JPH0894013A - Low nox burner - Google Patents

Low nox burner

Info

Publication number
JPH0894013A
JPH0894013A JP6254567A JP25456794A JPH0894013A JP H0894013 A JPH0894013 A JP H0894013A JP 6254567 A JP6254567 A JP 6254567A JP 25456794 A JP25456794 A JP 25456794A JP H0894013 A JPH0894013 A JP H0894013A
Authority
JP
Japan
Prior art keywords
fuel
air
combustion
nozzle
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6254567A
Other languages
Japanese (ja)
Other versions
JP3254337B2 (en
Inventor
Tomohiko Nishiyama
智彦 西山
Kazuhisa Mitani
和久 三谷
Ryoichi Tanaka
良一 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Furnace Co Ltd
Toyota Motor Corp
Original Assignee
Nippon Furnace Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Furnace Co Ltd, Toyota Motor Corp filed Critical Nippon Furnace Co Ltd
Priority to JP25456794A priority Critical patent/JP3254337B2/en
Publication of JPH0894013A publication Critical patent/JPH0894013A/en
Application granted granted Critical
Publication of JP3254337B2 publication Critical patent/JP3254337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)
  • Air Supply (AREA)

Abstract

PURPOSE: To provide a burner of a flame which is compact and made effective for highly efficient reduction in NOx. CONSTITUTION: A nozzle 1 which jets high temperature air for combustion at a speed by far higher than that of a fuel is arranged parallel with a nozzle 2 for ejecting the fuel while being encircled by a refractory material 3 and an end face 5 on which a jetting port 7 of the fuel nozzle 2 is formed is jutted from an end face 4 where a jetting port 6 of an air nozzle 1 so that a part of a fuel gas is dragged in by a vortex 11 formed with a part of the air for combustion being reversed as flowing along the surface 10 of a step part to form a flame as pilot flame. On the other hand, the air for combustion drags in an exhaust gas before being mixed with the fuel gas so that the fuel is induced to mix into the flow of the air for combustion down from the end face 5 lowering the concentration of oxygen. Thus, intensely directional flame and flow of the fuel gas are formed causing a slow combustion stably.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低NOxバーナに関す
る。更に詳述すると、本発明は、蓄熱体を介した燃焼排
ガスと燃焼用空気との間の熱交換で得た高温予熱空気を
用いる蓄熱燃焼において高温域ばかりでなく従来困難で
あった中温域でのNOx低減にも効果的な低NOxバー
ナに関する。
FIELD OF THE INVENTION This invention relates to low NOx burners. More specifically, the present invention is not only in the high temperature range in the heat storage combustion using the high temperature preheated air obtained by the heat exchange between the combustion exhaust gas and the combustion air via the heat storage medium, but also in the medium temperature range which was conventionally difficult. The present invention relates to a low NOx burner which is also effective in reducing NOx.

【0002】[0002]

【従来の技術】従来、バーナにおいてNOxの低減を図
るには、例えば図5に示すような燃料二段燃焼法などが
採用されている。この燃料二段燃焼法は、バーナスロー
ト101内を流れる燃焼用空気Aに対して燃料を一次ノ
ズル102と二次ノズル103とで二段に分けて供給
し、一次燃料と全量の燃焼用空気とで一次火炎を形成す
ると共に二次燃料と一次火炎の高温燃焼ガスとの反応に
よって二次火炎を形成するようにしたものである。二次
燃料ノズル付近は酸素濃度が低いため還元反応によって
一次火炎のNOxが低減される。
2. Description of the Related Art Conventionally, in order to reduce NOx in a burner, for example, a two-stage fuel combustion method as shown in FIG. 5 has been adopted. In the fuel two-stage combustion method, the fuel is supplied to the combustion air A flowing in the burner throat 101 in two stages by the primary nozzle 102 and the secondary nozzle 103, and the primary fuel and the entire amount of combustion air are supplied. In addition to forming the primary flame, the secondary flame is formed by the reaction between the secondary fuel and the high temperature combustion gas of the primary flame. Since the oxygen concentration near the secondary fuel nozzle is low, NOx of the primary flame is reduced by the reduction reaction.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、この燃
料二段燃焼法によるバーナでは、主要火炎を形成する二
次燃料の噴射方向を燃焼用空気の流れとほぼ平行なもの
としているので低温時の二次火炎の安定性が悪く、10
00℃程度以上の高温に燃焼用空気を予熱しなければ火
炎が安定しない。そこで、低温時の二次火炎の安定性を
あげるため燃料の噴射方向を燃焼用空気の流れと垂直な
方向に近づけると、火炎は安定するものの、局部燃焼が
起こって局部的に温度が高くなりNOxが増大する。斯
様に、火炎の安定性と低NOx化とは両立し難いもので
あった。
However, in the burner based on the two-stage fuel combustion method, the injection direction of the secondary fuel forming the main flame is set to be substantially parallel to the flow of combustion air, so that the two-stage combustion at low temperature is performed. The stability of the next flame is poor and 10
The flame is not stable unless the combustion air is preheated to a high temperature of about 00 ° C or higher. Therefore, if the fuel injection direction is made closer to the direction perpendicular to the flow of combustion air in order to improve the stability of the secondary flame at low temperatures, the flame stabilizes, but local combustion occurs and the temperature rises locally. NOx increases. Thus, it was difficult to achieve both flame stability and low NOx compatibility.

【0004】したがって、700〜800℃程度の比較
的低温の中温域で定格操業するアルミ溶解炉、例えばウ
ェル式反射型溶解保持炉の熱源として使用するような場
合、あるいはその炉の立ち上げ時などの低温時には、火
炎の安定性が悪くなり、従来の燃料二段燃焼法を実施す
ることは困難である。
Therefore, when it is used as a heat source for an aluminum melting furnace which operates at a rated temperature in a relatively low temperature range of about 700 to 800 ° C., for example, a well reflection type melting and holding furnace, or when the furnace is started up. When the temperature is low, the stability of the flame becomes poor and it is difficult to carry out the conventional two-stage fuel combustion method.

【0005】また、一次燃料と二次燃料とを2つのステ
ージに分けて噴射するための配管が複雑となる等、設備
が複雑となりその施工作業も煩雑となると共に設備コス
トが高くなりかつ場所をとる問題を有している。
Further, the piping for injecting the primary fuel and the secondary fuel in two stages separately becomes complicated, the equipment becomes complicated, the construction work becomes complicated, the equipment cost becomes high, and the location is increased. Have a problem to take.

【0006】本発明は、コンパクトでかつ高効率な低N
Oxバーナを提供することを目的とする。更に、本発明
は、高温の予熱空気を用いた燃焼において高温域ばかり
でなく従来困難であった中温域でのNOx低減にも効果
的でかつ火炎の安定性が良い低NOxバーナを提供する
ことを目的とする。
The present invention is a compact and highly efficient low N
The purpose is to provide an Ox burner. Further, the present invention provides a low NOx burner that is effective not only in the high temperature range but also in the medium temperature range, which has been difficult in the past, in combustion using high-temperature preheated air, and that has good flame stability. With the goal.

【0007】[0007]

【課題を解決するための手段】かかる目的を達成するた
め、本発明は、燃焼排ガスと燃焼用空気とを交互に蓄熱
体に通過させることによって得られる高温の燃焼用空気
を用いて燃焼させる蓄熱燃焼型のバーナシステムにおい
て、燃焼用空気を燃料よりもはるかに高速で噴射するノ
ズルと燃料を噴射するノズルとを平行に配置し、かつそ
れらを耐火材で囲繞すると共に燃料ノズルの噴射口が形
成された端面と空気ノズルの噴射口が形成された端面と
の間に段差を設けて燃料ノズル側の端面を空気ノズル側
の端面よりも突出させている。ここで、燃料ノズルがパ
イロットバーナを兼用することが好ましい。
In order to achieve the above object, the present invention provides a heat storage system that burns by using high temperature combustion air obtained by alternately passing combustion exhaust gas and combustion air through a heat storage body. In a combustion-type burner system, a nozzle that injects combustion air at a much higher speed than fuel and a nozzle that injects fuel are arranged in parallel, and they are surrounded by a refractory material and the injection port of the fuel nozzle is formed. A step is provided between the formed end surface and the end surface on which the injection port of the air nozzle is formed so that the end surface on the fuel nozzle side protrudes from the end surface on the air nozzle side. Here, it is preferable that the fuel nozzle also serves as the pilot burner.

【0008】また、本発明の低NOxバーナは、燃料ノ
ズルの噴射口の空気ノズル寄りの部分が曲面あるいは斜
面から成る拡径部で形成され、噴射する燃料の一部が空
気ノズル側へ流れ出るようにしている。
Further, in the low NOx burner of the present invention, the portion of the injection port of the fuel nozzle close to the air nozzle is formed by the enlarged diameter portion formed by the curved surface or the inclined surface so that a part of the injected fuel flows out to the air nozzle side. I have to.

【0009】また、本発明の低NOxバーナは、燃料ノ
ズルの噴射口が形成された耐火材の端面と空気ノズルの
噴射口が形成された耐火材の端面との間の段差の面が空
気ノズルの噴射口に対し外接あるいは交差するようにし
ている。
Further, in the low NOx burner of the present invention, the surface of the step between the end surface of the refractory material in which the injection port of the fuel nozzle is formed and the end surface of the refractory material in which the injection port of the air nozzle is formed is the air nozzle. It is circumscribed or intersects with the injection port of.

【0010】[0010]

【作用】請求項1記載の発明の低NOxバーナの場合、
燃焼用空気が噴出する端面と燃料が噴出する端面との段
差部分の面に沿って流れる燃焼用空気の一部が、燃料が
噴出する端面の段差寄りの付近において燃焼用空気の流
れとは逆流する渦を安定的に形成し、燃料ガスの一部を
巻き込んで種火となる火炎を形成する。また、段差部分
では負圧が生じて強力な排ガス再循環が起こり、燃焼用
空気が燃料ガスと混合する前に排ガスを巻き込んで酸素
濃度を低減させている。そして、燃料が噴射される端面
より下流においては燃焼用空気の流れに燃料が誘引され
て随伴混合される。
In the case of the low NOx burner according to the first aspect of the invention,
A part of the combustion air flowing along the step surface between the end surface from which the combustion air is ejected and the end surface from which the fuel is ejected flows counter to the flow of the combustion air in the vicinity of the step on the end surface from which the fuel is ejected. A stable vortex is formed and a part of the fuel gas is engulfed to form a flame that becomes a pilot fire. Further, a negative pressure is generated in the step portion to cause a strong exhaust gas recirculation, and the exhaust gas is entrained before the combustion air is mixed with the fuel gas to reduce the oxygen concentration. Then, on the downstream side of the end surface where the fuel is injected, the fuel is attracted to the flow of the combustion air and admixed with it.

【0011】ここで、約700〜800℃あるいはそれ
以上の高温に予熱された燃焼用空気は、常温時に比べて
体積が膨張しているため、空気ノズルを細く設定するこ
とによって、あるいは低温時に適切な流速となるように
設定された細いノズルを採用することによって、常温の
燃料および空気に比べてかなりの高速度で噴出される。
例えば、20〜30m/sの流速で噴出される燃料に比
べて高温予熱空気は100m/s以上の極めて速い流速
で噴出される。このため、高速の燃焼用空気の流れによ
って燃焼排ガスが強力に巻き込まれ、酸素濃度(分圧)
を低下させる一方、燃焼用空気の流れに燃料が誘引され
て強力に随伴混合する。しかし、燃焼用空気は燃料の流
れに比べてはるかに高速であり、また燃料が噴射される
端面に達するまでに排ガスを大量に巻き込んでいること
から、燃焼反応は急激に起こらず、燃焼用空気と燃料と
が接触する表面層が燃焼する緩慢燃焼を起こす。しか
も、燃焼用空気が高流速でも、燃料噴流と空気噴流との
間に発生する空気の渦に起因する種火と一次火炎によっ
て失火せずに安定な火炎を維持できる。特に請求項2の
発明の場合、安定的な一次火炎が燃料噴流に沿って形成
され燃料と共に空気噴流側へ誘引されるため、より安定
な火炎を形成できる。更に、燃焼反応中も、燃焼用空気
の流れが速いため、排ガスを大量に巻き込みながら燃焼
反応が継続され、より緩慢燃焼を促進する。したがっ
て、高速で噴出される高温の燃焼用空気とこれに誘引さ
れる比較的低速の燃料ガスとが互いに接触する表面層で
混合する緩慢燃焼を起こしながら指向性の強い火炎及び
燃焼ガス流を形成する。
Here, since the volume of the combustion air preheated to a high temperature of about 700 to 800 ° C. or higher expands as compared with that at the normal temperature, it is suitable by setting the air nozzle to be thin or at a low temperature. By adopting a thin nozzle set so as to have a high flow velocity, it is ejected at a considerably high velocity as compared with fuel and air at room temperature.
For example, the high temperature preheated air is jetted at an extremely high flow velocity of 100 m / s or more as compared with the fuel jetted at a flow velocity of 20 to 30 m / s. Therefore, the combustion exhaust gas is strongly entrained by the high-speed flow of combustion air, and the oxygen concentration (partial pressure)
On the other hand, the fuel is attracted to the flow of the combustion air to strongly mix with it. However, the combustion air is much faster than the flow of fuel, and since a large amount of exhaust gas is entrained by the time the fuel reaches the end face where it is injected, the combustion reaction does not occur rapidly and the combustion air The surface layer where the fuel and the fuel come into contact with each other burns, causing slow combustion. Moreover, even if the combustion air has a high velocity, it is possible to maintain a stable flame without misfire due to the seed flame and the primary flame caused by the vortex of the air generated between the fuel jet and the air jet. Particularly, in the case of the invention of claim 2, since a stable primary flame is formed along the fuel jet and is attracted to the air jet side together with the fuel, a more stable flame can be formed. Further, since the flow of the combustion air is fast during the combustion reaction, the combustion reaction is continued while entraining a large amount of exhaust gas, which promotes slower combustion. Therefore, high-temperature combustion air ejected at high speed and relatively low-speed fuel gas attracted thereto are mixed in the surface layers in contact with each other, causing slow combustion and forming a flame and combustion gas flow with strong directivity. To do.

【0012】また、炉の立ち上げ時などのように燃焼用
空気が低温の場合には、燃焼用空気の流速が遅くなり排
ガスの巻き込み量が減少するが、燃焼用空気の温度が低
いためもともと発生するNOxが少ない。逆に酸素濃度
が高めになるため燃料ノズルの噴射口の近くの燃料噴流
と燃焼用空気噴流との間に安定的な種火が吹き消えるこ
となく形成され火炎が安定する。
Further, when the combustion air is at a low temperature such as when starting up the furnace, the flow velocity of the combustion air is slowed and the amount of exhaust gas entrained is reduced, but the temperature of the combustion air is originally low. Little NOx is generated. On the contrary, since the oxygen concentration becomes high, a stable pilot fire is not blown out between the fuel jet near the injection port of the fuel nozzle and the combustion air jet, and the flame becomes stable.

【0013】依って、高温時には低NOxでありなが
ら、かつ低温時の火炎の安定性にも優れるバーナとな
る。
Therefore, the burner has a low NOx at a high temperature and an excellent flame stability at a low temperature.

【0014】また、請求項3記載の発明の場合、燃料が
空気側に流れ易くなり、空気の流れに随伴される燃料ガ
スの量および段差部分寄りの燃料噴射口付近に起こる種
火への燃料補給量が増加する。
Further, in the case of the third aspect of the invention, the fuel easily flows to the air side, the amount of the fuel gas entrained in the air flow and the fuel for the pilot fire that occurs near the fuel injection port near the step portion. Supply amount increases.

【0015】更に、請求項4記載の発明は、燃焼用空気
の噴射口の周りあるいは噴射口に沿って段差部分が形成
されているため、この段差部分がガイドとなって燃焼用
空気の噴射方向を強制し、指向性の強い燃焼用空気の流
れを形成できる。このため、より遠くまで燃料を随伴さ
せて指向性の強い火炎及び燃焼ガス流を形成できる。ま
た、段差部分では負圧が生じて強力な炉内排ガス再循環
を一層強力なものとできる。
Further, in the invention according to claim 4, since the step portion is formed around or along the injection port of the combustion air, the step portion serves as a guide and the injection direction of the combustion air. Can be forced to form a highly directional combustion air flow. Therefore, the fuel and the combustion gas flow having a strong directivity can be formed by entraining the fuel further away. Further, a negative pressure is generated in the step portion, so that the strong exhaust gas recirculation in the furnace can be further strengthened.

【0016】[0016]

【実施例】以下、本発明の構成を図面に示す実施例に基
づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure of the present invention will be described in detail below with reference to the embodiments shown in the drawings.

【0017】図1に本発明の低NOxバーナの一実施例
を示す。この低NOxバーナは、蓄熱体と燃焼排ガスと
を利用して高温に予熱された燃焼用空気の流れと平行に
燃料たるガスを噴射するバーナであって、高温に予熱さ
れた燃焼用空気を燃料よりもはるかに高速で噴出させる
空気ノズル1と燃料(ガス)ノズル2とが耐火材のブロ
ック3を貫通するように形成され、耐火材のブロック3
の段差がつけられた2つの端面4,5に各ノズルの噴射
口6,7が穿孔されている。ここで、燃料ノズル2の周
りには一次空気を供給する流路を構成する配管8が埋設
され、燃料ノズル2の周りに二次空気の約10%程度の
一次空気が流されている。燃料ノズル2の先端部分には
主たる噴射口7の他に周りの一次空気流路に向かって燃
料の一部を噴射する噴射口9が開口され、燃料の一部を
パイロット燃料として配管8の周壁に衝突させて一次空
気の流路内に広がらせて良好な混合状態を得るように設
けられている。そこに、図示していないイグナイタが設
置されており、燃焼中は安定的な一次火炎12が形成で
きるように設けられている。配管系は二次空気として使
用される大部分の燃焼用空気を流す主配管・空気ノズル
1と、燃料及び一次空気を流す燃料配管(一次空気配管
8と燃料ノズル2)のみで構成され、非常にコンパクト
なシステムである。
FIG. 1 shows an embodiment of the low NOx burner of the present invention. This low NOx burner is a burner that injects a gas that is fuel in parallel with the flow of combustion air that has been preheated to a high temperature by using a heat storage body and combustion exhaust gas, and burns the combustion air that has been preheated to a high temperature. An air nozzle 1 and a fuel (gas) nozzle 2 for ejecting at a much higher speed than the refractory block 3 are formed so as to penetrate the refractory block 3.
The injection ports 6 and 7 of each nozzle are bored in the two end surfaces 4 and 5 having the steps. Here, a pipe 8 forming a flow path for supplying primary air is buried around the fuel nozzle 2, and about 10% of the secondary air is flowed around the fuel nozzle 2. In addition to the main injection port 7, an injection port 9 for injecting a part of the fuel toward the surrounding primary air flow path is opened at the tip portion of the fuel nozzle 2, and the peripheral wall of the pipe 8 uses a part of the fuel as a pilot fuel. Are provided so as to collide with and spread in the flow path of the primary air to obtain a good mixed state. An igniter (not shown) is installed there, and is provided so that a stable primary flame 12 can be formed during combustion. The piping system is composed of only the main piping and air nozzle 1 for flowing most of the combustion air used as secondary air and the fuel piping (primary air piping 8 and fuel nozzle 2) for flowing fuel and primary air. It is a compact system.

【0018】また、燃料噴射口7と空気噴射口6とは同
一平面に形成されず、段差がつけられた異なる面に設け
られかつ空気噴射口6よりも下流側に燃料噴射口7が配
置されている。即ち、燃料噴出口7は空気噴射口6を設
けた耐火材のブロックの端面(以下、基準面という)4
から突出させた端面(以下、保炎面と呼ぶ)5に設置さ
れる。この保炎面5の燃料噴出口7より安定的な一次火
炎12及び燃料Fが噴出される。燃焼用空気は耐火材ブ
ロック3の中央より高速で噴出される。この時、保炎面
5の段差部分の近傍において燃焼用空気の流れに対し逆
流する渦11が安定的に形成でき、燃料・ガスの一部と
急速混合して保炎領域を形成する。したがって、高温時
はいうまでもなく、低温時も安定的な種火が吹き消える
ことなく形成できる。空気ノズル1と燃料ノズル2を平
行に配置して保持する耐火材のブロック3は、本実施例
の場合、一体に成形した単一ブロックで構成されている
が、場合によっては空気ノズル1を保持する部分と燃料
ノズル2を保持する部分とを別々に成形したものを組み
合わせて使用するようにしても良い。また、本実施例の
場合、空気ノズル1は配管によって構成されておらず、
耐火材ブロック3にあけられた孔及び耐火材ブロック3
を内装するバーナボディによって構成されている。勿
論、空気ノズル1は配管によって構成しても良い。
Further, the fuel injection port 7 and the air injection port 6 are not formed on the same plane but are provided on different surfaces with steps and the fuel injection port 7 is arranged on the downstream side of the air injection port 6. ing. That is, the fuel injection port 7 is an end surface (hereinafter referred to as a reference surface) 4 of a block of refractory material provided with the air injection port 6.
It is installed on an end surface (hereinafter referred to as a flame holding surface) 5 which is projected from the surface. The stable primary flame 12 and the fuel F are ejected from the fuel ejection port 7 of the flame holding surface 5. Combustion air is ejected from the center of the refractory material block 3 at high speed. At this time, the vortex 11 which flows counter to the flow of the combustion air can be stably formed in the vicinity of the stepped portion of the flame holding surface 5, and is rapidly mixed with a part of the fuel / gas to form the flame holding region. Therefore, it is possible to form a stable pilot fire not to blow out at low temperature, let alone at high temperature. The refractory block 3 for holding the air nozzles 1 and the fuel nozzles 2 in parallel is constituted by a single block integrally molded in the case of the present embodiment, but in some cases, the air nozzles 1 are held. It is also possible to use a combination of a molded portion and a portion that holds the fuel nozzle 2 separately. Further, in the case of the present embodiment, the air nozzle 1 is not composed of piping,
Holes formed in the refractory material block 3 and the refractory material block 3
It is composed of a burner body for interior. Of course, the air nozzle 1 may be constructed by piping.

【0019】更に、上述の構造を採る場合、耐火材ブロ
ック3には強度上の問題で空気ノズル1と燃料ノズル2
との間にある程度の距離を必要とする。このため、噴射
直後の領域では燃料が高速の空気流に誘引され難い傾向
がある。そこで、燃料噴射口7の空気ノズル1寄りの部
分13の形状を、図1に示すように、空気ノズル1側へ
向かう曲面形状にすることが好ましい。このことによっ
て、燃料が燃焼用空気の流れ側に流れ出易くなる。この
ため、より燃料の随伴混合能力が高まり、COやHCな
どの遊離未燃分の発生を防止することができる。また、
燃焼用空気の逆流する渦11への燃料の供給も良好とな
って一層安定な種火が形成できる。この形状に関して
は、曲面に限定されず、このような機能を満たす構造で
あればよい。例えば斜面でも良い。
Further, in the case of adopting the above-mentioned structure, the refractory block 3 has an air nozzle 1 and a fuel nozzle 2 due to strength problems.
Requires some distance between and. Therefore, the fuel tends to be difficult to be attracted to the high-speed air flow in the region immediately after the injection. Therefore, it is preferable that the shape of the portion 13 of the fuel injection port 7 near the air nozzle 1 has a curved surface shape toward the air nozzle 1 side, as shown in FIG. As a result, the fuel easily flows out to the flow side of the combustion air. Therefore, the accompanying mixing capability of fuel is further enhanced, and the generation of free unburned components such as CO and HC can be prevented. Also,
The fuel is well supplied to the vortex 11 in which the combustion air flows backward, and a more stable pilot fire can be formed. This shape is not limited to a curved surface, and any structure that fulfills such a function may be used. For example, it may be a slope.

【0020】また、空気ノズル1は保炎面5と基準面4
との境界の段差部分に設置されている。そして、保炎面
5寄りの部分には燃料を随伴混合させる機能を持たせ、
基準面4寄りの部分には排ガスを再循環させる機能をも
たせている。即ち、図1の(B)に示すように、保炎面
5と基準面4との段差部分の面10が空気ノズル1の噴
射口6を半割にするように噴射口4の中央を横切るよう
に配置された場合、随伴混合機能と再循環機能との双方
を両立させ得る。一方、図2の(A)に示すように、空
気ノズル1の噴射口4に段差部分の面10が外接するよ
うに配置する場合には、図1の(B)に示す場合に比べ
て排ガスを巻き込む面積が広くなるため、燃焼用空気の
酸素濃度を低下させる機能に優れることとなる。また、
図2の(B)に示すように段差部分の面10が交差する
ように配置して噴射口4のほとんどを包み込むようにす
る場合には、噴射された空気が耐火材ブロック3で保炎
面5まで拘束されている部分が多いため、より指向性の
強い燃焼用空気の流れが保炎面5より噴出され、燃焼ガ
スの随伴混合能力に優れることとなる。尚、図2には2
つの例を示しているが、これに限ったものでない。
The air nozzle 1 has a flame holding surface 5 and a reference surface 4.
It is installed at the step of the boundary with. Then, the portion near the flame holding surface 5 has a function of admixing the fuel,
The portion near the reference surface 4 has a function of recirculating exhaust gas. That is, as shown in FIG. 1B, the surface 10 of the step portion between the flame holding surface 5 and the reference surface 4 crosses the center of the injection port 4 so as to divide the injection port 6 of the air nozzle 1 in half. If so arranged, both the admixture mixing function and the recirculation function can be made compatible. On the other hand, as shown in FIG. 2 (A), in the case where the surface 10 of the step portion is circumscribed to the injection port 4 of the air nozzle 1, the exhaust gas is more exhausted than in the case shown in FIG. Since the area in which the air is entrained becomes large, the function of lowering the oxygen concentration of the combustion air is excellent. Also,
As shown in FIG. 2B, when the surfaces 10 of the stepped portions are arranged so as to cross each other so as to cover most of the injection ports 4, the injected air is the flame-retardant surface of the refractory material block 3. Since there are many portions that are constrained to 5, the flow of combustion air having a stronger directivity is ejected from the flame holding surface 5, and the admixture mixing capability of the combustion gas is excellent. 2 in FIG.
Two examples are given, but not limited to.

【0021】尚、燃焼用空気は、燃焼排ガスを利用して
例えば700〜800℃あるいはそれ以上の高温に予熱
されたものが噴射される。例えば、燃焼排ガスと燃焼用
空気とを交互に蓄熱体に通過させる直接熱交換によっ
て、ほぼ燃焼排ガス程度に近い温度にまで予熱される。
ここで、蓄熱体は図示していないが、バーナボディある
いはそれに接続されたダクトに内装されたり、若しくは
配管によって接続されている。
The combustion air is preheated to a high temperature of, for example, 700 to 800 ° C. or higher by using combustion exhaust gas and is injected. For example, by direct heat exchange in which combustion exhaust gas and combustion air are alternately passed through the heat storage body, it is preheated to a temperature substantially close to that of the combustion exhaust gas.
Here, although the heat storage body is not shown, it is installed in a burner body or a duct connected to it, or is connected by a pipe.

【0022】このように構成された図1に示す低NOx
バーナによると、燃焼用空気が高温かつ高流速で噴出し
た場合、保炎面5から噴出する高流速で指向性のある燃
焼用空気は比較的低速で平行に噴射される燃料を早期に
強力に誘引して随伴させ、混合しながら遠くまで飛ぶ。
しかし、燃焼用空気流速は燃料流速に比べてはるかに高
速、例えば100m/s以上と非常に高速であることか
ら、また保炎面5に達するまでに排ガスを大量に巻き込
んでいることから、燃焼反応は急激には起こらず、緩慢
に燃焼反応は進行する。更に、空気流速が速いため、燃
焼反応中にも排ガスを大量に巻き込みながら燃焼反応が
行われるため、より緩慢燃焼を促進する。このことは、
図4に示す燃焼用空気の流速とN0xの発生量との関係
を求めた実験結果よりも明らかであるが、燃焼用空気の
噴射速度が高くなる程NOxの量が低下しかつその効果
も燃焼量が大きくなるほど(高温となるほど)顕著なも
のとなった。したがって、本実施例のバーナによると、
比較的均一でかつ長いヒートフラックスが形成できかつ
低NOx化が実現できる。しかも、保炎面5の段差部分
寄りの領域に起こる燃焼用空気の逆流に燃料の一部が誘
引されて拡散混合し、種火となるような安定した火炎を
形成するため高温時は勿論のこと、低温時から安定に火
炎が形成される。
The low NOx shown in FIG. 1 thus constructed.
According to the burner, when the combustion air is ejected at a high temperature and a high flow rate, the high-velocity and directional combustion air ejected from the flame holding surface 5 strengthens the fuel injected in parallel at a relatively low speed early. Attract and let it accompany, fly far while mixing.
However, since the combustion air flow velocity is much higher than the fuel flow velocity, for example, 100 m / s or more, which is extremely high, and because a large amount of exhaust gas is entrained before reaching the flame holding surface 5, combustion is performed. The reaction does not occur rapidly, and the combustion reaction proceeds slowly. Further, since the air velocity is high, the combustion reaction is carried out while entraining a large amount of exhaust gas during the combustion reaction, which promotes slower combustion. This is
As is clearer from the experimental results shown in FIG. 4 in which the relationship between the flow velocity of combustion air and the amount of NOx produced is obtained, the higher the injection speed of the combustion air, the lower the amount of NOx and its effect. It became more remarkable as the amount increased (higher temperature). Therefore, according to the burner of this embodiment,
A relatively uniform and long heat flux can be formed and NOx reduction can be realized. Moreover, since a part of the fuel is attracted to the backflow of the combustion air that occurs in the region near the stepped portion of the flame holding surface 5 and diffused and mixed to form a stable flame that becomes a pilot flame, it is not only at high temperature. That is, a flame is stably formed even at a low temperature.

【0023】以上のように構成された本発明の低NOx
バーナは、非鉄金属溶湯保持炉の熱源例えば反射炉の熱
源として利用することができる。
The low NOx of the present invention configured as described above
The burner can be used as a heat source of a non-ferrous metal molten metal holding furnace, for example, a heat source of a reverberatory furnace.

【0024】低NOxバーナは、本実施例の場合、交互
に燃焼する2基のバーナ21,22を1組として1つの
蓄熱燃焼型のバーナシステム20が構成している。蓄熱
型バーナシステム20は、反射炉の加熱室のアルミ溶湯
の液面より上の空間部分に向けて火炎・燃焼ガスを形成
するように炉壁に配置されている。尚、本実施例では1
システムの蓄熱型バーナシステム20を設けているが、
2以上のシステムを装備しても良い。
In the present embodiment, the low NOx burner is composed of one burner system 20 of the heat storage combustion type, with two burners 21 and 22 that burn alternately as one set. The heat storage type burner system 20 is arranged on the furnace wall so as to form a flame / combustion gas toward a space above the liquid level of the molten aluminum in the heating chamber of the reverberatory furnace. In this embodiment, 1
The heat storage type burner system 20 of the system is provided,
You may equip two or more systems.

【0025】蓄熱燃焼型バーナシステム20はその構造
及び燃焼方式に特に限定を受けるものではないが、本実
施例では図3に示すように蓄熱体7をバーナボディ14
に内蔵して各バーナ21,22と蓄熱体23,23を一
体化したものを2基組合せ、交互に燃焼させる一方、燃
焼させていない停止中のバーナ及び蓄熱体を通して燃焼
排ガスを排出し得るように設けられている。2基のバー
ナ21,22には、燃焼用空気を供給する給気系24と
燃焼ガスを排出する排気系25とが四方弁26の介在に
よって選択的に接続可能とされ、一方のバーナ21(あ
るいは22)には蓄熱体23を通して燃焼用空気の供給
を図る一方、他方のバーナ22(あるいは21)からは
蓄熱体23を通して燃焼ガスの排気を図るように設けら
れている。燃焼用空気は例えば図示していない押し込み
ファン等によって供給され、燃焼排ガスは例えば図示し
ていない誘引ファンなどの排気手段によって炉内から吸
引され大気中に排出される。また、燃焼用空気の一部は
蓄熱体23を通過させずに一次空気として燃料と共に配
管8,2から噴射される。また、燃料供給系は、図示し
ていないが例えば三方弁を介して選択的にいずれか一方
のバーナ21,22に交互に接続され燃料を供給する。
The heat storage combustion type burner system 20 is not particularly limited in its structure and combustion method, but in this embodiment, the heat storage body 7 is connected to the burner body 14 as shown in FIG.
In order to be able to discharge the combustion exhaust gas through the burner and the heat storage body which are not burned and are in a stopped state, two burners 21 and 22 integrated with the heat storage body 23, 23 are integrated and burned alternately. It is provided in. An air supply system 24 for supplying combustion air and an exhaust system 25 for discharging combustion gas can be selectively connected to the two burners 21, 22 by interposing a four-way valve 26, and one burner 21 ( Alternatively, 22) is provided so that combustion air is supplied through the heat storage body 23, while combustion gas is exhausted from the other burner 22 (or 21) through the heat storage body 23. Combustion air is supplied by, for example, a push-in fan or the like (not shown), and combustion exhaust gas is sucked from the furnace by exhaust means such as an induction fan (not shown) and discharged into the atmosphere. Further, a part of the combustion air is injected through the pipes 8 and 2 together with the fuel as primary air without passing through the heat storage body 23. Further, although not shown, the fuel supply system is selectively connected to either one of the burners 21 and 22 alternately via a three-way valve to supply the fuel.

【0026】ここで、蓄熱体23,23としては比較的
圧力損失が低い割に熱容量が大きく耐久性の高い材料、
例えばコージライトやムライトなどのセラミックスで成
形されたハニカム形状のセル孔を多数有する筒体の使用
が好ましい。この場合、燃焼排ガスから熱を回収する際
に排ガスが酸露点温度以下に低下してもセラミックス内
に燃料中のイオウ分やその化学変化物質が捕捉され、下
流の排気系のダクトなどを低温腐食させることがない。
勿論、特にこれに限定されるものではなくセラミックボ
ールやナゲットなどの他の蓄熱体を使用しても良い。
Here, as the heat storage bodies 23, 23, a material having a large heat capacity and a high durability despite a relatively low pressure loss,
For example, it is preferable to use a tubular body having a large number of honeycomb-shaped cell holes formed of ceramics such as cordierite and mullite. In this case, when heat is recovered from the combustion exhaust gas, even if the exhaust gas falls below the acid dew point temperature, the sulfur content in the fuel and its chemically modified substances are captured in the ceramics, and the exhaust system ducts, etc. located downstream are subject to low-temperature corrosion. There is nothing to do.
Of course, it is not particularly limited to this, and other heat storage bodies such as ceramic balls and nuggets may be used.

【0027】以上のように構成されたウェル式反射型溶
解保持炉によれば、700〜800℃程度の中温域で操
業されるが、段差面10の付近の保炎面5に燃焼用空気
の逆流に起因する種火として安定な火炎が形成されると
共に燃焼用空気の高速な流れによって巻き込まれる排ガ
スによって酸素濃度が低減されつつ燃焼用空気に誘引さ
れる燃料が徐々に混合されて緩慢燃焼を起こす。このた
め、火炎も安定するしNOxも増えない。
According to the well-type reflection-type melting and holding furnace constructed as described above, it is operated in a medium temperature range of about 700 to 800 ° C., but the flame holding surface 5 near the step surface 10 is filled with the combustion air. A stable flame is formed as a pilot fire due to the backflow, and the exhaust gas entrained by the high-speed flow of the combustion air reduces the oxygen concentration and gradually mixes the fuel attracted to the combustion air to cause slow combustion. Wake up. Therefore, the flame is stable and NOx does not increase.

【0028】一方、停止中のバーナからは燃焼排ガスが
空気ノズル1および蓄熱体23を通って排気系25を通
って排気される。即ち、一対のバーナ21,22は四方
弁26の切替えによって排気系25と給気系24とに交
互に接続され、燃焼していない時には燃焼排ガスの排出
路として利用される。アルミ溶湯は火炎及び燃焼ガスの
輻射熱によって加熱される。ここで、バーナ21,22
に供給される燃焼用空気は蓄熱体23との短時間の直接
接触によって予熱されてから供給されるため排ガス温度
に近い高温である。したがって、少ない燃料でも安定燃
焼し高温の燃焼ガスが得られる。しかも、燃焼量の増減
に伴って燃焼用空気の温度も即座に変化するので湯温の
温度調整の応答性が良い。
On the other hand, the combustion exhaust gas is exhausted from the stopped burner through the air nozzle 1 and the heat storage body 23 and the exhaust system 25. That is, the pair of burners 21, 22 are alternately connected to the exhaust system 25 and the air supply system 24 by switching the four-way valve 26, and are used as an exhaust passage for combustion exhaust gas when not combusting. The molten aluminum is heated by the flame and the radiant heat of the combustion gas. Here, the burners 21, 22
The combustion air to be supplied to is heated after being preheated by direct contact with the heat storage body 23 for a short time, and is thus supplied, so that it has a high temperature close to the exhaust gas temperature. Therefore, a stable combustion is performed with a small amount of fuel, and high-temperature combustion gas can be obtained. Moreover, since the temperature of the combustion air also changes immediately as the amount of combustion increases or decreases, the response of the temperature adjustment of the hot water temperature is good.

【0029】尚、燃焼と排気の切替えは例えば10秒〜
2分間隔、好ましくは約1分以内、最も好ましくは10
〜40秒程度の極めて短い間隔で行われる。この場合、
高い温度効率で熱交換される。また、蓄熱体7を経由し
て排出される燃焼ガスが所定の温度例えば200℃程度
となったときに切替は行われるようにしても良い。この
場合、火炎位置が頻繁に移り変わるために燃焼室内での
ヒートパターンをより均一化でき、加熱むらや保温むら
が少なくなる。このバーナの効果及び非定在火炎の効果
から、炉内温度の均一化が容易に達成できる。よって、
炉内温度設定を上げることが可能となり、輻射伝熱量が
大幅に向上するため。したがって、熱効率が向上し、燃
費低減にも結びつく。
The switching between combustion and exhaust is, for example, 10 seconds-
2 minute intervals, preferably within about 1 minute, most preferably 10 minutes
It is performed at an extremely short interval of about 40 seconds. in this case,
Heat is exchanged with high temperature efficiency. The switching may be performed when the combustion gas discharged via the heat storage body 7 reaches a predetermined temperature, for example, about 200 ° C. In this case, since the flame position changes frequently, the heat pattern in the combustion chamber can be made more uniform, and uneven heating and uneven heating can be reduced. Due to the effect of the burner and the effect of the non-stationary flame, the temperature inside the furnace can be easily made uniform. Therefore,
Because it is possible to raise the temperature setting in the furnace, and the amount of radiant heat transfer is greatly improved. Therefore, the thermal efficiency is improved and the fuel consumption is also reduced.

【0030】本実施例のバーナによると、蓄熱体23,
23、耐火材ブロック3とがバーナボディ27に組み込
まれて一体となっており、かつ配管の数も少ないため、
従来に比べてコンパクトになり、アプリケーション自由
度が向上し、製作施工上のコストメリットが大きくな
る。したがって、大規模新設熱設備はいうまでもなく、
従来投資回収が困難とされてきた小規模な熱設備の省エ
ネ改造においても投資回収の問題を回避できる。
According to the burner of this embodiment, the heat storage body 23,
23 and the refractory block 3 are integrated into the burner body 27 and integrated, and the number of pipes is small,
It is more compact than the conventional one, the degree of freedom of application is improved, and the cost merit in manufacturing and construction is increased. Therefore, not to mention large-scale new heat equipment
The problem of investment recovery can be avoided even in small-scale energy-saving remodeling of heat equipment, which has been considered difficult to recover investment.

【0031】尚、上述の実施例は本発明の好適な実施の
一例ではあるがこれに限定されるものではなく本発明の
要旨を逸脱しない範囲において種々変形実施可能であ
る。例えば、本実施例では本発明の低NOxバーナを反
射炉に適用した場合について主に説明したが、これに特
に限定されず、直接加熱、間接加熱を問わず熱設備全般
に応用できる。また、本実施例では高温の燃焼用空気を
バーナに連結ないし内装した蓄熱体を利用した交番燃焼
によって得る場合について主に説明したがこれに特に限
定されるものではなく、例えば燃焼用空気供給系と排気
系に対し蓄熱体を相対的に回転させることによって、あ
るいは流路切替手段を用いて蓄熱体に対する流体の流れ
方向を切り替えることなどによって、高温の燃焼排ガス
の排熱を利用して燃焼用空気を高温に予熱したものを単
一のバーナに連続的に供給し、連続燃焼させるようにし
ても良い。また、本実施例では燃料ノズル2の周りに一
次空気を流す配管8を設けて噴射口付近にパイロットバ
ーナを形成しているが、これに特に限定されず、場合に
よっては燃料ノズルとは別個に燃料ノズルの噴射口近傍
にパイロットバーナを設置するようにしても良い。更
に、本実施例ではガス燃料を用いる場合について主に説
明したがこれに特に限定されず、例えばオイルなどの液
体燃料を使用することも可能である。
It should be noted that the above-described embodiment is an example of a preferred embodiment of the present invention, but the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention. For example, although the present embodiment has mainly described the case where the low NOx burner of the present invention is applied to a reverberatory furnace, the present invention is not particularly limited to this and can be applied to general thermal equipment regardless of direct heating or indirect heating. Further, in the present embodiment, a case has been mainly described in which high temperature combustion air is obtained by alternating combustion using a heat storage body connected to or incorporated in the burner, but the present invention is not particularly limited to this, for example, a combustion air supply system. And the exhaust system by rotating the heat storage body relative to the exhaust system, or by switching the flow direction of the fluid with respect to the heat storage body by using the flow path switching means, etc. The air preheated to a high temperature may be continuously supplied to a single burner for continuous combustion. Further, in the present embodiment, the pipe 8 for flowing the primary air is provided around the fuel nozzle 2 to form the pilot burner in the vicinity of the injection port, but the invention is not particularly limited to this, and in some cases, it may be separated from the fuel nozzle. A pilot burner may be installed near the injection port of the fuel nozzle. Further, although the case where the gas fuel is used is mainly described in the present embodiment, the present invention is not particularly limited to this, and it is also possible to use liquid fuel such as oil.

【0032】[0032]

【発明の効果】以上の説明より明らかなように、請求項
1記載の低NOxバーナの場合、燃焼用空気が噴出する
端面と燃料が噴出する端面との段差部分の面に沿って流
れる燃焼用空気の一部が、燃料が噴出する端面の段差寄
りの付近において燃焼用空気の流れとは逆流する渦を安
定的に形成し、燃料ガスの一部を巻き込んで種火となる
火炎を形成する一方、段差部分では負圧が生じて強力な
排ガス再循環が起こり、燃焼用空気が燃料ガスと混合す
る前に排ガスを巻き込んで酸素濃度を低減させ、更に燃
料が噴射される端面より下流においては燃焼用空気の流
れに燃料が誘引されて随伴混合されるので、安定的に緩
慢燃焼を起こしながら指向性の強い火炎及び燃焼ガス流
を形成する。このため、高温の燃焼用空気を使用した場
合には、火炎の安定性が高いのは勿論のこと、NOxの
発生を抑制しつつ指向性の強い火炎及び燃焼ガス流を形
成できるので、広い空間で均一なヒートフラックスで燃
焼させることができる。しかも、炉の立ち上げ時などの
ように燃焼用空気が低温の場合においても、燃焼用空気
の流速が遅くなることによって燃焼排ガスの巻き込み量
が減少するが、燃焼用空気の温度が低いためもともと発
生するNOxが少ないし、逆に酸素濃度が高めになるこ
とによって燃料噴流と燃焼用空気噴流との間に安定的な
種火が吹き消えることなく形成されて火炎が安定する。
更に、請求項2の発明の場合、パイロットバーナを燃料
ノズルに兼用させる簡単な構造によって安定な一次火炎
を形成しこれを燃料と共に燃焼用空気の流れ側へ誘引さ
せ得るので、燃焼用空気と燃料とを離して噴射させても
安定な火炎形成が可能となり、燃焼排ガス巻き込み量を
増やしてより低NOx化できる。
As is apparent from the above description, in the case of the low NOx burner according to the first aspect of the present invention, the combustion for flowing along the surface of the step between the end surface from which the combustion air is ejected and the end surface from which the fuel is ejected. A part of the air stably forms a vortex that flows counter to the flow of the combustion air in the vicinity of the step on the end face from which fuel is ejected, and a part of the fuel gas is entrained to form a flame that becomes a pilot fire. On the other hand, a negative pressure is generated in the step portion and strong exhaust gas recirculation occurs, and the exhaust gas is trapped before the combustion air mixes with the fuel gas to reduce the oxygen concentration, and further downstream from the end surface where the fuel is injected, Since the fuel is attracted to and mixed with the flow of the combustion air, a flame and a combustion gas flow having a strong directivity are formed while causing stable and slow combustion. Therefore, when high-temperature combustion air is used, not only the flame stability is high, but also a highly directional flame and a combustion gas flow can be formed while suppressing the generation of NOx, so that a large space can be formed. It can be burned with a uniform heat flux. Moreover, even when the combustion air is at a low temperature, such as when starting up the furnace, the flow rate of the combustion air slows down, which reduces the amount of flue gas entrained, but since the temperature of the combustion air is low, The generated NOx is small, and conversely, the oxygen concentration is high, so that a stable pilot fire is formed between the fuel jet and the combustion air jet without being extinguished, and the flame is stabilized.
Further, in the case of the invention of claim 2, a stable primary flame can be formed by a simple structure in which the pilot burner is also used as the fuel nozzle and the primary flame can be attracted to the flow side of the combustion air together with the fuel. A stable flame can be formed even when the fuel cells are separated and injected, and the amount of flue gas exhausted can be increased to further reduce NOx.

【0033】これは、比較的高温例えば1000℃以上
で操業する鉄系加熱炉などでの昇温過程における低NO
x化にも有効ではあるが、特に従来困難とされていた比
較的低温で操業する非鉄金属溶解炉などでの低NOx化
と火炎の安定に有効である。
This is because low NO in the temperature rising process in an iron-based heating furnace operating at a relatively high temperature, for example, 1000 ° C. or higher.
Although it is effective for reducing x, it is particularly effective for reducing NOx and stabilizing flames in a non-ferrous metal melting furnace that operates at a relatively low temperature, which has been considered difficult in the past.

【0034】また、請求項3記載の発明の場合、燃料が
空気側に流れ易くなり、空気の流れに随伴される燃料ガ
スの量および段差部分寄りの燃料噴射口付近に起こる種
火への燃料補給量が増加する。このため、より完全燃焼
を促進してCOやHC等の遊離未燃分の発生を防止でき
ると共に段差部分に形成される種火が安定して一層火炎
安定性を高め得る。
Further, in the case of the third aspect of the invention, the fuel easily flows to the air side, the amount of the fuel gas accompanying the air flow and the fuel to the pilot fire that occurs near the fuel injection port near the step portion. Supply amount increases. For this reason, it is possible to further promote complete combustion, prevent the generation of free unburned components such as CO and HC, and stabilize the pilot fire formed in the step portion to further improve flame stability.

【0035】更に、請求項4記載の発明の場合、燃焼用
空気の噴射口の周りあるいは噴射口に沿って段差部分が
形成されているため、この段差部分がガイドとなって燃
焼用空気の噴射方向を強制して指向性の強い燃焼用空気
の流れを形成できると共に段差部分に負圧を発生させて
排ガス再循環を起こさせる。このため、より遠くまで燃
料を随伴させて指向性の強い火炎及び燃焼ガス流を形成
できると共に段差部分では負圧が生じて強力な炉内排ガ
ス再循環を一層強力なものとできる。そして、段差面が
空気ノズルの噴射口に対し外接する場合には、排ガス巻
き込む面積が広いため、燃焼用空気の酸素濃度を低下さ
せる機能に優れ、また段差面が空気ノズルの噴射口をほ
とんど包むように交差する場合には空気ノズルが耐火材
ブロックで保炎面先端まで拘束されている部分が多くな
りより指向性の強い空気噴流が保炎面より噴出されるの
で、燃焼ガスの随伴混合能力に優れる。
Further, in the case of the present invention as defined in claim 4, since the step portion is formed around or along the injection port of the combustion air, the step portion serves as a guide to inject the combustion air. The direction of the combustion air can be forced by forming a strong direction, and negative pressure is generated in the step portion to cause exhaust gas recirculation. For this reason, the flame and the combustion gas flow having a strong directivity can be formed by entraining the fuel further to the farther side, and the negative pressure is generated in the step portion, so that the strong exhaust gas recirculation in the furnace can be further strengthened. When the step surface is circumscribed with respect to the air nozzle injection port, the area in which the exhaust gas is entrained is large, which is excellent in the function of lowering the oxygen concentration of the combustion air, and the step surface almost covers the air nozzle injection port. When intersecting with each other, the air nozzle is restricted by the refractory block to the tip of the flame holding surface, and an air jet with stronger directivity is ejected from the flame holding surface. Excel.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の低NOxバーナの概略構造と燃焼状況
を説明する原理図で、(A)は縦断面図、(B)は底面
図である。
FIG. 1 is a principle view illustrating a schematic structure and a combustion state of a low NOx burner of the present invention, (A) is a vertical sectional view, and (B) is a bottom view.

【図2】本発明の低NOxバーナの他の実施例を示す底
面図である。
FIG. 2 is a bottom view showing another embodiment of the low NOx burner of the present invention.

【図3】本発明の低NOxバーナを用いた一実施例を示
す概略図である。
FIG. 3 is a schematic view showing an embodiment using the low NOx burner of the present invention.

【図4】本発明の低NOxバーナにおける燃焼用空気の
流速とNOxとの関係を測定した結果を示すグラフであ
る。
FIG. 4 is a graph showing the results of measuring the relationship between the flow rate of combustion air and NOx in the low NOx burner of the present invention.

【図5】従来の低NOxバーナとして一般的な燃料二段
燃焼バーナの原理図である。
FIG. 5 is a principle diagram of a general fuel two-stage combustion burner as a conventional low NOx burner.

【符号の説明】[Explanation of symbols]

1 空気ノズル 2 燃料ノズル 3 耐火材のブロック 4 空気ノズルの噴射口が形成される耐火材ブロックの
端面(基準面) 5 燃料ノズルの噴射口が形成される耐火材ブロックの
端面(保炎面) 6 空気噴射口 7 燃料噴射口 10 段差部分の面 11 燃焼用空気の保炎面での渦 12 一次火炎
1 Air Nozzle 2 Fuel Nozzle 3 Block of Refractory Material 4 End Face of Refractory Block (Reference Surface) Forming Injection Port of Air Nozzle 5 End Face of Fireproof Block (Flame Retaining Surface) Forming Injection Port of Fuel Nozzle 6 Air injection port 7 Fuel injection port 10 Surface of stepped portion 11 Vortex on flame holding surface of combustion air 12 Primary flame

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 良一 神奈川県横浜市鶴見区尻手2丁目1番53号 日本ファーネス工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Ryoichi Tanaka 2-53, Shitte, Tsurumi-ku, Yokohama-shi, Kanagawa Japan Furnace Industry Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 燃焼排ガスと燃焼用空気とを交互に蓄熱
体に通過させることによって得られる高温の燃焼用空気
を用いて燃焼させる蓄熱燃焼型のバーナシステムにおい
て、前記燃焼用空気を燃料よりもはるかに高速で噴射す
るノズルと燃料を噴射するノズルとを平行に配置し、か
つそれらを耐火材で囲繞すると共に燃料ノズルの噴射口
が形成された端面と空気ノズルの噴射口が形成された端
面との間に段差を設けて前記燃料ノズル側の端面を空気
ノズル側の端面よりも突出させたことを特徴とすること
を特徴とする低NOxバーナ。
1. A regenerative combustion type burner system in which high temperature combustion air obtained by alternately passing combustion exhaust gas and combustion air through a heat storage body is used to burn the combustion air rather than fuel. A nozzle for injecting fuel at a much higher speed and a nozzle for injecting fuel are arranged in parallel, and they are surrounded by a refractory material, and the end face on which the fuel nozzle injection port is formed and the air nozzle injection port are formed. A low NOx burner, characterized in that a step is provided between the end surface of the fuel nozzle side and the end surface of the fuel nozzle side so as to protrude from the end surface of the air nozzle side.
【請求項2】 前記燃料ノズルはパイロットバーナ兼用
であることを特徴とする請求項1記載の低NOxバー
ナ。
2. The low NOx burner according to claim 1, wherein the fuel nozzle also serves as a pilot burner.
【請求項3】 前記燃料ノズルの噴射口の空気ノズル寄
りの部分が曲面あるいは斜面から成る拡径部で形成さ
れ、噴射する燃料の一部が空気ノズル側へ流れ出ること
を特徴とする請求項1または2記載の低NOxバーナ。
3. A portion of the injection port of the fuel nozzle near the air nozzle is formed by a diameter-expanded portion having a curved surface or an inclined surface, and a part of the injected fuel flows out toward the air nozzle side. Or the low NOx burner described in 2.
【請求項4】 前記燃料ノズルの噴射口が形成された耐
火材の端面と空気ノズルの噴射口が形成された耐火材の
端面との間の段差の面が前記空気ノズルの噴射口に対し
外接あるいは交差することを特徴とする請求項1から3
のいずれかに記載の低NOxバーナ。
4. The step surface between the end surface of the refractory material having the injection port of the fuel nozzle and the end surface of the refractory material having the injection port of the air nozzle is circumscribed with respect to the injection port of the air nozzle. Alternatively, they intersect with each other.
The low NOx burner according to any one of 1.
JP25456794A 1994-09-24 1994-09-24 Low NOx burner Expired - Fee Related JP3254337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25456794A JP3254337B2 (en) 1994-09-24 1994-09-24 Low NOx burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25456794A JP3254337B2 (en) 1994-09-24 1994-09-24 Low NOx burner

Publications (2)

Publication Number Publication Date
JPH0894013A true JPH0894013A (en) 1996-04-12
JP3254337B2 JP3254337B2 (en) 2002-02-04

Family

ID=17266845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25456794A Expired - Fee Related JP3254337B2 (en) 1994-09-24 1994-09-24 Low NOx burner

Country Status (1)

Country Link
JP (1) JP3254337B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088212A (en) * 1998-09-02 2000-03-31 L'air Liquide Method for combusting fuel
KR100832303B1 (en) * 2007-01-09 2008-05-26 한국에너지기술연구원 Exhaust gas recirculation oxyfuel burner capable of controlling flame with low nox
JP2012057873A (en) * 2010-09-09 2012-03-22 Chugai Ro Co Ltd Heat storage type combustion device, and heating furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088212A (en) * 1998-09-02 2000-03-31 L'air Liquide Method for combusting fuel
KR100832303B1 (en) * 2007-01-09 2008-05-26 한국에너지기술연구원 Exhaust gas recirculation oxyfuel burner capable of controlling flame with low nox
JP2012057873A (en) * 2010-09-09 2012-03-22 Chugai Ro Co Ltd Heat storage type combustion device, and heating furnace

Also Published As

Publication number Publication date
JP3254337B2 (en) 2002-02-04

Similar Documents

Publication Publication Date Title
JP3282944B2 (en) Low NOx burner
US6926516B1 (en) Combustion method and burner
JP3522506B2 (en) Oxygen combustion burner and combustion furnace having the burner
JPH0894013A (en) Low nox burner
JP4165993B2 (en) Premixed heat storage type alternating combustion device
CN1188872A (en) Double-end radiation tube burner system
JP3426736B2 (en) Reflective melting and holding furnace
JP2000346316A (en) Combustion equipment
JP4172903B2 (en) Alternating combustion type heat storage type radiant tube burner
JPH08128608A (en) Double-end type radiant tube burner system
JP2001124307A (en) Anoxidation-reduction combustion method and burner
CN201521961U (en) Flameless burning and heat accumulating type high-speed burner
JP4248738B2 (en) Non-oxidation reduction combustion method and burner apparatus
CN1099543C (en) Low NOx burner
JP2002061806A (en) LOW NOx COMBUSTION METHOD AND BURNER
JP3031908B1 (en) Impact stirring type combustion method
KR20040093272A (en) A burner system reducing air-polution material
JP3926046B2 (en) Furnace and furnace operation method
JP3305506B2 (en) Thermal storage combustion device
KR200347977Y1 (en) A burner system reducing air-polution material
JP3807696B2 (en) Alternating combustion heat storage type radiant tube burner system
JP2742236B2 (en) Heating method of material by open flame burner
JPH0989242A (en) Regenerative burner and heating furnace with regenerative burner
JP3807697B2 (en) Alternating combustion heat storage type radiant tube burner system
JPH11173506A (en) Low nox burner

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees