JPH05172325A - Method of reducing nox in batch type burning furnace and device to reduce nox - Google Patents

Method of reducing nox in batch type burning furnace and device to reduce nox

Info

Publication number
JPH05172325A
JPH05172325A JP3341618A JP34161891A JPH05172325A JP H05172325 A JPH05172325 A JP H05172325A JP 3341618 A JP3341618 A JP 3341618A JP 34161891 A JP34161891 A JP 34161891A JP H05172325 A JPH05172325 A JP H05172325A
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature
fuel
combustion exhaust
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3341618A
Other languages
Japanese (ja)
Inventor
Yuuichi Ichiraku
祐一 一楽
Takatoshi Saeki
孝敏 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP3341618A priority Critical patent/JPH05172325A/en
Publication of JPH05172325A publication Critical patent/JPH05172325A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

PURPOSE:To present a method and device that can be adopted regardless of the burning temperature and reduce NOx effectively by supplying fuel on the upstream side in the direction of the combustion exhaust gas flow from the heat exchanger when the temperature in the furnace or the combustion exhaust gas temperature is higher than a set value and supply air on the downstream side in the direction of the combustion exhaust gas flow from the spot where the fuel is supplied. CONSTITUTION:When the temperature in the furnace or the combustion exhaust gas temperature is higher than a set value, fuel that gives a reducing reaction to NOx in the combustion exhaust gas is supplied to the combustion exhaust gas that flows through an exhaust gas channel 7 on the upstream side in the direction of the combustion exhaust gas flow from a heat exchanger 12, and the air to burn the fuel that is left unburned is supplied to the downstream side in the direction of the combustion exhaust gas flow from the fuel supplying spot. Here a temperature sensor 13 that detects the temperature in the furnace or the combustion gas temperature, fuel supply means 15, 17, and air supply means 19 are provided, and fuel is supplied when the temperature detected by the temperature sensor 13 is higher than a set value. With this arrangement the method and device in the title can be adopted regardless of the calcining temperature and NOx can be reduced effectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉内を加熱するバーナ
と、そのバーナの燃焼排ガスを炉内から排出する排ガス
路とが設けられ、前記バーナに対する燃焼用空気と前記
排ガス路を通流する前記燃焼排ガスとの間で熱交換させ
ることにより前記燃焼用空気を予熱する熱交換器が、前
記排ガス路に介装されたバッチ式焼成炉におけるNOx
低減方法及びNOx低減装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided with a burner for heating the inside of a furnace and an exhaust gas passage for discharging combustion exhaust gas of the burner from the inside of the furnace. NOx in a batch type firing furnace in which a heat exchanger for preheating the combustion air by exchanging heat with the combustion exhaust gas is installed in the exhaust gas passage.
The present invention relates to a reduction method and a NOx reduction device.

【0002】[0002]

【従来の技術】かかるバッチ式焼成炉は、炉内の温度
を、バーナにて、例えば、常温から徐々に上昇させて所
定の焼成温度に到達させるとともに、その焼成温度で所
定時間保持した後、徐々に下降させていくという如く、
時間経過にともない所定の温度変化になるように変化さ
せることにより、炉内の被焼成物に対して所定の焼成処
理を施すのものである。かかるバッチ式焼成炉における
NOx低減方法としては、従来は、一般的に、バーナへ
の供給燃料に対する供給空気量を非常に少なくする等に
より、緩慢な燃焼を起こさせて燃焼温度を低下させてN
Oxを低減する方法、すなわち、バーナの燃焼改善によ
りNOxを低減する方法が採用されていた。
2. Description of the Related Art In such a batch type firing furnace, the temperature inside the furnace is gradually raised by a burner, for example, from room temperature to reach a predetermined firing temperature, and the firing temperature is maintained for a predetermined time. Like gradually lowering it,
By subjecting the material to be fired in the furnace to a predetermined firing treatment, the temperature of the fired material is changed so that the temperature changes with time. As a method for reducing NOx in such a batch-type firing furnace, conventionally, in general, by making the amount of air supplied to the fuel supplied to the burner extremely small, slow combustion is caused to lower the combustion temperature, and N
A method of reducing Ox, that is, a method of reducing NOx by improving combustion of a burner has been adopted.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、例え
ば、セラミック等の焼成に使用されるバッチ式焼成炉で
は、焼成温度が1700〜1800℃といった高温であ
るため、上記の如き、バーナにおいて緩慢な燃焼を起こ
させて燃焼温度を低下させるNOx低減方法では、炉内
温度を所定の焼成温度にまで上昇させることができない
ため採用することができず、従って、このようなバッチ
式焼成炉ではNOx低減対策がなされていなかった。本
発明は、かかる実情に鑑みてなされたものであり、その
目的は、焼成温度にかかわらず採用できて、効果的にN
Oxを低減できるバッチ式焼成炉におけるNOx低減方
法及びNOx低減装置を提供することにある。
However, for example, in a batch type firing furnace used for firing ceramics or the like, since the firing temperature is as high as 1700 to 1800 ° C., slow combustion in the burner as described above is performed. The NOx reduction method of raising the combustion temperature to lower the combustion temperature cannot be adopted because the furnace temperature cannot be raised to a predetermined firing temperature. Therefore, in such a batch type firing furnace, NOx reduction measures cannot be taken. It wasn't done. The present invention has been made in view of the above circumstances, and an object of the present invention is that it can be adopted regardless of the firing temperature, and N can be effectively used.
An object of the present invention is to provide a NOx reduction method and a NOx reduction device in a batch type firing furnace that can reduce Ox.

【0004】[0004]

【課題を解決するための手段】本発明の第1の特徴構成
であるバッチ式焼成炉におけるNOx低減方法は、炉内
温度又は燃焼排ガス温度が設定値以上のときに、前記排
ガス路を通流する前記燃焼排ガスに、前記熱交換器より
も燃焼排ガス通流方向上手側にて、前記燃焼排ガス中の
NOxを還元する燃料を供給し、その燃料供給箇所より
も燃焼排ガス通流方向下手側にて、前記燃料の未燃分を
燃焼させる空気を供給する点にある。
A method for reducing NOx in a batch-type firing furnace, which is a first characteristic configuration of the present invention, is a method of flowing a gas through the exhaust gas passage when the temperature in the furnace or the combustion exhaust gas temperature is equal to or higher than a set value. The fuel for reducing NOx in the combustion exhaust gas is supplied to the combustion exhaust gas on the upstream side of the heat exchanger in the combustion exhaust gas flow direction, and to the combustion exhaust gas flow direction lower side than the fuel supply point. The air for burning the unburned portion of the fuel is supplied.

【0005】本発明の第2の特徴構成であるバッチ式焼
成炉におけるNOx低減装置は、炉内温度又は燃焼排ガ
ス温度を検出する温度検出手段が設けられ、前記排ガス
路に、前記熱交換器よりも燃焼排ガス通流方向上手側に
前記燃焼排ガス中のNOxを還元する燃料を供給する燃
料供給手段が、かつ、その燃料供給手段よりも燃焼排ガ
ス通流方向下手側に前記燃料の未燃分を燃焼させる空気
を供給する空気供給手段が設けられ、前記燃料供給手段
が、前記温度検出手段の検出温度が設定値以上のときに
燃料を供給するように構成されている点にある。
The NOx reduction device in the batch type firing furnace, which is the second characteristic configuration of the present invention, is provided with temperature detecting means for detecting the temperature inside the furnace or the temperature of the combustion exhaust gas, and the exhaust gas passage is connected to the heat exchanger from the heat exchanger. The fuel supply means for supplying the fuel for reducing NOx in the combustion exhaust gas to the upstream side in the combustion exhaust gas flow direction, and the unburned portion of the fuel to the downstream side in the combustion exhaust gas flow direction from the fuel supply means. Air supply means for supplying air to be burned is provided, and the fuel supply means is configured to supply fuel when the temperature detected by the temperature detection means is equal to or higher than a set value.

【0006】本発明の第3の特徴構成であるバッチ式焼
成炉におけるNOx低減装置は、前記熱交換器が、前段
部とその前段部よりも燃焼排ガス通流方向下手側に位置
する後段部とから構成され、前記燃料供給手段が前記前
段部よりも燃焼排ガス通流方向上手側に設けられ、前記
空気供給手段が前記前段部と前記後段部との間に設けら
れている点にある。
In the NOx reduction device for a batch type firing furnace, which is the third characteristic configuration of the present invention, the heat exchanger includes a front stage part and a rear stage part located lower than the front stage part in the combustion exhaust gas flow direction. The fuel supply means is provided on the upstream side in the combustion exhaust gas flow direction with respect to the front-stage portion, and the air supply means is provided between the front-stage portion and the rear-stage portion.

【0007】[0007]

【作用】本発明の第1の特徴構成によれば、炉内温度又
は燃焼排ガス温度が設定温度以上になって、バーナの燃
焼排ガス中のNOxの含有率が高くなってきたときに、
熱交換器よりも燃焼排ガス通流方向上手側の燃焼排ガス
温度がより高い箇所にて、排ガス路を通流する燃焼排ガ
スにNOxを還元する燃料を供給して酸素不足領域を生
成せしめるとともに、その還元用燃料と燃焼排ガス中の
NOxとを効果的に反応させてNOxを還元する。又、
その燃料供給箇所よりも燃焼排ガス通流方向下手側に
て、熱交換器にて燃焼排ガスと燃焼用空気とを熱交換さ
せて、燃焼排ガスの余剰熱を回収する。又、燃料供給箇
所よりも燃焼排ガス通流方向下手側の燃焼排ガス温度が
低くなった箇所にて空気を供給して、還元用燃料の未燃
分を、燃焼温度を低くしてNOxの発生を抑制する状態
で燃焼させて、還元用燃料が未燃状態で排出されるのを
防止する。
According to the first characteristic configuration of the present invention, when the furnace temperature or the combustion exhaust gas temperature becomes equal to or higher than the set temperature and the NOx content rate in the combustion exhaust gas of the burner becomes high,
At a place where the temperature of the combustion exhaust gas on the upstream side in the combustion exhaust gas flow direction is higher than that of the heat exchanger, a fuel for reducing NOx is supplied to the combustion exhaust gas flowing through the exhaust gas passage to generate an oxygen-deficient region, and NOx is reduced by effectively reacting the reducing fuel and NOx in the combustion exhaust gas. or,
Exhaust heat of the combustion exhaust gas is recovered by exchanging heat between the combustion exhaust gas and the combustion air with a heat exchanger on the lower side in the combustion exhaust gas flow direction than the fuel supply point. Further, air is supplied at a place where the temperature of the combustion exhaust gas on the lower side in the combustion exhaust gas flow direction is lower than that of the fuel supply point to lower the unburned content of the reducing fuel and lower the combustion temperature to generate NOx. The reducing fuel is burned to prevent the reducing fuel from being discharged in an unburned state.

【0008】第2の特徴構成によれば、温度検出手段の
検出温度が設定値以上となって、バーナの燃焼排ガス中
のNOxの含有率が高くなってきたときに、熱交換器よ
りも燃焼排ガス通流方向上手側の燃焼排ガス温度がより
高い箇所に設けた燃料供給手段により、排ガス路を通流
する燃焼排ガスにNOxを還元する燃料を供給して、酸
素不足領域を生成せしめるとともに、その還元用燃料と
燃焼排ガス中のNOxとを効果的に反応させてNOxを
還元する。又、燃料供給手段よりも燃焼排ガス通流方向
下手側に設けた熱交換器にて燃焼排ガスと燃焼用空気と
を熱交換させて、燃焼排ガスの余剰熱を回収する。又、
燃料供給手段よりも燃焼排ガス通流方向下手側の燃焼排
ガス温度が低くなった箇所に設けた空気供給手段によ
り、空気を供給して、還元用燃料の未燃分を、燃焼温度
を低くしてNOxの発生を抑制する状態で燃焼させて、
還元用燃料が未燃状態で排出されるのを防止する。
According to the second characteristic constitution, when the temperature detected by the temperature detecting means becomes equal to or higher than the set value and the content ratio of NOx in the combustion exhaust gas of the burner becomes high, the combustion is carried out more than the heat exchanger. By the fuel supply means provided on the higher side of the exhaust gas flow direction in the combustion exhaust gas temperature is higher, the fuel for reducing NOx is supplied to the combustion exhaust gas flowing through the exhaust gas passage to generate an oxygen deficient region, and NOx is reduced by effectively reacting the reducing fuel and NOx in the combustion exhaust gas. Further, the heat exchange between the combustion exhaust gas and the combustion air is performed by a heat exchanger provided on the lower side of the fuel supply means in the combustion exhaust gas flow direction, and excess heat of the combustion exhaust gas is recovered. or,
Air is supplied by the air supply means provided at the place where the temperature of the combustion exhaust gas is lower on the lower side of the combustion exhaust gas flow direction than the fuel supply means, and the unburned portion of the reducing fuel is reduced in combustion temperature. Combustion in a state that suppresses the generation of NOx,
Prevent the reducing fuel from being discharged in an unburned state.

【0009】第3の特徴構成によれば、熱交換器の前段
部にて、燃焼排ガスと燃焼用空気とを熱交換させて燃焼
排ガスの温度を低下し、その温度が低下した燃焼排ガス
に対して空気供給手段により空気を供給することによ
り、燃料供給手段により供給した還元用燃料の未燃分
を、燃焼温度を低くしてNOxの発生を抑制する状態で
燃焼させる。又、その還元用燃料を燃焼させて発生した
熱を、熱交換器の後段部にて燃焼用空気と熱交換して回
収する。従って、本特徴構成であれば、熱交換器を単一
で構成して空気供給手段を熱交換器よりも燃焼排ガス通
流方向上手側に設けるものに比して、熱交換器の前段部
にて燃焼排ガス温度を効果的に低下することができて、
還元用燃料の未燃分を、更に燃焼温度を低くして燃焼で
きるので、NOxの発生をより効果的に抑制することが
できる。又、熱交換器を単一で構成して空気供給手段を
熱交換器よりも燃焼排ガス通流方向下手側に設けるもの
では、還元用燃料を燃焼させて発生した熱を回収できな
いのに比して、熱交換器の後段部にて還元用燃料を燃焼
させて発生した熱を燃焼用空気と熱交換して回収するこ
とができるので、燃焼用空気を効果的に予熱することが
できる。
According to the third characteristic structure, the temperature of the combustion exhaust gas is lowered by exchanging heat between the combustion exhaust gas and the combustion air at the front stage of the heat exchanger, and By supplying air by the air supply means, the unburned portion of the reducing fuel supplied by the fuel supply means is burned in a state where the combustion temperature is lowered and NOx generation is suppressed. Further, the heat generated by burning the reducing fuel is exchanged with the combustion air at the rear stage of the heat exchanger to be recovered. Therefore, according to this characteristic configuration, in comparison with a configuration in which a single heat exchanger is provided and the air supply means is provided on the upstream side in the combustion exhaust gas flow direction with respect to the heat exchanger, the heat exchanger is provided at the front stage of the heat exchanger. Can effectively lower the temperature of combustion exhaust gas,
Since the unburned portion of the reducing fuel can be burned at a lower combustion temperature, the generation of NOx can be suppressed more effectively. Further, in the case where a single heat exchanger is provided and the air supply means is provided on the lower side in the combustion exhaust gas flow direction than the heat exchanger, the heat generated by burning the reducing fuel cannot be recovered. Since the heat generated by burning the reducing fuel in the latter part of the heat exchanger can be exchanged with the combustion air and recovered, the combustion air can be effectively preheated.

【0010】[0010]

【発明の効果】第1の特徴構成によれば、従来の如き、
バーナを緩慢な燃焼を起こさせて燃焼温度を低下してN
Oxを低減する方法ではないので、焼成温度にかかわら
ず採用できて、燃焼排ガス中のNOxを効果的に低減す
ることができる。
According to the first characteristic configuration, as in the conventional case,
The burner is slowly burned to lower the combustion temperature and N
Since it is not a method of reducing Ox, it can be used regardless of the firing temperature, and NOx in the combustion exhaust gas can be effectively reduced.

【0011】第2の特徴構成によれば、上記第1の特徴
構成に述べたバッチ式焼成炉におけるNOx低減方法を
実現するための好適なバッチ式焼成炉におけるNOx低
減装置を得ることができる。
According to the second characteristic configuration, it is possible to obtain the NOx reduction device in the batch type firing furnace suitable for realizing the NOx reduction method in the batch type firing furnace described in the first characteristic configuration.

【0012】第3の特徴構成によれば、上記第1の特徴
構成に述べたバッチ式焼成炉におけるNOx低減方法を
実現するための好適なバッチ式焼成炉におけるNOx低
減装置を得ることができる。しかも、NOx低減用とし
て別途還元用燃料を供給するものの、その還元用燃料を
燃焼させた熱で燃焼用空気を予熱することにより、燃焼
温度を高くできてバーナへの燃料供給量を低減すること
ができるので、その低減分にてNOx低減用として供給
することによる燃料増加分を相殺することができ、全体
として燃料供給量の増加を極力抑制することができる。
According to the third characteristic configuration, it is possible to obtain the NOx reduction device in the batch type firing furnace suitable for realizing the NOx reduction method in the batch type firing furnace described in the first characteristic configuration. Moreover, although reducing fuel is separately supplied for NOx reduction, the combustion air can be preheated by the heat of burning the reducing fuel to increase the combustion temperature and reduce the fuel supply amount to the burner. Therefore, it is possible to offset the increased fuel amount due to the supply for NOx reduction by the reduced amount, and it is possible to suppress the increase in the fuel supply amount as a whole as much as possible.

【0013】[0013]

【実施例】次に、本発明の実施例をセラミックを170
0〜1800℃程度の高温で焼成するバッチ式焼成炉に
適用した例について、図1〜図4に基づいて説明する。
EXAMPLE Next, according to an example of the present invention, a ceramic 170 was used.
An example applied to a batch type firing furnace for firing at a high temperature of about 0 to 1800 ° C. will be described based on FIGS. 1 to 4.

【0014】図中、1は炉体であり、その炉体1の内部
の炉内2に、扉3を開けて、被焼成物Sを載置した台車
4を入炉するようにしてある。
In the figure, reference numeral 1 is a furnace body, and a door 3 is opened in a furnace 2 inside the furnace body 1, and a carriage 4 on which a material S to be fired is placed is put in the furnace.

【0015】炉体1の左右両側夫々には、炉内2を加熱
するガスバーナ5を設けてある。又、炉体1の後側に
は、排ガス路7を接続してある。そして、図4に示すよ
うに、台車4の内部には、台車4を入炉した状態で前記
排ガス路7に連通する台車内排ガス路4aを、及び、台
車4の上台には、前記台車内排ガス路4aに連通する排
ガス導入口4bの複数個を形成してある。従って、炉内
2のガスバーナ5の燃焼排ガスは、排気ファン6によ
り、排ガス導入口4b・・、台車内排ガス路4a、及び、
排ガス路7を通じて炉外に排出するようにしてある。
A gas burner 5 for heating the inside of the furnace 2 is provided on each of the left and right sides of the furnace body 1. An exhaust gas passage 7 is connected to the rear side of the furnace body 1. Then, as shown in FIG. 4, inside the carriage 4, an exhaust gas passage 4a inside the carriage that communicates with the exhaust gas passage 7 in a state where the carriage 4 is placed in a furnace is provided, and an upper stand of the carriage 4 is provided inside the carriage. A plurality of exhaust gas inlets 4b communicating with the exhaust gas passage 4a are formed. Therefore, the combustion exhaust gas of the gas burner 5 in the furnace 2 is exhausted by the exhaust fan 6 into the exhaust gas inlet 4b, the exhaust gas passage 4a in the carriage, and
The gas is discharged to the outside of the furnace through the exhaust gas passage 7.

【0016】図中、8は、ガスバーナ5に対する燃料ガ
ス供給路であり、9は、燃料ガス供給路8に介装した電
磁式流量調整バルブであり、開度を調整することにより
ガスバーナ5に対する燃料ガス供給量を調整するように
してある。又、10は、送風ファン11により燃焼用空
気をガスバーナ5に供給する燃焼用空気供給路である。
In the figure, 8 is a fuel gas supply path for the gas burner 5, 9 is an electromagnetic flow rate adjusting valve interposed in the fuel gas supply path 8, and the fuel for the gas burner 5 is adjusted by adjusting the opening. The amount of gas supply is adjusted. Further, 10 is a combustion air supply passage for supplying combustion air to the gas burner 5 by the blower fan 11.

【0017】12は、燃焼用空気供給路10を通流する
燃焼用空気と排ガス路7を通流する燃焼排ガスとの間で
熱交換させることにより、燃焼用空気を予熱する熱交換
器であり、前段部12Aとその前段部12Aよりも燃焼
排ガス通流方向下手側に位置させた後段部12Bとから
構成してある。すなわち、ガスバーナ5に供給する燃焼
用空気を予熱することにより、ガスバーナ5の燃焼温度
を高くするようにしてある。
Reference numeral 12 is a heat exchanger for preheating the combustion air by exchanging heat between the combustion air flowing through the combustion air supply passage 10 and the combustion exhaust gas flowing through the exhaust gas passage 7. The front stage portion 12A and the rear stage portion 12B located below the front stage portion 12A in the combustion exhaust gas flow direction. That is, the combustion temperature of the gas burner 5 is raised by preheating the combustion air supplied to the gas burner 5.

【0018】図中、13は、炉内2の温度を検出する温
度センサである。Cは、炉内2の温度が設定値になるよ
うにガスバーナ5の燃焼量を調整すべく、温度センサ1
3の検出温度が設定値になるように、流量調整バルブ9
の開度を調整することによりガスバーナ5に供給する燃
料ガス量を調整し、かつ、送風ファン11の回転数を調
整することによりガスバーナ5に供給する燃焼用空気量
を調整する制御装置である。
In the figure, 13 is a temperature sensor for detecting the temperature in the furnace 2. C is a temperature sensor 1 for adjusting the combustion amount of the gas burner 5 so that the temperature of the furnace 2 becomes a set value.
Flow rate adjusting valve 9 so that the detected temperature of 3 becomes the set value.
It is a control device that adjusts the amount of fuel gas supplied to the gas burner 5 by adjusting the opening degree of and the amount of combustion air supplied to the gas burner 5 by adjusting the rotation speed of the blower fan 11.

【0019】図3中、14は、台車4の車輪部が炉内2
の雰囲気に晒されるのを隔絶するサンドシールであり、
台車4の車輪部が炉内2の高温雰囲気や燃焼排ガスに晒
されて損傷するのを防止している。
In FIG. 3, reference numeral 14 denotes a wheel portion of the carriage 4 in the furnace 2
It is a sand seal that isolates you from being exposed to the atmosphere of
The wheel portion of the carriage 4 is prevented from being damaged by being exposed to the high temperature atmosphere in the furnace 2 or the combustion exhaust gas.

【0020】上記の如く構成したバッチ式焼成炉におい
ては、被焼成物Sを載置した台車4を入炉した後、制御
装置Cにより、炉内の温度を、常温から徐々に上昇させ
て1700〜1800℃程度の焼成温度に到達させると
ともに、その焼成温度で所定時間保持した後、徐々に下
降させていくように、すなわち、予め設定した時間経過
に伴う温度変化になるように制御して、被焼成物Sに対
して、所定の焼成処理を施すようにしてある。
In the batch-type firing furnace constructed as described above, after the carriage 4 on which the article S to be fired is placed is placed in the furnace, the controller C gradually raises the temperature in the furnace from room temperature to 1700. Up to about 1800 ° C., hold the firing temperature for a predetermined time, and then gradually lower it, that is, control so that the temperature changes with the passage of a preset time, The object S to be fired is subjected to a predetermined firing process.

【0021】次に、上記の如く構成したバッチ式焼成炉
におけるガスバーナ5の燃焼排ガス中のNOxを低減す
るNOx低減装置について説明する。
Next, a NOx reducing device for reducing NOx in the combustion exhaust gas of the gas burner 5 in the batch type firing furnace configured as described above will be described.

【0022】排ガス路7における熱交換器12の前段部
12Aよりも燃焼排ガス通流方向上手側で、排ガス路7
の入口付近の左右両側夫々には、還元用燃料供給路16
を通流する燃料ガスを、排ガス路7内に対して上方に噴
出供給する燃料噴出ノズル15の複数個を横方向に所定
の間隔をあけて並設してある。17は、還元用燃料供給
路16に介装した電磁式流量調整バルブであり、その開
度の調整により、燃料噴出ノズル15から燃料ガスを噴
出する状態と噴出しない状態に切り換えるとともに、噴
出する状態においては噴出する燃料ガス量を調整するよ
うにしてある。従って、燃料噴出ノズル15及び電磁式
流量調整バルブ17とをもって、排ガス路7を通流する
燃焼排ガスに、その燃焼排ガス中のNOxを還元する還
元用燃料ガスを供給する燃料供給手段を構成している。
In the exhaust gas passage 7, the exhaust gas passage 7 is located on the upstream side of the front end portion 12A of the heat exchanger 12 in the combustion exhaust gas flow direction.
The reducing fuel supply passage 16 on each of the left and right sides near the inlet of the
A plurality of fuel ejection nozzles 15 for ejecting the fuel gas flowing therethrough upward into the exhaust gas passage 7 are arranged side by side at predetermined intervals in the lateral direction. Reference numeral 17 denotes an electromagnetic flow rate adjusting valve interposed in the reducing fuel supply passage 16, and by adjusting the opening thereof, a state in which the fuel gas is ejected from the fuel ejection nozzle 15 and a state in which the fuel gas is not ejected, and an ejection state In, the amount of fuel gas to be ejected is adjusted. Therefore, the fuel injection nozzle 15 and the electromagnetic flow rate adjusting valve 17 constitute fuel supply means for supplying the reducing exhaust gas that reduces NOx in the exhaust gas to the exhaust gas flowing through the exhaust gas passage 7. There is.

【0023】又、排ガス路7における燃料噴出ノズル1
5の設置箇所よりも燃焼排ガス通流方向下手側で、か
つ、熱交換器12の前段部12Aと後段部12Bとの間
における左右両側夫々には、空気供給路18を通流する
送風ファン20からの空気を排ガス路7内に対して上方
に噴出供給する空気噴出ノズル19の複数個を横方向に
所定の間隔をあけて並設してある。従って、空気噴出ノ
ズル19は、燃料噴出ノズル15にて供給した還元用燃
料ガスの未燃分を燃焼させる空気を供給する空気供給手
段として機能する。
Further, the fuel injection nozzle 1 in the exhaust gas passage 7
A blower fan 20 that passes through an air supply passage 18 is provided on the lower side in the combustion exhaust gas flow direction than the installation position of 5 and on each of the left and right sides between the front stage 12A and the rear stage 12B of the heat exchanger 12. A plurality of air jet nozzles 19 for jetting the air from the above into the exhaust gas passage 7 upward are arranged side by side at a predetermined interval in the lateral direction. Therefore, the air ejection nozzle 19 functions as an air supply unit that supplies the air for burning the unburned portion of the reducing fuel gas supplied by the fuel ejection nozzle 15.

【0024】制御装置Cは、温度センサ13の検出温度
が設定値以上になると、流量調整バルブ17を閉成状態
から開成状態に切り換えるとともにその開度を調整し
て、燃料噴出ノズル15から噴出する還元用燃料ガス量
が所定量になるように制御し、かつ、送風ファン20を
停止状態から運転状態に切り換えるとともに送風ファン
20の回転数を調整して、空気噴出ノズル19から噴出
する空気量が所定量になるように制御する。
When the temperature detected by the temperature sensor 13 exceeds the set value, the control device C switches the flow rate adjusting valve 17 from the closed state to the open state, adjusts its opening degree, and ejects from the fuel ejection nozzle 15. The amount of the reducing fuel gas is controlled to be a predetermined amount, the blower fan 20 is switched from a stopped state to an operating state, and the rotation speed of the blower fan 20 is adjusted so that the amount of air ejected from the air ejection nozzle 19 is reduced. It is controlled so that it becomes a predetermined amount.

【0025】次に、上記の如く構成したNOx低減装置
によるNOx低減作用について説明する。
Next, the NOx reducing action of the NOx reducing device constructed as described above will be explained.

【0026】排ガス路7内を通流する燃焼排ガスの温度
は、炉内2の温度を検出する温度センサ13の検出温度
により推定できる。例えば、温度センサ13の検出温度
が1200〜1600℃のとき、燃料噴出ノズル15を
設けた排ガス路7入口付近の燃焼排ガスの温度は、炉内
2の温度とほぼ等しいので1200〜1600℃程度で
あり、空気噴出ノズル19を設けた付近の燃焼排ガスの
温度は、熱交換器12の前段部12Aにより燃焼用空気
供給路10を通流する燃焼用空気との間で熱交換される
の、その温度はかなり低下して700〜1000℃程度
となっている。
The temperature of the combustion exhaust gas flowing in the exhaust gas passage 7 can be estimated by the temperature detected by the temperature sensor 13 for detecting the temperature of the furnace 2. For example, when the temperature detected by the temperature sensor 13 is 1200 to 1600 ° C., the temperature of the combustion exhaust gas near the inlet of the exhaust gas passage 7 where the fuel injection nozzle 15 is provided is approximately 1200 to 1600 ° C. because it is substantially equal to the temperature in the furnace 2. The temperature of the combustion exhaust gas in the vicinity where the air jet nozzle 19 is provided is heat-exchanged with the combustion air flowing through the combustion air supply passage 10 by the front stage portion 12A of the heat exchanger 12. The temperature drops considerably to about 700 to 1000 ° C.

【0027】そして、制御装置Cは、温度センサ13の
検出温度が1200〜1600℃の間で設定した設定値
になった時点で、電磁式流量調整バルブ17を開成状態
に切り換えるとともに、その開度を流量調整バルブ9の
開度情報に基づいて制御して、燃料噴出ノズル15から
噴出する還元用燃料ガス量が、ガスバーナ5への供給燃
料ガス量に対して所定量となるように調整し、かつ、送
風ファン20を運転状態に切り換えるとともに、その回
転数を電磁式流量調整バルブ17の開度情報に基づいて
制御して、空気噴出ノズル19から噴出する空気量が、
燃料噴出ノズル15から噴出する還元用燃料ガスの量の
理論空気量以上となるように調整する。
Then, when the temperature detected by the temperature sensor 13 reaches the set value set between 1200 and 1600 ° C., the control device C switches the electromagnetic flow rate adjusting valve 17 to the open state, and the opening degree thereof. Is controlled based on the opening degree information of the flow rate adjusting valve 9 so that the amount of reducing fuel gas ejected from the fuel ejecting nozzle 15 is adjusted to a predetermined amount with respect to the amount of fuel gas supplied to the gas burner 5, At the same time, the blower fan 20 is switched to the operating state, and its rotation speed is controlled based on the opening degree information of the electromagnetic flow rate adjusting valve 17, so that the amount of air ejected from the air ejection nozzle 19 becomes
The amount of the reducing fuel gas ejected from the fuel ejection nozzle 15 is adjusted to be equal to or larger than the theoretical air amount.

【0028】すなわち、排ガス路7を通流する燃焼排ガ
スに対して、燃料噴出ノズル15にて還元用燃料ガスを
供給して酸素不足領域を生成せしめるとともに、その燃
料ガスと燃焼排ガス中のNOxとを反応させることによ
り、NOxはN2 となって還元され、反応に寄与した燃
料ガスはCOとなる。更に、還元用燃料ガス供給箇所よ
りも燃焼排ガス通流方向下手側にて、空気噴出ノズル1
9にて空気を供給することにより、前記COを含む還元
用燃料ガスの未燃分を燃焼させる。尚、空気噴出ノズル
19を設けた付近の燃焼排ガスの温度は、上述の如くか
なり低下している(700〜1000℃程度)ので、還
元用燃料ガスの未燃分を燃焼させても、NOxの発生を
抑制でき、しかも、横方向に分散させて設けた複数の空
気噴出ノズル19により空気を供給することにより、還
元用ガス燃料の未燃分を段階的に燃焼させるので、燃焼
温度を更に低くしてNOxの発生を更に抑制できる。
That is, the fuel injection nozzle 15 supplies the reducing fuel gas to the combustion exhaust gas flowing through the exhaust gas passage 7 to generate an oxygen-deficient region, and the fuel gas and NOx in the combustion exhaust gas. By reacting NOx, NOx becomes N 2 and is reduced, and the fuel gas that has contributed to the reaction becomes CO. Further, the air ejection nozzle 1 is provided on the lower side in the combustion exhaust gas flow direction than the reducing fuel gas supply point.
By supplying air at 9, the unburned portion of the reducing fuel gas containing CO is burned. Since the temperature of the combustion exhaust gas in the vicinity of the air ejection nozzle 19 is considerably lowered as described above (about 700 to 1000 ° C.), even if the unburned part of the reducing fuel gas is burned, NOx Generation can be suppressed, and moreover, by supplying air from a plurality of air ejection nozzles 19 which are dispersed in the lateral direction, the unburned components of the reducing gas fuel are combusted in stages, so the combustion temperature is further lowered. Therefore, the generation of NOx can be further suppressed.

【0029】又、NOx還元用ガス燃料の未燃分を燃焼
させることにより発生した熱を、熱交換器12の後段部
12Bにより燃焼用空気供給路10を通流する燃焼用空
気との間で熱交換して回収している。
Further, the heat generated by burning the unburned portion of the NOx reducing gas fuel is exchanged with the combustion air flowing through the combustion air supply passage 10 by the rear stage portion 12B of the heat exchanger 12. Recovered by exchanging heat.

【0030】尚、還元用燃料ガスの供給量をガスバーナ
5への供給燃料ガス量の5%程度とすると、燃焼排ガス
中のNOxを15%程度低減できる。又、還元用燃料ガ
スの供給量を増大するほどNOx低減は効果的となり、
ガスバーナ5への供給燃料ガス量の20%程度の還元用
燃料ガスを供給することにより、燃焼排ガス中のNOx
を50%程度低減できる。
When the supply amount of the reducing fuel gas is about 5% of the supply fuel gas amount to the gas burner 5, NOx in the combustion exhaust gas can be reduced by about 15%. Further, the more the supply amount of the reducing fuel gas increases, the more effective the NOx reduction becomes,
NOx in the combustion exhaust gas is supplied by supplying the reducing fuel gas to the gas burner 5 in an amount of about 20% of the supplied fuel gas.
Can be reduced by about 50%.

【0031】〔別実施例〕次に別実施例を列記する。[Other Embodiments] Next, other embodiments will be listed.

【0032】 上記実施例では、本発明をセラミック
を焼成する如き焼成温度が高温の焼成炉に適用する場合
を例示したが、本発明は焼成温度にかかわらず適用でき
る。
In the above embodiments, the case where the present invention is applied to a firing furnace having a high firing temperature such as firing a ceramic is illustrated, but the present invention can be applied regardless of the firing temperature.

【0033】 NOx還元用の燃料としては、上記実
施例で例示した燃料ガスを使用するのが、燃焼排ガスと
の混合が良好であることから好適であるが、燃料ガスの
他に、灯油あるいは重油等の液体燃料、あるいは、石炭
等の固体燃料も使用できる。
As the fuel for NOx reduction, it is preferable to use the fuel gas exemplified in the above embodiment because it is well mixed with the combustion exhaust gas, but in addition to the fuel gas, kerosene or heavy oil. Liquid fuels such as, or solid fuels such as coal can also be used.

【0034】 上記実施例では、熱交換器12を、前
段部12Aとその前段部12Aよりも燃焼排ガス通流方
向下手側に位置させた後段部12Bとから構成する場合
について例示したが、これに代えて、熱交換器12を単
一で構成し、空気供給手段19を、熱交換器12よりも
燃焼排ガス通流方向上手側、又は、燃焼排ガス通流方向
下手側に設けても良い。
In the above-mentioned embodiment, the heat exchanger 12 is constituted by the front-stage part 12A and the rear-stage part 12B located on the lower side of the front-stage part 12A in the combustion exhaust gas flow direction. Alternatively, the heat exchanger 12 may be configured as a single unit, and the air supply means 19 may be provided on the upstream side in the combustion exhaust gas flow direction or on the downstream side in the combustion exhaust gas flow direction with respect to the heat exchanger 12.

【0035】 上記実施例では、温度センサ13の検
出温度が設定値になった時点で、送風ファン20を運転
状態に切り換て空気噴出ノズル19から空気を噴出する
ように構成する場合について例示したが、これに代え
て、送風ファン20を、常時一定の回転数で運転して、
空気噴出ノズル19から常時一定量の空気を噴出するよ
うに構成しても良い。
In the above embodiment, when the temperature detected by the temperature sensor 13 reaches the set value, the blower fan 20 is switched to the operating state and air is ejected from the air ejection nozzle 19. However, instead of this, the blower fan 20 is always operated at a constant rotation speed,
The air ejection nozzle 19 may be configured to constantly eject a fixed amount of air.

【0036】 上記実施例では、制御装置Cにより、
温度センサ13の検出温度が設定値になった時点で、電
磁式流量調整バルブ17を制御する場合について例示し
たが、これに代えて、温度センサ13の検出温度が設定
値になった時点で、手動にて電磁式流量調整バルブ17
を開成状態に切り換えるとともに、その開度を、燃料噴
出ノズル15から噴出する還元用燃料ガス量が、ガスバ
ーナ5への供給燃料ガス量に対して所定量となるように
調整するようにしても良い。
In the above embodiment, the controller C
The case where the electromagnetic flow rate adjusting valve 17 is controlled at the time when the detected temperature of the temperature sensor 13 reaches the set value has been exemplified, but instead of this, when the detected temperature of the temperature sensor 13 reaches the set value, Manual solenoid valve 17
May be switched to the open state, and the opening thereof may be adjusted so that the amount of reducing fuel gas ejected from the fuel ejection nozzle 15 is a predetermined amount with respect to the amount of fuel gas supplied to the gas burner 5. ..

【0037】 上記実施例では、炉内2の温度を検出
する温度センサ13の検出情報に基づいて、燃料噴出ノ
ズル15からの還元用燃料ガスの噴出を制御する場合に
ついて例示したが、これに代えて、温度センサ13の他
に、別途、排ガス路7入口付近の燃焼排ガスの温度を検
出する温度センサを設けて、この温度センサの検出情報
に基づいて、燃料噴出ノズル15からの還元用燃料ガス
の噴出を制御するように制御装置Cを構成しても良い。
In the above-described embodiment, the case where the injection of the reducing fuel gas from the fuel injection nozzle 15 is controlled based on the detection information of the temperature sensor 13 that detects the temperature of the furnace 2 has been described as an example. In addition to the temperature sensor 13, a temperature sensor for separately detecting the temperature of the combustion exhaust gas near the inlet of the exhaust gas passage 7 is provided, and the reducing fuel gas from the fuel injection nozzle 15 is based on the detection information of this temperature sensor. The control device C may be configured to control the ejection of

【0038】尚、特許請求の範囲の項に図面との対照を
便利にするために符号を記すが、該記入により本発明は
添付図面の構成に限定されるものではない。
It should be noted that although reference numerals are given in the claims for convenience of comparison with the drawings, the present invention is not limited to the configuration of the accompanying drawings by the entry.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を適用したバッチ式焼成炉の平面図FIG. 1 is a plan view of a batch type firing furnace to which the present invention is applied.

【図2】本発明を適用したバッチ式焼成炉の側面図FIG. 2 is a side view of a batch type firing furnace to which the present invention is applied.

【図3】本発明を適用したバッチ式焼成炉の正面断面図FIG. 3 is a front sectional view of a batch type firing furnace to which the present invention is applied.

【図4】本発明を適用したバッチ式焼成炉の側面断面図FIG. 4 is a side sectional view of a batch type firing furnace to which the present invention is applied.

【符号の説明】[Explanation of symbols]

5 バーナ 7 排ガス路 12 熱交換器 12A 前段部 12B 後段部 13 温度検出手段 15,17 燃料供給手段 19 空気供給手段 5 Burner 7 Exhaust Gas Path 12 Heat Exchanger 12A Front Stage 12B Rear Stage 13 Temperature Detection Means 15, 17 Fuel Supply Means 19 Air Supply Means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉内を加熱するバーナ(5)と、そのバ
ーナ(5)の燃焼排ガスを炉内から排出する排ガス路
(7)とが設けられ、前記バーナ(5)に対する燃焼用
空気と前記排ガス路(7)を通流する前記燃焼排ガスと
の間で熱交換させることにより前記燃焼用空気を予熱す
る熱交換器(12)が、前記排ガス路(7)に介装され
たバッチ式焼成炉におけるNOx低減方法であって、 炉内温度又は燃焼排ガス温度が設定値以上のときに、前
記排ガス路(7)を通流する前記燃焼排ガスに、前記熱
交換器(12)よりも燃焼排ガス通流方向上手側にて、
前記燃焼排ガス中のNOxを還元する燃料を供給し、そ
の燃料供給箇所よりも燃焼排ガス通流方向下手側にて、
前記燃料の未燃分を燃焼させる空気を供給するバッチ式
焼成炉におけるNOx低減方法。
1. A burner (5) for heating the inside of a furnace and an exhaust gas passage (7) for discharging combustion exhaust gas of the burner (5) from the inside of the furnace are provided, and combustion air for the burner (5) is provided. A batch type in which a heat exchanger (12) for preheating the combustion air by exchanging heat with the combustion exhaust gas flowing through the exhaust gas passage (7) is interposed in the exhaust gas passage (7). A method for reducing NOx in a firing furnace, wherein the combustion exhaust gas flowing through the exhaust gas passage (7) is burned more than the heat exchanger (12) when the furnace temperature or the combustion exhaust gas temperature is equal to or higher than a preset value. On the good side in the exhaust gas flow direction,
A fuel for reducing NOx in the combustion exhaust gas is supplied, and the fuel is supplied at a position lower than the fuel supply point in the combustion exhaust gas flow direction.
A method for reducing NOx in a batch type firing furnace for supplying air for burning unburned components of the fuel.
【請求項2】 炉内を加熱するバーナ(5)と、そのバ
ーナ(5)の燃焼排ガスを炉内から排出する排ガス路
(7)とが設けられ、前記バーナ(5)に対する燃焼用
空気と前記排ガス路(7)を通流する前記燃焼排ガスと
の間で熱交換させることにより前記燃焼用空気を予熱す
る熱交換器(12)が、前記排ガス路(7)に介装され
たバッチ式焼成炉におけるNOx低減装置であって、 炉内温度又は燃焼排ガス温度を検出する温度検出手段
(13)が設けられ、前記排ガス路(7)に、前記熱交
換器(12)よりも燃焼排ガス通流方向上手側に前記燃
焼排ガス中のNOxを還元する燃料を供給する燃料供給
手段(15),(17)が、かつ、その燃料供給手段
(15),(17)よりも燃焼排ガス通流方向下手側に
前記燃料の未燃分を燃焼させる空気を供給する空気供給
手段(19)が設けられ、前記燃料供給手段(15),
(17)が、前記温度検出手段(13)の検出温度が設
定値以上のときに燃料を供給するように構成されている
バッチ式焼成炉におけるNOx低減装置。
2. A burner (5) for heating the inside of the furnace and an exhaust gas passage (7) for discharging combustion exhaust gas of the burner (5) from the inside of the furnace are provided, and combustion air for the burner (5) is provided. A batch type in which a heat exchanger (12) for preheating the combustion air by exchanging heat with the combustion exhaust gas flowing through the exhaust gas passage (7) is interposed in the exhaust gas passage (7). A NOx reduction device in a firing furnace, comprising temperature detection means (13) for detecting the temperature in the furnace or the temperature of combustion exhaust gas, and the exhaust gas passage (7) is connected to the exhaust gas passage rather than the heat exchanger (12). Fuel supply means (15), (17) for supplying the fuel for reducing NOx in the combustion exhaust gas to the upstream side in the flow direction, and the combustion exhaust gas flow direction than the fuel supply means (15), (17) The unburned portion of the fuel is burned on the lower side. That air air supply means (19) is provided for supplying the fuel supply means (15),
(17) A NOx reduction device in a batch type firing furnace configured to supply fuel when the temperature detected by the temperature detecting means (13) is equal to or higher than a set value.
【請求項3】 前記熱交換器(12)が、前段部(12
A)とその前段部(12A)よりも燃焼排ガス通流方向
下手側に位置する後段部(12B)とから構成され、前
記燃料供給手段(15),(17)が前記前段部(12
A)よりも燃焼排ガス通流方向上手側に設けられ、前記
空気供給手段(19)が前記前段部(12A)と前記後
段部(12B)との間に設けられている請求項2記載の
バッチ式焼成炉におけるNOx低減装置。
3. The heat exchanger (12) comprises a front part (12).
A) and a rear stage (12B) located on the lower side of the front stage (12A) in the combustion exhaust gas flow direction, and the fuel supply means (15) and (17) include the front stage (12).
The batch according to claim 2, which is provided on the upstream side of A) in the combustion exhaust gas flow direction, and wherein the air supply means (19) is provided between the front stage portion (12A) and the rear stage portion (12B). NOx reduction device in a firing furnace.
JP3341618A 1991-12-25 1991-12-25 Method of reducing nox in batch type burning furnace and device to reduce nox Pending JPH05172325A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3341618A JPH05172325A (en) 1991-12-25 1991-12-25 Method of reducing nox in batch type burning furnace and device to reduce nox

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3341618A JPH05172325A (en) 1991-12-25 1991-12-25 Method of reducing nox in batch type burning furnace and device to reduce nox

Publications (1)

Publication Number Publication Date
JPH05172325A true JPH05172325A (en) 1993-07-09

Family

ID=18347481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3341618A Pending JPH05172325A (en) 1991-12-25 1991-12-25 Method of reducing nox in batch type burning furnace and device to reduce nox

Country Status (1)

Country Link
JP (1) JPH05172325A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304112A (en) * 2007-06-07 2008-12-18 Koyo Thermo System Kk Heat recovery device
JP2011195386A (en) * 2010-03-19 2011-10-06 Taiyo Nippon Sanso Corp Glass melting furnace and exhaust gas treatment method in glass melting furnace
JP2014209056A (en) * 2014-07-03 2014-11-06 光洋サーモシステム株式会社 Heat recovery device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304112A (en) * 2007-06-07 2008-12-18 Koyo Thermo System Kk Heat recovery device
JP2011195386A (en) * 2010-03-19 2011-10-06 Taiyo Nippon Sanso Corp Glass melting furnace and exhaust gas treatment method in glass melting furnace
JP2014209056A (en) * 2014-07-03 2014-11-06 光洋サーモシステム株式会社 Heat recovery device

Similar Documents

Publication Publication Date Title
JP3282944B2 (en) Low NOx burner
US6926516B1 (en) Combustion method and burner
JP3557028B2 (en) Combustion burner and combustion method in furnace
JP2003020230A (en) Method and apparatus for heating glass melting furnace by fossil fuel
JPH05172325A (en) Method of reducing nox in batch type burning furnace and device to reduce nox
JPH086906B2 (en) Heat storage burner
US11920786B2 (en) Regenerative burner, industrial furnace and method for producing a fired article
JP3558184B2 (en) Adjustment structure of air flow rate in regenerative combustion burner
JP3617202B2 (en) Heating furnace and operating method thereof
KR100368830B1 (en) Oxygen supply method for regenerative burner and device
JP4343037B2 (en) Hot air generator
JP3050439B2 (en) NOx reduction method and NOx reduction device in firing furnace
JP4352499B2 (en) Continuous multi-band heating method and continuous multi-band heating furnace
JPH08247421A (en) Radiant tube burner
KR20040056860A (en) Air inflow protection system for discharging process in a reheatinh furnace
JP3848809B2 (en) Combustion device with additional air nozzle
JPH07286725A (en) Furnace pressure controller for baking furnace
JP4066519B2 (en) Reducing atmosphere furnace
JP3473880B2 (en) Adjustment structure of air flow rate in alternating combustion system
JPH07103433A (en) Combustiion method for heating furnace using regenerative burner
JPH10259905A (en) Regenerative radiant tube burner and its combustion method
JPH0894013A (en) Low nox burner
JPH09101008A (en) Radiation burner
JP2003074834A (en) Regenerative burner and its combustion method
JPS6346307A (en) Two-stage combustion air supply device of pulverized coal fired boiler