open end 1 of the yoke 11.
Flow to 1b. Therefore, an electromotive force V having an output waveform represented by the following equation (3) is induced in the voltmeter 14 attached to the detection coil wound around the yoke 12. V = M 0 · (μ X −μ Y ) · COS [2 · (θ−π / 4)] (3) where V is a rectified value of an AC electromotive force induced in the detection coil, M 0 is a constant determined by excitation conditions, coil conditions, magnetic characteristics of the device under test 20, etc., and COS [2 · (θ−π /
4)] is a cosine function, and θ is the open ends 12a and 12 of the yoke 12.
The angle between the straight line connecting b and the X axis.

【0007】透磁率の差(μX −μY )は応力の差(σ
X −σY )に比例するので、式(3)は下記の式(4)
のように書換えできる。 V=M・(σX −σY )・COS[2・(θ−π/4)]・・・(4) ここで、Mは励磁条件、コイルの条件、被測定物20の
磁気的特性などにより定まる定数である。
The difference in magnetic permeability (μ X −μ Y ) is the difference in stress (σ
X− σ Y ), the equation (3) is calculated by the following equation (4)
Can be rewritten as V = M · (σ X −σ Y ) · COS [2 · (θ−π / 4)] (4) where M is an excitation condition, a coil condition, and a magnetic characteristic of the DUT 20. It is a constant determined by the above.

【0008】式(4)より、Vを測定することにより被
測定物20に作用している応力を求めることができる。
From the equation (4), the stress acting on the DUT 20 can be obtained by measuring V.

【0009】しかし、応力が被測定物に周期的に作用し
ている場合は、以下のような問題が生じる。
However, when the stress acts on the object to be measured periodically, the following problem occurs.

【0010】図6に、応力付加時と除去時における磁歪
センサーの起電力と応力の関係を示す。
FIG. 6 shows the relationship between the electromotive force and the stress of the magnetostrictive sensor when a stress is applied and when the stress is removed.

【0011】図のように、応力と磁歪センサーの起電力
の関係は、応力の付加時と除去時で同一の応力に対して
同一の起電力を示さない、いわゆるヒステリシスを示
し、磁歪センサーの起電力から一義的に応力を求めるこ
とができなくなる。
As shown in the figure, the relationship between the stress and the electromotive force of the magnetostrictive sensor shows a so-called hysteresis in which the same electromotive force does not appear for the same stress when the stress is applied and when the stress is removed. It becomes impossible to obtain the stress uniquely from the electric power.

【0012】この原因は繰り返し測定時に被測定物に蓄
積される残留磁化による。そこで、実公平5ー1033
7号公報には、交流脱磁処理により被測定物の残留磁化
を消去してから測定する方法が提案されている。
This is due to residual magnetization accumulated in the device under test during repeated measurements. Therefore, the actual fair 5-1033
No. 7 proposes a method of erasing the residual magnetization of an object to be measured by an AC demagnetization process and then performing a measurement.

【0013】[0013]

【発明が解決しようとする課題】しかしながら、実公平
5ー10337号公報に記載の方法は、1回の脱磁処理
に数秒の時間を要するため、例えば車両の通行頻度の高
い道路や橋梁に使用されている鋼構造物に見られるよう
な作用する応力の周期が短い場合には適用できない。
However, since the method described in Japanese Utility Model Publication No. 5-10337 requires several seconds for one demagnetization process, it is used, for example, for roads and bridges where vehicles frequently pass. It is not applicable when the period of the acting stress is short as seen in the steel structure being used.

【0014】本発明はこのような課題を解決するために
なされたもので、脱磁処理を行わずに周期的に作用して
いる応力、特に鋼構造物の設計上重要な最大主応力成分
を正確に測定可能な磁歪効果を利用した応力測定方法お
よびその装置を提供することを目的とする。
The present invention has been made in order to solve such a problem, and it is intended to reduce the stress which acts periodically without performing the demagnetization treatment, particularly the maximum principal stress component which is important in the design of a steel structure. An object of the present invention is to provide a stress measuring method and a device using a magnetostrictive effect that can be measured accurately.

【0015】[0015]

【課題を解決するための手段】上記課題は、励磁用コイ
ルを巻いたコの字型のヨークと検出用コイルを巻いたコ
の字型のヨークが互いにヨーク鞍部の中央部で直交する
ように配置され、前記励磁用コイルに交流電流を流して
被測定物を励磁し、前記検出用コイルに誘起される起電
力を測定して前記被測定物に作用している応力を求める
磁歪センサーを用いた磁歪効果を利用した応力測定方法
において、(イ)前記磁歪センサーを前記被測定物上で
非接触に回転させることによって前記検出用コイルに誘
起される起電力の出力波形を下記の式(1)で表したと
きのパラメータCを求め、(ロ)前記励磁用コイルを巻
いたヨークの開口端と前記検出用コイルを巻いたヨーク
の開口端を結んだ互いに平行な2組の直線のうちの1組
の直線と、前記パラメータCから求まる最大主応力方向
とが平行となるように前記磁歪センサーを配置し、
(ハ)前記磁歪センサーを前記被測定物に接触させて、
応力測定を行うことを特徴とする磁歪効果を利用した応
力測定方法により解決される。
The object of the present invention is to provide a U-shaped yoke around which an exciting coil is wound and a U-shaped yoke around which a detection coil is wound so as to be orthogonal to each other at the center of the yoke saddle. A magnetostrictive sensor is provided, which excites the device under test by passing an alternating current through the exciting coil and measures the electromotive force induced in the detection coil to determine the stress acting on the device under test. In the stress measurement method utilizing the magnetostrictive effect, (a) the output waveform of the electromotive force induced in the detection coil by rotating the magnetostrictive sensor in a non-contact manner on the object to be measured is represented by the following equation (1). ) Is obtained, and (b) of two parallel straight lines connecting the open end of the yoke around which the exciting coil is wound and the open end of the yoke around which the detection coil is wound. A set of straight lines and the The magnetostrictive sensor disposed and the maximum principal stress directions which is obtained from the meter C to become parallel,
(C) bringing the magnetostrictive sensor into contact with the object to be measured;
The problem is solved by a stress measurement method using the magnetostrictive effect, which is characterized by performing stress measurement.

【0016】 V=A+B・COS[2・(θ−C)]・・・(1) ここで、Vは前記検出用コイルに誘起される交流起電力
の整流値、θは前記検出用コイルを巻いたコの字型のヨ
ークの開口端を結ぶ直線と最大主応力方向のなす角、CO
S[2・(θ−C)]は余弦関数、A、B、Cはパラメータ
である。
V = A + B · COS [2 · (θ−C)] (1) where V is a rectified value of an AC electromotive force induced in the detection coil, and θ is a value of the detection coil. Angle between the straight line connecting the open ends of the U-shaped yoke and the maximum principal stress direction, CO
S [2 · (θ−C)] is a cosine function, and A, B, and C are parameters.

【0017】まず、最大主応力成分を測定するには最大
主応力方向を知る必要があるが、複雑な鋼構造物では、
応力測定前に最大主応力方向を推定するのは容易でな
い。そこで、上記磁歪センサーを用いて以下のようにす
れば最大主応力方向を求めることができる。
First, in order to measure the maximum principal stress component, it is necessary to know the direction of the maximum principal stress. However, in a complicated steel structure,
It is not easy to estimate the maximum principal stress direction before stress measurement. Then, the maximum principal stress direction can be obtained by using the magnetostrictive sensor as follows.

【0018】上記の式(4)は式(1)に書き直せるの
で、パラメータCを求めれば最大主応力方向を知ること
ができる。実際には、磁歪センサーを被測定物から一定
の距離(リフトオフと呼ぶ)離して回転させて、すなわ
ちθを変えて、磁歪センサーの検出用コイルに誘起され
る起電力の出力波形を求め、この出力波形を式(1)に
回帰してパラメータCを求める。
Since the above equation (4) can be rewritten into the equation (1), the maximum principal stress direction can be known by obtaining the parameter C. In practice, the magnetostrictive sensor is rotated at a fixed distance (referred to as lift-off) from the object to be measured, that is, by changing θ, the output waveform of the electromotive force induced in the detection coil of the magnetostrictive sensor is obtained. The output waveform is regressed to equation (1) to find parameter C.

【0019】図3に、周期的に作用する応力のある応力
状態にある鋼板上で磁歪センサーを回転させた時に実際
に得られる起電力の出力波形の1例を示す。図には、起
電力の出力波形を(1)式に回帰したときのパラメータ
A、B、Cの値も示してある。
FIG. 3 shows an example of the output waveform of the electromotive force actually obtained when the magnetostrictive sensor is rotated on a steel plate in a stressed state with a periodically acting stress. The figure also shows the values of the parameters A, B, and C when the output waveform of the electromotive force is regressed to the equation (1).

【0020】このようにして、周期的に作用する応力の
最大主応力方向が求まる。また同時に、応力状態を表し
ているパラメータBから最大主応力成分も求まるが、上
記したように、繰り返し測定により被測定物に残留磁化
が有る場合は、応力と磁歪センサーの起電力の関係がヒ
ステリシスを示すので、正確な応力が求められない。
In this manner, the maximum principal stress direction of the periodically acting stress is determined. At the same time, the maximum principal stress component is also obtained from the parameter B representing the stress state. However, as described above, if the measured object has remanent magnetization due to repeated measurements, the relationship between the stress and the electromotive force of the magnetostrictive sensor is determined by a hysteresis. Therefore, accurate stress cannot be obtained.

【0021】そこで、応力ー起電力ヒステリシス曲線に
およぼすリフトオフの関係を検討したところ、以下に示
すように、リフトオフを小さくすればよいことが明らか
になった。
Then, when the relationship between the lift-off and the stress-electromotive force hysteresis curve was examined, it was found that the lift-off should be reduced as shown below.

【0022】図4に、応力ー起電力ヒステリシス曲線に
およぼすリフトオフの影響を示す。リフトオフを1.0
mmから0.1mmに減少させると、ヒステリシスの広
がりが小さくなり、応力の付加時と除去時の同一応力に
おける起電力の差が小さくなることがわかる。
FIG. 4 shows the effect of lift-off on the stress-electromotive force hysteresis curve. Lift off 1.0
It can be seen that when the distance is reduced from 0.1 mm to 0.1 mm, the spread of the hysteresis becomes smaller, and the difference between the electromotive forces at the same stress when the stress is applied and when the stress is removed becomes smaller.

【0023】したがって、最大主応力成分が求まる条件
に磁歪センサーを配置後、すなわち、励磁用コイルを巻
いたヨークの開口端と前記検出用コイルを巻いたヨーク
の開口端を結んだ互いに平行な2組の直線のうちの1組
の直線をパラメータCから求めた最大主応力方向に平行
となるようにした後、磁歪センサーを被測定物に接触さ
せて応力測定を行えば、より正確な最大主応力成分が求
まることになる。
Therefore, after arranging the magnetostrictive sensor under the condition that the maximum principal stress component can be determined, that is, two parallel lines connecting the open end of the yoke around which the exciting coil is wound and the open end of the yoke around which the detection coil is wound. If one set of straight lines is made parallel to the maximum principal stress direction obtained from the parameter C and the stress is measured by bringing the magnetostrictive sensor into contact with the object to be measured, a more accurate maximum principal stress can be obtained. The stress component is determined.

【0024】また、図からわかるように、リフトオフ
を小さくすると出力自体も増加する(磁歪感度が高くな
る)ので、出力から応力換算する時の誤差も小さくで
き、より精度の高い応力測定が可能となる。
As can be seen from FIG. 4 , when the lift-off is reduced, the output itself increases (the magnetostriction sensitivity increases), so that the error in converting the output into stress can be reduced, and more accurate stress measurement is possible. Becomes

【0025】このような方法により、脱磁処理を行わず
に周期的に作用している応力の最大主応力成分を正確に
測定できる。
According to such a method, the maximum principal stress component of the periodically acting stress can be accurately measured without performing the demagnetization treatment.

【0026】上記応力測定は、上記磁歪センサーと、磁
歪センサーを回転するための回転機構と、磁歪センサー
を被測定物に着脱するためのバネ機構を有してなる磁歪
効果を利用した応力測定装置により実現できる。また、
磁歪センサーがバネ機構により被測定物に着脱されるの
で、磁歪センサーを被測定物に一定の力で接触させた
り、一定の間隔で離したりでき、再現性のよい高精度な
測定が行える。
The stress measurement is performed by using the magnetostrictive effect, comprising the magnetostrictive sensor, a rotating mechanism for rotating the magnetostrictive sensor, and a spring mechanism for attaching and detaching the magnetostrictive sensor to and from the object to be measured. Can be realized by: Also,
Since the magnetostrictive sensor is attached to and detached from the object to be measured by the spring mechanism, the magnetostrictive sensor can be brought into contact with the object to be measured with a constant force or separated at a constant interval, and high-precision measurement with good reproducibility can be performed.

【0027】[0027]

【発明の実施の形態】図1に、本発明方法の実施の形態
を示すフロー図を示す。
FIG. 1 is a flowchart showing an embodiment of the method of the present invention.

【0028】最初に、標準、例えば1mmのリフトオフ
で磁歪センサーを被測定物上に設定する(S1)。次
に、磁歪センサーを回転させ出力を測定し(S2)、出
力波形を求め、V=A+B・COS[2・(θ−C)]の式に
回帰し、最大主応力方向であるパラメータCを決定する
(S3)。そして、磁歪センサーの両ヨークの開口端を
結んで得られる互いに平行な2組の直線のうちの1組の
直線を最大主応力方向に平行となるように磁歪センサー
を回転させる(S4)。その後、磁歪センサーを被測定
物に接触させて(S5)、応力測定を行えば(S6)、
求まる応力が最大主応力となる。
First, a magnetostrictive sensor is set on an object to be measured with a standard, for example, a lift-off of 1 mm (S1). Next, the output is measured by rotating the magnetostrictive sensor (S2), the output waveform is obtained, and the regression is made to the equation of V = A + B · COS [2 · (θ−C)], and the parameter C which is the maximum principal stress direction is obtained. It is determined (S3). Then, the magnetostrictive sensor is rotated so that one set of two parallel straight lines obtained by connecting the open ends of both yokes of the magnetostrictive sensor is parallel to the maximum principal stress direction (S4). Thereafter, the magnetostrictive sensor is brought into contact with the object to be measured (S5), and the stress is measured (S6).
The obtained stress is the maximum principal stress.

【0029】図2に、本発明である応力測定装置の磁歪
センサーおよびその周辺部を示す。図で、(a)は正面
図、(b)は側面図を表す。
FIG. 2 shows a magnetostrictive sensor of a stress measuring device according to the present invention and its peripheral portion. In the drawings, (a) shows a front view and (b) shows a side view.

【0030】ハウジング6内には、磁歪センサー1とエ
ンコーダーを備えたDCサーボモーター2が設けれてお
り、DCサーボモーター2の回転は、ピニオンギア3と
リングギア4を介して磁歪センサー1に伝えられる。こ
のとき、回転はボールベアリング5により円滑に行われ
る。また、磁歪センサー1はネジ8により磁歪センサー
を支持するホルダー7に固定されている。磁歪センサー
を支持するホルダー7はバネ(本図では省略)によって
ハウジング6内を下方へ押し下げられるような機構にな
っているが、それはピン10を押すことにより、ピン1
0の先端は切り欠き部16に押され、ピン10先端の直
径差分だけ下方へ押し下げられる。また、押しボタン9
はバネ15を介してピン10の移動を調整し、押しボタ
ン9を押すことをやめると、磁歪センサーを支持するホ
ルダー7は元の位置に復帰する。
A DC servo motor 2 having a magnetostrictive sensor 1 and an encoder is provided in the housing 6, and the rotation of the DC servo motor 2 is transmitted to the magnetostrictive sensor 1 via a pinion gear 3 and a ring gear 4. Can be At this time, the rotation is smoothly performed by the ball bearing 5. The magnetostrictive sensor 1 is fixed to a holder 7 that supports the magnetostrictive sensor by screws 8. The holder 7 for supporting the magnetostrictive sensor has a mechanism capable of being pushed down inside the housing 6 by a spring (omitted in the drawing).
The leading end of the pin 10 is pushed by the notch 16 and is pushed downward by the difference in diameter of the leading end of the pin 10. Push button 9
When the movement of the pin 10 is adjusted via the spring 15 and the pressing of the push button 9 is stopped, the holder 7 supporting the magnetostrictive sensor returns to the original position.

【0031】磁歪センサー1を、エンコーダーを備えた
DCサーボモーター2により回転させ、パラメータCを
求め最大主応力方向を決定する。次に、磁歪センサー1
の両ヨークの開口端を結んで得られる互いに平行な2組
の直線のうちの1組の直線をこの最大主応力方向に平行
となるように磁歪センサー1をDCサーボモーター2に
より回転させる。そして、押しボタン9を押して、ピン
10を押すことにより、ピン10の先端を切り欠き部1
6に押し込み、ピン10先端の直径差分だけ磁歪センサ
ーを支持するホルダー7を下方へ下げる。このとき、磁
歪センサーを支持するホルダー7に固定された磁歪セン
サー1は被測定物に一定の力で接触させられる。また、
押しボタン9を離すことにより、磁歪センサー1はその
ホルダー7と共に元の位置に正確に戻される。したがっ
て、再現性のよい高精度な測定が行える。
The magnetostrictive sensor 1 is rotated by a DC servomotor 2 having an encoder to determine a parameter C and determine the direction of the maximum principal stress. Next, the magnetostrictive sensor 1
The magnetostrictive sensor 1 is rotated by the DC servomotor 2 so that one of two parallel straight lines obtained by connecting the open ends of the two yokes is parallel to the maximum principal stress direction. Then, by pushing the push button 9 and pushing the pin 10, the tip of the pin 10 is cut out.
6 and the holder 7 supporting the magnetostrictive sensor is lowered downward by the diameter difference of the tip of the pin 10. At this time, the magnetostrictive sensor 1 fixed to the holder 7 supporting the magnetostrictive sensor is brought into contact with the measured object with a constant force. Also,
When the push button 9 is released, the magnetostrictive sensor 1 is accurately returned to the original position together with the holder 7. Therefore, highly accurate measurement with good reproducibility can be performed.

【0032】[0032]

【発明の効果】本発明は以上説明したように構成されて
いるので、脱磁処理を行わずに周期的に作用している応
力、特に鋼構造物の設計上重要な最大主応力成分を正確
に測定可能な磁歪効果を利用した応力測定方法およびそ
の装置を提供できる。
Since the present invention is constructed as described above, it is possible to accurately determine the stress that acts periodically without performing demagnetization processing, especially the maximum principal stress component that is important in the design of steel structures. A method and apparatus for measuring stress using the magnetostrictive effect, which can be easily measured, can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法の実施の形態を示すフロー図であ
る。
FIG. 1 is a flowchart showing an embodiment of the method of the present invention.

【図2】本発明である応力測定装置の磁歪センサーおよ
びその周辺部を示す図である。
FIG. 2 is a diagram showing a magnetostrictive sensor of a stress measuring device according to the present invention and a peripheral portion thereof.

【図3】ある応力状態にある鋼板上で磁歪センサーを回
転させた時に実際に得られる起電力の出力波形の1例を
示す図である。
FIG. 3 is a diagram showing an example of an output waveform of an electromotive force actually obtained when a magnetostrictive sensor is rotated on a steel plate in a certain stress state.

【図4】応力ー起電力ヒステリシス曲線におよぼすリフ
トオフの影響を示す図である。
FIG. 4 is a diagram showing the effect of lift-off on a stress-electromotive force hysteresis curve.

【図5】磁歪効果によって生じる磁気異方性を利用する
応力測定方法の1例を示す図である。
FIG. 5 is a diagram showing an example of a stress measurement method using magnetic anisotropy generated by the magnetostriction effect.

【図6】応力付加時と除去時における磁歪センサーの起
電力と応力の関係を示す図である。
FIG. 6 is a diagram illustrating a relationship between an electromotive force and a stress of a magnetostrictive sensor when a stress is applied and when a stress is removed.

【符号の説明】[Explanation of symbols]

1 磁歪センサー 2 エンコーダを備えたDCサーボモータ 3 ピニオンギア 4 リングギア 5 ボールベアリング 6 ハウジング 7 磁歪センサーを支持するホルダー 8 ネジ 9 押しボタン 10 ピン 11 励磁用コイルを巻いたコの字型のヨーク 11a ヨーク11の開口端 11b ヨーク11の開口端 12 検出用コイルを巻いたコの字型のヨーク 12a ヨーク12の開口端 12b ヨーク12の開口端 13 交流電源 14 電圧計 15 バネ 16 切り欠き部 20 被測定物 30 磁束の流れる方向 DESCRIPTION OF SYMBOLS 1 Magnetostrictive sensor 2 DC servomotor provided with encoder 3 Pinion gear 4 Ring gear 5 Ball bearing 6 Housing 7 Holder supporting magnetostrictive sensor 8 Screw 9 Push button 10 Pin 11 U-shaped yoke 11a around which exciting coil is wound 11a Open end of yoke 11 11b Open end of yoke 11 12 U-shaped yoke around which detection coil is wound 12a Open end of yoke 12 12b Open end of yoke 12 AC power supply 14 Voltmeter 15 Spring 16 Notch 20 Cover Object 30 Direction of magnetic flux flow

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 励磁用コイルを巻いたコの字型のヨーク
と検出用コイルを巻いたコの字型のヨークが互いにヨー
ク鞍部の中央部で直交するように配置され、前記励磁用
コイルに交流電流を流して被測定物を励磁し、前記検出
用コイルに誘起される起電力を測定して前記被測定物に
作用している応力を求める磁歪センサーを用いた磁歪効
果を利用した応力測定方法において、 (イ)前記磁歪センサーを前記被測定物上で非接触に回
転させることによって前記検出用コイルに誘起される起
電力の出力波形を下記の式(1)で表したときのパラメ
ータCを求め、 (ロ)前記励磁用コイルを巻いたヨークの開口端と前記
検出用コイルを巻いたヨークの開口端を結んだ互いに平
行な2組の直線のうちの1組の直線と、前記パラメータ
Cから求まる最大主応力方向とが平行となるように前記
磁歪センサーを配置し、 (ハ)前記磁歪センサーを前記被測定物に接触させて、
応力測定を行うことを特徴とする磁歪効果を利用した
応力測定方法。 V=A+B・COS[2・(θ−C)]・・・(1) ここで、Vは前記検出用コイルに誘起される交流起電力
の整流値、θは前記検出用コイルを巻いたコの字型のヨ
ークの開口端を結ぶ直線と最大主応力方向のなす角、CO
S[2・(θ−C)]は余弦関数、A、B、Cはパラメータ
である。
A U-shaped yoke wound with an exciting coil and a U-shaped yoke wound with a detection coil are arranged so as to be orthogonal to each other at the center of a yoke saddle. Stress measurement using a magnetostrictive effect using a magnetostrictive sensor for exciting an object to be measured by passing an alternating current and measuring an electromotive force induced in the detection coil to obtain a stress acting on the object to be measured. In the method, (A) a parameter C when an output waveform of an electromotive force induced in the detection coil by rotating the magnetostrictive sensor in a non-contact manner on the object to be measured is represented by the following equation (1): (B) one of two sets of parallel straight lines connecting the open end of the yoke around which the exciting coil is wound and the open end of the yoke around which the detection coil is wound, and the parameter The maximum lord found from C The magnetostrictive sensor disposed so that the force directions are parallel, by contacting the (c) said magnetostrictive sensor to the object to be measured,
A stress measurement method utilizing a magnetostrictive effect, wherein a stress measurement is performed. V = A + B · COS [2 · (θ−C)] (1) where V is a rectified value of the AC electromotive force induced in the detection coil, and θ is a coil around the detection coil. Angle between the straight line connecting the open ends of the U-shaped yoke and the direction of the maximum principal stress, CO
S [2 · (θ−C)] is a cosine function, and A, B, and C are parameters.
【請求項2】 励磁用コイルを巻いたコの字型のヨーク
と検出用コイルを巻いたコの字型のヨークが互いにヨー
ク鞍部の中央部で直交するように配置され、前記励磁用
コイルに交流電流を流して被測定物を励磁し、前記検出
用コイルに誘起される起電力を測定して前記被測定物に
作用している応力を求める磁歪センサーと、前記磁歪セ
ンサーを回転するための回転機構と、前記磁歪センサー
を前記被測定物に着脱するためのバネ機構を有してなる
磁歪効果を利用した応力測定装置。
2. A U-shaped yoke wound with an exciting coil and a U-shaped yoke wound with a detecting coil are arranged so as to be orthogonal to each other at the center of the yoke saddle portion. A magnetostrictive sensor for exciting an object to be measured by passing an alternating current thereto, measuring an electromotive force induced in the detection coil to obtain a stress acting on the object to be measured, and rotating the magnetostrictive sensor. A stress measuring device using a magnetostrictive effect, comprising a rotating mechanism and a spring mechanism for attaching and detaching the magnetostrictive sensor to and from the object to be measured.
JP12953897A 1997-05-20 1997-05-20 Stress measuring method and apparatus utilizing magnetostriction effect Expired - Fee Related JP3191726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12953897A JP3191726B2 (en) 1997-05-20 1997-05-20 Stress measuring method and apparatus utilizing magnetostriction effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12953897A JP3191726B2 (en) 1997-05-20 1997-05-20 Stress measuring method and apparatus utilizing magnetostriction effect

Publications (2)

Publication Number Publication Date
JPH10318857A JPH10318857A (en) 1998-12-04
JP3191726B2 true JP3191726B2 (en) 2001-07-23

Family

ID=15012008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12953897A Expired - Fee Related JP3191726B2 (en) 1997-05-20 1997-05-20 Stress measuring method and apparatus utilizing magnetostriction effect

Country Status (1)

Country Link
JP (1) JP3191726B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002048659A (en) * 2000-08-01 2002-02-15 Azuma Systems:Kk Method and device for diagnosing stress in ground anchor
JP4691278B2 (en) * 2001-07-10 2011-06-01 中電技術コンサルタント株式会社 Stress measuring method and magnetostrictive sensor
CN108151923B (en) * 2018-01-08 2020-09-25 沈阳工业大学 Novel stress orientation detection system
JP7438060B2 (en) * 2020-08-20 2024-02-26 日本発條株式会社 stress detection device

Also Published As

Publication number Publication date
JPH10318857A (en) 1998-12-04

Similar Documents

Publication Publication Date Title
US5828211A (en) Determining stress in ferromagnetic materials from measurements of magnetic anisotropy and magnetic permeability
JP2766929B2 (en) Non-destructive inspection equipment
JP3191726B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JPS63134947A (en) Measuring device for measuring content of magnetizable substance
JP2000146716A (en) Method and device for measuring residual stress
JP3204073B2 (en) Stress measuring method and apparatus utilizing magnetostriction effect
JP2000074756A (en) Apparatus for measuring stress at flange part of steel structure having i-shaped cross section
JP3173365B2 (en) Stress measurement method using magnetostriction effect
JP3500966B2 (en) Stress measurement method and method for specifying approximate function
JP2912003B2 (en) Method for measuring magnetic properties of superconductors
JP2000055749A (en) Web part stress measuring device for steel structure with shaped section
Langman Measurement of stress by a magnetic method
CN214374203U (en) Steel plate concrete relative slip testing device
RU2810894C1 (en) Magnetoelastic sensor for determining mechanical stress in ferromagnetic materials
JP4634628B2 (en) Degradation diagnosis method for steel
JPH07332918A (en) Gap detecting method and gap sensor
JPH06307803A (en) Non-magnetic material deformation measuring method
JPH043826B2 (en)
JP2727671B2 (en) Magnetostrictive sensor built into the tire
JPH0447637Y2 (en)
JPH1130554A (en) Method for measuring stress of steel pipe
JP3500967B2 (en) Stress measurement method and method for specifying approximate function
JP3130116B2 (en) Method and apparatus for measuring magnetostrictive stress of welded pipe
Isono et al. Residual stress measurement by means of magnetic probe with nine legs
RU2024889C1 (en) Method of measuring coercive force of ferrous rod specimen

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010424

LAPS Cancellation because of no payment of annual fees