JP2014209056A - Heat recovery device - Google Patents

Heat recovery device Download PDF

Info

Publication number
JP2014209056A
JP2014209056A JP2014137570A JP2014137570A JP2014209056A JP 2014209056 A JP2014209056 A JP 2014209056A JP 2014137570 A JP2014137570 A JP 2014137570A JP 2014137570 A JP2014137570 A JP 2014137570A JP 2014209056 A JP2014209056 A JP 2014209056A
Authority
JP
Japan
Prior art keywords
chamber
low
heat
temperature gas
preheating chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014137570A
Other languages
Japanese (ja)
Other versions
JP5806366B2 (en
Inventor
靖 長嶋
Yasushi Nagashima
靖 長嶋
泰浩 佐々木
Yasuhiro Sasaki
泰浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Thermo Systems Corp
Original Assignee
Koyo Thermo Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyo Thermo Systems Co Ltd filed Critical Koyo Thermo Systems Co Ltd
Priority to JP2014137570A priority Critical patent/JP5806366B2/en
Publication of JP2014209056A publication Critical patent/JP2014209056A/en
Application granted granted Critical
Publication of JP5806366B2 publication Critical patent/JP5806366B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat recovery device capable of improving heat recovery efficiency by implementing heat exchange between high-temperature gas and low-temperature gas and suppressing device manufacturing cost.SOLUTION: A heat recovery device 100 comprises: a main preheating chamber 12; and a sub preheating chamber 13, a high-temperature chamber 2 is provided in the main preheating chamber 12, and a low-temperature chamber 3 is provided in the sub preheating chamber 13. A heat exchange unit is provided in a heat absorption region 23 of the high-temperature chamber 2 and a heat radiation region of the low-temperature chamber 3 for recovering heat from the high-temperature chamber 2 and radiating the recovered heat to the low-temperature chamber 3. The sub preheating chamber 13 constitutes a stage in front of the low-temperature chamber 3 in a low-temperature gas path whereas the main preheating chamber 12 constitutes a stage in front of the sub preheating chamber 13 in the low-temperature gas path. In the main preheating chamber 12, low-temperature gas absorbs heat leaking from the high-temperature chamber 2.

Description

この発明は、高温気体の熱を回収して低温気体を加熱する熱回収装置に関する。   The present invention relates to a heat recovery apparatus that recovers heat of a high-temperature gas and heats the low-temperature gas.

液晶表示パネルの製造工程などで焼成炉が用いられる。焼成炉では、ワークから蒸散するガス中に有機物の蒸散気体が含まれる。蒸散気体はワークに悪影響を及ぼす可能性がある。このため、焼成炉では、炉内を換気することがある。換気によって焼成炉の内部温度は低下する。このため、炉内からの排気と炉内への吸気との間で熱交換が行われる。   A firing furnace is used in a manufacturing process of a liquid crystal display panel. In the firing furnace, the gas evaporated from the work contains an organic vapor. Vaporized gas can adversely affect the workpiece. For this reason, in the firing furnace, the inside of the furnace may be ventilated. Ventilation reduces the internal temperature of the firing furnace. For this reason, heat exchange is performed between the exhaust from the furnace and the intake air into the furnace.

このような高温気体の熱を回収して低温気体を加熱する装置が知られている(例えば、特許文献1〜3参照。)。   An apparatus for recovering the heat of such a high-temperature gas and heating the low-temperature gas is known (see, for example, Patent Documents 1 to 3).

特開2002−191920号公報JP 2002-191920 A 特開2001−154739号公報Japanese Patent Laid-Open No. 2001-154739 特開2002−200473号公報Japanese Patent Application Laid-Open No. 2002-200473

高温気体の熱を回収して低温気体を加熱する熱回収装置は、熱回収の効率を高めることが望まれる。また、その製造コストの抑制も望まれる。   A heat recovery apparatus that recovers heat of a high-temperature gas and heats the low-temperature gas is desired to increase the efficiency of heat recovery. Moreover, suppression of the manufacturing cost is also desired.

この発明の目的は、従来よりも熱回収効率を高めることができ、製造コストの抑制が可能な熱回収装置を提供することにある。   An object of the present invention is to provide a heat recovery apparatus that can increase the heat recovery efficiency as compared with the prior art and can suppress the manufacturing cost.

この発明の熱回収装置は、高温気体の通気路と、
高温気体の通気路と非連続に設けられている低温気体の通気路と、
高温気体の通気路の一部である吸熱領域で前記高温気体から熱を吸熱し、低温気体の通気路の一部である放熱領域で低温気体に熱を放熱する熱交換器と、
を備え、
高温気体の通気路は、 吸熱領域が内部に設けられる部材であって、高温チャンバを備え、
低温気体の通気路は、放熱領域が内部に設けられる部材であって、低温チャンバと、低温チャンバよりも前段に設けられており、低温チャンバが内部に配置され、低温チャンバの外壁面からの漏出熱を低温気体に吸熱させる副予熱室と、低温チャンバよりも前段に設けられており、高温チャンバが内部に配置され、高温チャンバの外壁面からの漏出熱を低温気体に吸熱させる主予熱室と、を備え、
内部に主予熱室と副予熱室とを区画する隔壁が設けられ、外部に通じる高温気体吸気口と高温気体排気口と低温気体吸気口とが主予熱室に設けられ、外部に通じる低温気体排気口が副予熱室に設けられ、主予熱室と副予熱室とに通じる通気口が隔壁に設けられている外装体をさらに備え、
低温チャンバは、筒状であって、一端が低温気体排気口から外装体の外に退出して開口し、他端が副予熱室の内部で開口しており、
高温チャンバは、筒状であって、一端が高温気体吸気口から外装体の外に退出して開口し、他端が高温気体排気口に接続されている。
The heat recovery apparatus of the present invention includes a hot gas vent path,
A hot gas vent and a cold gas vent that is discontinuous;
A heat exchanger that absorbs heat from the high-temperature gas in a heat-absorbing region that is part of a high-temperature gas ventilation path, and dissipates heat to the low-temperature gas in a heat-dissipation region that is part of a low-temperature gas ventilation path;
With
The hot gas ventilation path is a member in which an endothermic region is provided, and includes a high temperature chamber.
The low-temperature gas ventilation path is a member in which a heat dissipation region is provided, and is provided in a stage preceding the low-temperature chamber and the low-temperature chamber. The low-temperature chamber is disposed inside and leaks from the outer wall surface of the low-temperature chamber. A sub-preheating chamber that absorbs heat into the low-temperature gas; a main preheating chamber that is provided upstream of the low-temperature chamber, the high-temperature chamber is disposed inside, and the heat leaked from the outer wall surface of the high-temperature chamber is absorbed into the low-temperature gas; With
A partition that divides the main preheating chamber and the auxiliary preheating chamber is provided inside, and a high temperature gas inlet, a high temperature gas outlet, and a low temperature gas inlet that communicate with the outside are provided in the main preheating chamber, and a low temperature gas exhaust that communicates with the outside. An exterior body in which a port is provided in the sub-preheating chamber, and a vent hole leading to the main pre-heating chamber and the sub-preheating chamber is provided in the partition wall;
The low temperature chamber has a cylindrical shape, and one end is opened out of the exterior body from the low temperature gas exhaust port, and the other end is opened inside the auxiliary preheating chamber,
The high temperature chamber has a cylindrical shape, and one end thereof is opened from the high temperature gas intake port to the outside of the exterior body, and the other end is connected to the high temperature gas exhaust port.

この発明によれば、熱回収装置は高温気体の通気路からの漏出熱を回収でき、熱回収装置の熱回収効率を従来よりも高められる。そのため、断熱材などを抑制でき、製造コストを低減可能になる。   According to the present invention, the heat recovery device can recover the heat leaked from the hot gas ventilation passage, and the heat recovery efficiency of the heat recovery device can be improved as compared with the conventional case. Therefore, a heat insulating material etc. can be suppressed and manufacturing cost can be reduced.

熱回収装置の一例を示す側面断面図である。It is side surface sectional drawing which shows an example of a heat recovery apparatus. 同熱回収装置の熱交換ユニットの一例を示す斜視図である。It is a perspective view which shows an example of the heat exchange unit of the heat recovery apparatus.

以下、図面を参照して熱回収装置の構成例を説明する。ここでの熱回収装置は、液晶表示パネルの製造工程に用いられる多段焼成炉の換気に用いる。多段焼成炉からの排気ガスには、バインダーなどの蒸散によって有機物成分が含まれる。熱回収装置は、この排気ガスを炉外に排気し、外気を焼成炉に吸気する。   Hereinafter, a configuration example of the heat recovery apparatus will be described with reference to the drawings. The heat recovery apparatus here is used for ventilation of a multi-stage firing furnace used in the manufacturing process of the liquid crystal display panel. The exhaust gas from the multi-stage firing furnace contains an organic component by transpiration of a binder or the like. The heat recovery device exhausts the exhaust gas to the outside of the furnace and sucks the outside air into the firing furnace.

図1は、熱回収装置の側面断面図である。ここでは固定配置式の熱回収装置100を示している。なお、熱回収装置100の底面に移動ローラを設けるなどして、熱回収装置100を可動式にしてもよい。   FIG. 1 is a side sectional view of the heat recovery apparatus. Here, a fixed arrangement type heat recovery apparatus 100 is shown. The heat recovery apparatus 100 may be movable by providing a moving roller on the bottom surface of the heat recovery apparatus 100.

熱回収装置100は外装体1を備える。外装体1の内部は、制御室11と主予熱室12と副予熱室13とに区画されている。制御室11は制御部6を内装する。主予熱室12は、高温チャンバ2と掃気ブロワ5とを内装する。副予熱室13は、低温チャンバ3を内装する。主予熱室12を構成する外装体1の壁面には、高温気体吸気口16と高温気体排気口17と低温気体吸気口18とが設けられている。副予熱室13を構成する外装体1の壁面には、低温気体排気口19が設けられている。主予熱室12と副予熱室13との間には隔壁14が設けられている。隔壁14には、主予熱室12と副予熱室13との間を通気するための通気口15が設けられている。   The heat recovery apparatus 100 includes an exterior body 1. The interior of the exterior body 1 is partitioned into a control chamber 11, a main preheating chamber 12, and a sub preheating chamber 13. The control room 11 includes a control unit 6. The main preheating chamber 12 includes a high temperature chamber 2 and a scavenging blower 5. The sub preheating chamber 13 includes the low temperature chamber 3. A high-temperature gas inlet 16, a high-temperature gas outlet 17, and a low-temperature gas inlet 18 are provided on the wall surface of the exterior body 1 constituting the main preheating chamber 12. A low-temperature gas exhaust port 19 is provided on the wall surface of the exterior body 1 constituting the auxiliary preheating chamber 13. A partition wall 14 is provided between the main preheating chamber 12 and the sub preheating chamber 13. The partition wall 14 is provided with a vent hole 15 for ventilating between the main preheating chamber 12 and the sub preheating chamber 13.

制御室11は、主予熱室12および副予熱室13から分離されている。なお、制御室11は図示しない断熱材により囲まれる。したがって、主予熱室12および副予熱室13から制御室11への熱伝導が抑制される。制御部6は、熱回収装置100の換気能力を維持するために、掃気ブロワ5を制御する。また、制御部6は、熱回収装置100の換気能力の低下を、警告音や警告表示の形式で管理者に報知する。   The control chamber 11 is separated from the main preheating chamber 12 and the sub preheating chamber 13. The control chamber 11 is surrounded by a heat insulating material (not shown). Therefore, heat conduction from the main preheating chamber 12 and the sub preheating chamber 13 to the control chamber 11 is suppressed. The control unit 6 controls the scavenging blower 5 in order to maintain the ventilation capability of the heat recovery apparatus 100. Moreover, the control part 6 alert | reports the fall of the ventilation capability of the heat recovery apparatus 100 to an administrator in the form of a warning sound or a warning display.

低温チャンバ3は、流路方向の断面が矩形状の筒状部材である。低温チャンバ3の両端は開口している。また、両端付近の断面積が中央よりも小さくされている。低温チャンバ3の一端は、低温気体排気口19から外装体1の外に退出する。この一端は、図示しない焼成炉に外気を排気する。低温チャンバ3の他端は、副予熱室13の内部に配置されている。低温チャンバ3の内部には、放熱領域31が設けられている。   The low temperature chamber 3 is a cylindrical member having a rectangular cross section in the flow path direction. Both ends of the low temperature chamber 3 are open. Moreover, the cross-sectional area near both ends is made smaller than the center. One end of the low temperature chamber 3 exits from the low temperature gas exhaust port 19 to the outside of the exterior body 1. This one end exhausts outside air to a firing furnace (not shown). The other end of the low temperature chamber 3 is disposed inside the sub preheating chamber 13. Inside the low temperature chamber 3, a heat radiation area 31 is provided.

放熱領域31は、副予熱室13から吸気する外気に熱を放熱する。そのため、放熱領域31の内部には熱交換ユニット4の一部を配している。熱交換ユニット4の構成については後述する。   The heat radiation area 31 radiates heat to the outside air sucked from the sub preheating chamber 13. Therefore, a part of the heat exchange unit 4 is arranged inside the heat radiation area 31. The configuration of the heat exchange unit 4 will be described later.

高温チャンバ2は、流路方向の断面が矩形状の筒形部材である。高温チャンバ2の両端は開口している。また、両端付近の断面積が中央よりも小さくされている。高温チャンバ2の一端は、高温気体吸気口16から外装体1の外に退出する。この一端には、図示しない焼成炉から排気ガスが吸気される。高温チャンバ2の他端は、主予熱室12の内部に配置されている。高温チャンバ2の内部には、フィルタ室21と浄化部22と吸熱領域23とが設けられている。   The high temperature chamber 2 is a cylindrical member having a rectangular cross section in the flow path direction. Both ends of the high temperature chamber 2 are open. Moreover, the cross-sectional area near both ends is made smaller than the center. One end of the high temperature chamber 2 exits from the high temperature gas inlet 16 to the outside of the exterior body 1. At one end, exhaust gas is sucked from a firing furnace (not shown). The other end of the high temperature chamber 2 is disposed inside the main preheating chamber 12. Inside the high temperature chamber 2, a filter chamber 21, a purification unit 22, and an endothermic region 23 are provided.

フィルタ室21は、焼成炉からの排気ガス中から、ダストやミストを除去する。そのため、フィルタ室21には、複数のフィルタ粒を堆積させている。フィルタ粒を用いることで、熱回収装置100の稼働中でも、フィルタ粒の交換が可能になり、フィルタ室21内の清浄度を高く維持できる。したがって、後段の浄化部22にダストやミストが付着することがない。このためダストやミストの付着による浄化部22での触媒による有機物分解能の低減が防げ、浄化部22のメンテナンス回数を低減できる。   The filter chamber 21 removes dust and mist from the exhaust gas from the firing furnace. Therefore, a plurality of filter particles are deposited in the filter chamber 21. By using the filter particles, the filter particles can be exchanged even during operation of the heat recovery apparatus 100, and the cleanliness in the filter chamber 21 can be maintained high. Therefore, dust and mist do not adhere to the subsequent purification unit 22. For this reason, reduction of the organic substance resolution by the catalyst in the purification unit 22 due to adhesion of dust or mist can be prevented, and the number of maintenance of the purification unit 22 can be reduced.

なお、図示していないが、フィルタ室21の直前および直後には、圧力検出部を設けている。これらの圧力検出部の検出した排気ガスの流体圧データは制御部6に出力する。制御部6では、この圧力変化に基づいて、フィルタ室21の目詰まりを検知する。そして、目詰まりが生じた場合に、そのことを報知する警告音や警告表示を出力する。また、掃気ブロワ5の掃気能を調整し、圧力変化を補正して安定化させる。   Although not shown, a pressure detector is provided immediately before and immediately after the filter chamber 21. The fluid pressure data of the exhaust gas detected by these pressure detectors is output to the controller 6. The control unit 6 detects clogging of the filter chamber 21 based on this pressure change. Then, when clogging occurs, a warning sound or warning display for informing that is output. Further, the scavenging ability of the scavenging blower 5 is adjusted to correct and stabilize the pressure change.

浄化部22は、フィルタ室21を通過した排気ガス中の有機物成分を分解する。そのため、浄化部22内部には触媒(ここでは、ヒータ付きの白金触媒)を設けている。この触媒により、有機物成分を酸化反応させ、排気ガス中の有機物成分を二酸化炭素などに分解する。したがって、後段の吸熱領域23には有機物成分が流入することがない。そのため有機物成分による吸熱領域23での熱交換効率の低減が防げ、吸熱領域23のメンテナンス回数を低減できる。また、浄化部22に流入する排気ガスは、触媒によって加熱される。具体的には、ヒータによる加熱と、有機物の分解反応で生じる熱とにより、排気ガスの温度が約10℃〜100℃ほど昇温する。したがって、後段の吸熱領域23では、より多くの熱交換がなされる。   The purification unit 22 decomposes organic components in the exhaust gas that has passed through the filter chamber 21. For this reason, a catalyst (in this case, a platinum catalyst with a heater) is provided inside the purification unit 22. With this catalyst, the organic component is oxidized and the organic component in the exhaust gas is decomposed into carbon dioxide. Therefore, the organic component does not flow into the latter endothermic region 23. Therefore, it is possible to prevent the heat exchange efficiency in the endothermic region 23 from being reduced by the organic component, and the maintenance frequency of the endothermic region 23 can be reduced. Further, the exhaust gas flowing into the purification unit 22 is heated by the catalyst. Specifically, the temperature of the exhaust gas is raised by about 10 ° C. to 100 ° C. by the heating by the heater and the heat generated by the decomposition reaction of the organic matter. Therefore, more heat exchange is performed in the heat absorption region 23 at the subsequent stage.

なお、図示していないが、浄化部22の直前および直後には、温度検出部を設けている。これらの温度検出部の検出した排気ガスの温度データは制御部6に出力する。制御部6では、この温度変化に基づいて、触媒の有機物分解能を検知する。そして、有機物分解能が所定値以下に低下した場合に、そのことを報知する警告音や警告表示を出力する。   Although not shown, a temperature detection unit is provided immediately before and immediately after the purification unit 22. The exhaust gas temperature data detected by these temperature detection units is output to the control unit 6. The controller 6 detects the organic matter resolution of the catalyst based on this temperature change. And when organic substance resolution falls below a predetermined value, the warning sound and warning display which alert | report that are output.

吸熱領域23は、浄化部22を通過する排気ガスから熱を回収する。そのため、吸熱領域23の内部には熱交換ユニット4の一部を配している。この熱交換ユニット4の他の一部は、低温チャンバ3の放熱領域31にも配されている。   The endothermic region 23 recovers heat from the exhaust gas that passes through the purification unit 22. Therefore, a part of the heat exchange unit 4 is arranged inside the endothermic region 23. Another part of the heat exchange unit 4 is also disposed in the heat radiation area 31 of the low temperature chamber 3.

ここで、熱交換ユニット4の構成例を図2に基づいて説明する。   Here, the structural example of the heat exchange unit 4 is demonstrated based on FIG.

図2は熱交換ユニット4の一部を示す斜視図である。熱交換ユニット4は、2次元に配列された複数のパイプ41を備える。各パイプ41は、内部が空洞になっていて、空洞に作動流体が封入されている。各パイプ41は、上述の主予熱室12と副予熱室13との間の隔壁14と、高温チャンバ2の天面と、低温チャンバ3の底面と、に設けられた孔を貫通するように配置される。したがって、各パイプ41の一端側は、高温チャンバ2内部の吸熱領域23に配置される。各パイプ41の他端側は、低温チャンバ3内部の放熱領域31に配置される。なお、図示していないが、各パイプ41には、それぞれの軸方向に垂直なフィンが形成される。また、各パイプ41と隔壁14との間には、高温チャンバ2内部と低温チャンバ3内部との気密を保つ気密部材が設けられる。   FIG. 2 is a perspective view showing a part of the heat exchange unit 4. The heat exchange unit 4 includes a plurality of pipes 41 arranged two-dimensionally. Each pipe 41 has a hollow inside, and a working fluid is sealed in the hollow. Each pipe 41 is arranged so as to pass through holes provided in the partition wall 14 between the main preheating chamber 12 and the sub preheating chamber 13, the top surface of the high temperature chamber 2, and the bottom surface of the low temperature chamber 3. Is done. Therefore, one end side of each pipe 41 is disposed in the heat absorbing region 23 inside the high temperature chamber 2. The other end side of each pipe 41 is disposed in the heat radiation area 31 inside the low temperature chamber 3. Although not shown, each pipe 41 is formed with fins perpendicular to the respective axial directions. In addition, an airtight member is provided between each pipe 41 and the partition wall 14 to maintain the airtightness between the high temperature chamber 2 and the low temperature chamber 3.

パイプ41内部の作動流体は、高温チャンバ2内の吸熱領域23で、排気ガスの熱を吸熱して蒸発する。そして、この作動流体は、低温チャンバ3内の放熱領域31で凝縮して液化し、外気に熱を放熱する。これにより、高温チャンバ2内の高温気体が冷却され、低温チャンバ3内の低温気体が加熱される。この熱交換ユニット4は、小さい温度差であっても高効率に熱エネルギーを交換できる。   The working fluid inside the pipe 41 evaporates by absorbing the heat of the exhaust gas in the heat absorbing region 23 in the high temperature chamber 2. The working fluid is condensed and liquefied in the heat radiation area 31 in the low temperature chamber 3 to radiate heat to the outside air. Thereby, the high temperature gas in the high temperature chamber 2 is cooled, and the low temperature gas in the low temperature chamber 3 is heated. The heat exchange unit 4 can exchange heat energy with high efficiency even with a small temperature difference.

掃気ブロワ5には、高温チャンバ2の前記他端が接続される。掃気ブロワ5は、回転する内部フィンの回転速度の調整により高温チャンバ2内に負圧をかけ、排気ガスを吸引する。掃気ブロワ5に吸引された排気ガスは、高温気体排気口17から熱回収装置100の外部に排気される。   The other end of the high temperature chamber 2 is connected to the scavenging blower 5. The scavenging blower 5 applies a negative pressure to the high temperature chamber 2 by adjusting the rotation speed of the rotating internal fins, and sucks the exhaust gas. The exhaust gas sucked into the scavenging blower 5 is exhausted to the outside of the heat recovery apparatus 100 from the high temperature gas exhaust port 17.

掃気ブロワ5は、排気ガスを熱回収装置100の外部に排気し、高温チャンバ2内に負圧をかける。高温チャンバ2は高温気体吸気口16を介して、図示しない焼成炉に負圧をかける。この焼成炉は低温気体排気口19を介して低温チャンバ3内に負圧をかける。低温チャンバ3は副予熱室13内に負圧をかける。副予熱室13は通気口15を介して主予熱室12内に負圧をかける。主予熱室12は低温気体吸気口18を介して熱回収装置100の外部から外気を吸気する。   The scavenging blower 5 exhausts the exhaust gas to the outside of the heat recovery apparatus 100 and applies a negative pressure in the high temperature chamber 2. The high temperature chamber 2 applies a negative pressure to a firing furnace (not shown) through the high temperature gas inlet 16. This firing furnace applies a negative pressure into the low temperature chamber 3 through the low temperature gas exhaust port 19. The low temperature chamber 3 applies a negative pressure in the auxiliary preheating chamber 13. The sub preheating chamber 13 applies a negative pressure to the main preheating chamber 12 through the vent 15. The main preheating chamber 12 draws outside air from the outside of the heat recovery apparatus 100 through the low temperature gas inlet 18.

低温気体吸気口18から吸気される外気は、掃気ブロワ5および高温チャンバ2の外壁面を沿って流れる。この間に、外気は掃気ブロワ5及び高温チャンバ2の漏出熱を吸熱する。その後、外気は通気口15を介して主予熱室12から副予熱室13の内部に吸入される。その後、外気は副予熱室13内部を、低温チャンバ3の外壁面に沿って流れる。この間に、外気は低温チャンバ3の漏出熱を吸熱する。その後、外気は低温チャンバ3の内部に吸入される。この間に、外気は低温チャンバ3の内部の放熱領域31で熱を吸熱する。その後、外気は低温気体排気口19から焼成炉に排気される。   The outside air sucked from the low temperature gas inlet 18 flows along the scavenging blower 5 and the outer wall surface of the high temperature chamber 2. During this time, the outside air absorbs the leakage heat of the scavenging blower 5 and the high temperature chamber 2. Thereafter, outside air is sucked from the main preheating chamber 12 into the sub preheating chamber 13 through the vent 15. Thereafter, the outside air flows in the auxiliary preheating chamber 13 along the outer wall surface of the low temperature chamber 3. During this time, the outside air absorbs the heat leaked from the low temperature chamber 3. Thereafter, the outside air is sucked into the low temperature chamber 3. During this time, the outside air absorbs heat in the heat radiation area 31 inside the low temperature chamber 3. Thereafter, the outside air is exhausted from the low temperature gas exhaust port 19 to the firing furnace.

したがって、熱回収装置100は、焼成炉からの高温の排気ガスから低温の外気に、熱交換ユニット4で熱を回収するとともに、高温チャンバ2の外壁面から漏出する漏出熱を回収できる。したがって、熱回収装置100の熱回収効率は極めて高いものになる。そのため、高温チャンバ2や低温チャンバ3の外装面に断熱材を設ける必要が無く、製造コストが低減される。   Therefore, the heat recovery apparatus 100 can recover heat from the high-temperature exhaust gas from the firing furnace to the low-temperature outside air by the heat exchange unit 4 and also the leakage heat leaking from the outer wall surface of the high-temperature chamber 2. Therefore, the heat recovery efficiency of the heat recovery apparatus 100 is extremely high. Therefore, it is not necessary to provide a heat insulating material on the exterior surface of the high temperature chamber 2 or the low temperature chamber 3, and the manufacturing cost is reduced.

また、浄化部22で排気ガス中の有機物成分を除去して、有機物成分が外気を汚染することを無くすことができる。その際に、有機物成分の分解により生じる熱エネルギーも、回収する熱の一部となる。また、フィルタ室21で排気ガス中のダストやミストを除去するが、稼働中に補充および取り出し可能なフィルタ粒を用いることで、メンテナンス性を高め、熱回収装置100の稼働時間や寿命を高められる。   Further, the organic component in the exhaust gas can be removed by the purification unit 22 so that the organic component can be prevented from polluting the outside air. At that time, thermal energy generated by the decomposition of the organic component also becomes a part of the recovered heat. Further, dust and mist in the exhaust gas are removed in the filter chamber 21. By using filter particles that can be replenished and taken out during operation, maintainability is improved, and the operation time and life of the heat recovery apparatus 100 can be increased. .

ここでは、主予熱室12と副予熱室13との間には隔壁14に設けた通気口15を、低温気体吸気口18から離して、高温気体吸気口16と低温気体排気口19とに近接させている。これにより、主予熱室12における低温気体の通気路を長く確保して、低温気体である外気に十分に漏出熱を吸収させる。また、高温気体吸気口16を外装体1の低温気体排気口19と同一側面に設けている。これにより、高温気体の通気路の吸気口と低温気体の通気路の排気口とが同方向に向く。したがって、この外装体1の側面を焼成炉方向に向けることで、焼成炉への配管接続を容易に行える。なお、高温気体吸気口16と低温気体排気口19とは必ずしも外装体1の同一側面に設けなくてもよい。   Here, a vent 15 provided in the partition 14 is provided between the main preheating chamber 12 and the sub preheating chamber 13 away from the low temperature gas intake port 18 and close to the high temperature gas intake port 16 and the low temperature gas exhaust port 19. I am letting. This ensures a long passage for the low temperature gas in the main preheating chamber 12 and allows the outside air, which is a low temperature gas, to sufficiently absorb the leakage heat. The high temperature gas inlet 16 is provided on the same side as the low temperature gas outlet 19 of the exterior body 1. As a result, the intake port of the hot gas passage and the exhaust port of the cold gas passage are oriented in the same direction. Therefore, the piping connection to the firing furnace can be easily performed by directing the side surface of the exterior body 1 toward the firing furnace. The high temperature gas inlet 16 and the low temperature gas outlet 19 are not necessarily provided on the same side surface of the exterior body 1.

上述の実施形態の説明は、すべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は、上述の実施形態ではなく、特許請求の範囲によって示される。さらに、本発明の範囲には、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The above description of the embodiment is to be considered in all respects as illustrative and not restrictive. The scope of the present invention is shown not by the above embodiments but by the claims. Furthermore, the scope of the present invention is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.

1…外装体 2…高温チャンバ 3…低温チャンバ 4…熱交換ユニット 5…掃気ブロワ 6…制御部 11…制御室 12…主予熱室 13…副予熱室 14…隔壁 15…通気口 16…高温気体吸気口 17…高温気体排気口 18…低温気体吸気口 19…低温気体排気口 21…フィルタ室 22…浄化部 23…吸熱領域 31…放熱領域 41…パイプ 100…熱回収装置     DESCRIPTION OF SYMBOLS 1 ... Exterior body 2 ... High temperature chamber 3 ... Low temperature chamber 4 ... Heat exchange unit 5 ... Scavenging blower 6 ... Control part 11 ... Control room 12 ... Main preheating room 13 ... Sub preheating room 14 ... Septum 15 ... Vent 16 ... High temperature gas Inlet 17 ... High-temperature gas outlet 18 ... Low-temperature gas inlet 19 ... Low-temperature gas outlet 21 ... Filter chamber 22 ... Purifying section 23 ... Endothermic region 31 ... Heat dissipation region 41 ... Pipe 100 ... Heat recovery device

Claims (1)

高温気体の通気路と、
前記高温気体の通気路と非連続に設けられている低温気体の通気路と、
前記高温気体の通気路の一部である吸熱領域で前記高温気体から熱を吸熱し、前記低温気体の通気路の一部である放熱領域で前記低温気体に熱を放熱する熱交換器と、
を備える熱回収装置であって、
前記高温気体の通気路は、
前記吸熱領域が内部に設けられる部材であって、高温チャンバを備え、
前記低温気体の通気路は、
前記放熱領域が内部に設けられる部材であって、低温チャンバと、
前記低温チャンバよりも前段に設けられており、前記低温チャンバが内部に配置され、前記低温チャンバの外壁面からの漏出熱を前記低温気体に吸熱させる副予熱室と、
前記低温チャンバよりも前段に設けられており、前記高温チャンバが内部に配置され、前記高温チャンバの外壁面からの漏出熱を前記低温気体に吸熱させる主予熱室と、を備え、
内部に前記主予熱室と前記副予熱室とを区画する隔壁が設けられ、外部に通じる高温気体吸気口と高温気体排気口と低温気体吸気口とが前記主予熱室に設けられ、外部に通じる低温気体排気口が前記副予熱室に設けられ、前記主予熱室と前記副予熱室とに通じる通気口が前記隔壁に設けられている外装体をさらに備え、
前記低温チャンバは、筒状であって、一端が前記低温気体排気口から前記外装体の外に退出して開口し、他端が前記副予熱室の内部で開口しており、
前記高温チャンバは、筒状であって、一端が前記高温気体吸気口から前記外装体の外に退出して開口し、他端が前記高温気体排気口に接続されている、
熱回収装置。
A hot gas vent,
A low-temperature gas ventilation path provided discontinuously with the high-temperature gas ventilation path;
A heat exchanger that absorbs heat from the high temperature gas in an endothermic region that is part of the hot gas vent, and radiates heat to the low temperature gas in a heat dissipating region that is part of the low temperature gas vent;
A heat recovery device comprising:
The hot gas vent is
A member in which the endothermic region is provided, comprising a high temperature chamber;
The air passage for the low temperature gas is
A member in which the heat dissipation region is provided; a low temperature chamber;
A sub-preheating chamber that is provided upstream of the low-temperature chamber, the low-temperature chamber is disposed inside, and the low-temperature gas absorbs heat leaked from an outer wall surface of the low-temperature chamber;
A main preheating chamber provided upstream of the low temperature chamber, the high temperature chamber being disposed therein, and the low temperature gas absorbing heat leaked from an outer wall surface of the high temperature chamber;
A partition that divides the main preheating chamber and the sub preheating chamber is provided inside, and a high temperature gas inlet, a high temperature gas outlet, and a low temperature gas inlet that communicate with the outside are provided in the main preheating chamber and communicate with the outside. A low-temperature gas exhaust port is provided in the sub-preheating chamber, and further includes an exterior body in which a vent hole communicating with the main pre-heating chamber and the sub-preheating chamber is provided in the partition wall,
The low temperature chamber has a cylindrical shape, and one end is opened out of the exterior body from the low temperature gas exhaust port, and the other end is opened inside the auxiliary preheating chamber,
The high temperature chamber has a cylindrical shape, and one end is opened out of the exterior body from the high temperature gas inlet, and the other end is connected to the high temperature gas outlet.
Heat recovery device.
JP2014137570A 2014-07-03 2014-07-03 Heat recovery equipment Active JP5806366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137570A JP5806366B2 (en) 2014-07-03 2014-07-03 Heat recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137570A JP5806366B2 (en) 2014-07-03 2014-07-03 Heat recovery equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007151259A Division JP5576012B2 (en) 2007-06-07 2007-06-07 Heat recovery equipment

Publications (2)

Publication Number Publication Date
JP2014209056A true JP2014209056A (en) 2014-11-06
JP5806366B2 JP5806366B2 (en) 2015-11-10

Family

ID=51903371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137570A Active JP5806366B2 (en) 2014-07-03 2014-07-03 Heat recovery equipment

Country Status (1)

Country Link
JP (1) JP5806366B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163041A (en) * 1974-11-30 1976-06-01 Daido Steel Co Ltd TEISOONNETSUKOKANKI
JPS62186117A (en) * 1986-02-07 1987-08-14 Mitsubishi Electric Corp Exhaust gas treating device for external combustion engine
JPH05111617A (en) * 1990-05-04 1993-05-07 Gea Luftkuehler Gmbh Device for catalytic oxidation of environmentally harmful component of carrier gas cooled in chemical industrial process
JPH05172325A (en) * 1991-12-25 1993-07-09 Osaka Gas Co Ltd Method of reducing nox in batch type burning furnace and device to reduce nox
JPH10300063A (en) * 1997-04-25 1998-11-13 Nippon Furnace Kogyo Kaisha Ltd Burning controlling apparatus and method therefor
JP2004344842A (en) * 2003-05-26 2004-12-09 Shin Nihon Denshi Kk Heat exchange structure and catalyst type gas oxidative decomposition apparatus using the same
JP2005221133A (en) * 2004-02-05 2005-08-18 Daido Steel Co Ltd Heat exchanger and combustion furnace device using the same
JP2005233542A (en) * 2004-02-20 2005-09-02 Nippon Electric Glass Co Ltd Exhaust heat recovery-type melting furnace
JP2008202875A (en) * 2007-02-21 2008-09-04 Future Vision:Kk Heat exchanger
JP5576012B2 (en) * 2007-06-07 2014-08-20 光洋サーモシステム株式会社 Heat recovery equipment

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5163041A (en) * 1974-11-30 1976-06-01 Daido Steel Co Ltd TEISOONNETSUKOKANKI
JPS62186117A (en) * 1986-02-07 1987-08-14 Mitsubishi Electric Corp Exhaust gas treating device for external combustion engine
JPH05111617A (en) * 1990-05-04 1993-05-07 Gea Luftkuehler Gmbh Device for catalytic oxidation of environmentally harmful component of carrier gas cooled in chemical industrial process
JPH05172325A (en) * 1991-12-25 1993-07-09 Osaka Gas Co Ltd Method of reducing nox in batch type burning furnace and device to reduce nox
JPH10300063A (en) * 1997-04-25 1998-11-13 Nippon Furnace Kogyo Kaisha Ltd Burning controlling apparatus and method therefor
JP2004344842A (en) * 2003-05-26 2004-12-09 Shin Nihon Denshi Kk Heat exchange structure and catalyst type gas oxidative decomposition apparatus using the same
JP2005221133A (en) * 2004-02-05 2005-08-18 Daido Steel Co Ltd Heat exchanger and combustion furnace device using the same
JP2005233542A (en) * 2004-02-20 2005-09-02 Nippon Electric Glass Co Ltd Exhaust heat recovery-type melting furnace
JP2008202875A (en) * 2007-02-21 2008-09-04 Future Vision:Kk Heat exchanger
JP5576012B2 (en) * 2007-06-07 2014-08-20 光洋サーモシステム株式会社 Heat recovery equipment

Also Published As

Publication number Publication date
JP5806366B2 (en) 2015-11-10

Similar Documents

Publication Publication Date Title
JP5576012B2 (en) Heat recovery equipment
JP2017533401A5 (en)
JP2010025108A (en) Heat pipe for removing thermal energy from exhaust gas
JP2010112702A (en) Generator burner
JP5576723B2 (en) Solvent recovery device
KR20170023444A (en) Dehumidifying Functional Chilly and Hot Air Blower using Thermoelement
JP2014222086A (en) Pressure buffer device and regenerative combustion type exhaust gas treatment device mounted with the same
JP2008151499A (en) Heat exchanger system and heat exchanger device
CN100422678C (en) Vapor collection method and apparatus
JP5806366B2 (en) Heat recovery equipment
TWI553276B (en) Regenerative exhaust gas purifying apparatus
JP2013234771A (en) Drying system equipped with dehumidifying mechanism for dry air
AU2017266711B2 (en) Method and device for obtaining water from ambient air
JP6687365B2 (en) VOC processing system and method
ES2773884T3 (en) Drying facility with a drying area
JP6313595B2 (en) Heat pump type drying apparatus and operation method thereof
JP6321785B2 (en) Apparatus and method for applying a material to a substrate
US20170284707A1 (en) Absorption chiller
JP2014158991A (en) Desorption device of adsorbed volatile organic compound
JP6577339B2 (en) VOC processing system and method
JP2015160183A (en) Method and device of recovering adsorbed volatile organic compound
WO2016166781A1 (en) Heat exchanger and voc treatment apparatus using same
TWI755296B (en) gas condensing unit
JP2005103378A (en) Gas concentration device
JP2005169405A (en) Laser beam machining apparatus, cooling device for laser beam machining apparatus, and method for cooling processed lens of laser beam machining apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150903

R150 Certificate of patent or registration of utility model

Ref document number: 5806366

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250