JP2000346316A - Combustion equipment - Google Patents

Combustion equipment

Info

Publication number
JP2000346316A
JP2000346316A JP11155156A JP15515699A JP2000346316A JP 2000346316 A JP2000346316 A JP 2000346316A JP 11155156 A JP11155156 A JP 11155156A JP 15515699 A JP15515699 A JP 15515699A JP 2000346316 A JP2000346316 A JP 2000346316A
Authority
JP
Japan
Prior art keywords
combustion
supporting gas
fuel
primary
combustion supporting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11155156A
Other languages
Japanese (ja)
Other versions
JP4132409B2 (en
Inventor
Kazumichi Suzuki
一路 鈴木
Kimio Iino
公夫 飯野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Oxygen Co Ltd
Nippon Sanso Corp
Original Assignee
Japan Oxygen Co Ltd
Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Oxygen Co Ltd, Nippon Sanso Corp filed Critical Japan Oxygen Co Ltd
Priority to JP15515699A priority Critical patent/JP4132409B2/en
Publication of JP2000346316A publication Critical patent/JP2000346316A/en
Application granted granted Critical
Publication of JP4132409B2 publication Critical patent/JP4132409B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a combustion equipment capable of improving radiant heat transfer characteristics while suppressing generation of an NOx. SOLUTION: A fuel jet port 16 for injecting fuel and a primary combustion assisting gas jet port 17 for injecting primary combustion assisting gas are installed at an innermost wall of a combustion chamber 14 recessed on an inner surface of a furnace wall 11, and secondary combustion assisting gas jet port 18s for injecting secondary combustion assisting gas are installed at both sides of the port 16 of a direction parallel to the surface of a matter to be heated.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、燃焼装置に関し、
詳しくは、火炎からの放射伝熱により被加熱物を加熱す
る各種工業炉に適した燃焼装置に関する。
TECHNICAL FIELD The present invention relates to a combustion device,
More specifically, the present invention relates to a combustion device suitable for various industrial furnaces that heat an object to be heated by radiant heat transfer from a flame.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】支燃性
ガス(酸化剤)として純酸素を使用した燃焼装置は、空
気を使用したものに比べて、高温の燃焼火炎が得られる
とともに、NOxの排出量が極めて少ないという特性を
有している。しかし、一般の工業炉において、完全に密
閉された炉は実際上あり得ず、炉内への空気の流入は避
けることができない。また、支燃性ガスとしては、圧力
変動式空気分離装置(PSA装置)で製造した酸素が多
用されているが、このPSA装置からの酸素には、不純
物として数%の窒素が含まれており、この窒素が高温の
燃焼火炎中でNOxを生成することになる。
2. Description of the Related Art A combustion apparatus using pure oxygen as a combustion-supporting gas (oxidizing agent) can obtain a higher-temperature combustion flame than an apparatus using air, and also has NOx. Has the characteristic that the emission amount of methane is extremely small. However, in a general industrial furnace, a completely closed furnace is practically impossible, and the inflow of air into the furnace cannot be avoided. As the supporting gas, oxygen produced by a pressure-variable air separation device (PSA device) is frequently used, and oxygen from the PSA device contains several percent of nitrogen as an impurity. This nitrogen will produce NOx in the hot combustion flame.

【0003】また、NOxは、温度が高くなるほど急速
に生成量が増加するので、NOxの生成量を抑えるため
には、火炎温度を低下させることが有効であり、二段燃
焼や排ガスの再循環によって火炎温度を下げ、NOxの
生成を低減することが行われている。しかしながら、火
炎温度を下げると、放射伝熱特性が低下するため、加熱
効率が低下するという問題が発生する。
[0003] Further, since the amount of NOx generated increases rapidly as the temperature increases, it is effective to reduce the flame temperature in order to suppress the amount of NOx generated, such as by two-stage combustion or recirculation of exhaust gas. Therefore, the flame temperature is lowered to reduce the generation of NOx. However, when the flame temperature is reduced, the radiation heat transfer characteristic is reduced, and thus a problem that the heating efficiency is reduced occurs.

【0004】そこで本発明は、火炎温度を下げてNOx
の生成を抑制しながら、火炎に広がりを持たせて放射伝
熱特性を向上させることができる燃焼装置を提供するこ
とを目的としている。
[0004] Therefore, the present invention reduces the flame temperature to reduce NOx.
It is an object of the present invention to provide a combustion apparatus capable of improving the radiant heat transfer characteristics by expanding the flame while suppressing generation of flaming.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明の燃焼装置は、炉壁内面に凹設した燃焼室の
奥部壁面に、燃料を噴出する燃料噴出口と、該燃料噴出
口の近傍に一次支燃性ガスを噴出する一次支燃性ガス噴
出口と、被加熱物の表面に対して平行な方向の燃料噴出
口の両側に二次支燃性ガスを噴出する二次支燃性ガス噴
出口とを設けたことを特徴としている。
In order to achieve the above object, a combustion apparatus according to the present invention comprises a fuel injection port for injecting fuel into a back wall of a combustion chamber recessed in an inner wall of a furnace wall; A primary combustible gas spout that ejects primary combustible gas near the outlet, and a secondary combustible gas that is ejected on both sides of the fuel ejector in a direction parallel to the surface of the object to be heated It is characterized in that a combustion supporting gas ejection port is provided.

【0006】さらに、本発明の燃焼装置は、前記一次支
燃性ガス噴出口が前記燃料噴出口の外周に設けられてい
ることを特徴としている。
Further, the combustion apparatus according to the present invention is characterized in that the primary combustible gas outlet is provided on the outer periphery of the fuel outlet.

【0007】また、前記一次支燃性ガスの噴出速度が毎
秒30m以下であること、前記二次支燃性ガスの噴出速
度が一次支燃性ガスの噴出速度以上で毎秒150m以下
であることを特徴とし、さらに、前記一次支燃性ガスの
流量を燃料に対する酸素比が1.0未満となるように設
定し、一次支燃性ガスと二次支燃性ガスとの合計流量を
燃料に対する酸素比が1.0以上になるように設定し、
特に、一次及び二次支燃性ガスの酸素濃度が90体積%
以上であることを特徴としている。
Further, it is preferable that the ejection speed of the primary combustion supporting gas is not more than 30 m / sec, and the ejection speed of the secondary combustion supporting gas is not less than 150 m / sec and higher than the ejection speed of the primary combustion supporting gas. Further, the flow rate of the primary combustion supporting gas is set so that the oxygen ratio to the fuel is less than 1.0, and the total flow rate of the primary combustion supporting gas and the secondary combustion supporting gas is set to the oxygen flow rate for the fuel. The ratio is set to be 1.0 or more,
In particular, the oxygen concentration of the primary and secondary combustion supporting gas is 90% by volume.
It is characterized by the above.

【0008】そして、前記二次支燃性ガス噴出口同士の
距離と、前記燃焼室の奥行寸法とは、燃焼量が700k
w未満のときは二次支燃性ガス噴出口同士の距離が10
0〜300mm、奥行寸法が100〜300mmであ
り、燃焼量が700〜1500kwのときは二次支燃性
ガス噴出口同士の距離が200〜400mm、奥行寸法
が200〜350mmであり、燃焼量が1500〜25
00kwのときは二次支燃性ガス噴出口同士の距離が2
00〜500mm、奥行寸法が250〜400mmであ
ることを特徴としている。
The distance between the secondary combustible gas jets and the depth of the combustion chamber are such that the amount of combustion is 700 k.
If it is less than w, the distance between the secondary combustion supporting gas jets is 10
0 to 300 mm, the depth dimension is 100 to 300 mm, and when the combustion amount is 700 to 1500 kW, the distance between the secondary combustion supporting gas jets is 200 to 400 mm, the depth dimension is 200 to 350 mm, and the combustion amount is 1500 to 25
When the power is 00 kW, the distance between the secondary combustion supporting gas jets is 2
It is characterized in that it has a depth of from 250 to 400 mm and a depth of from 250 to 400 mm.

【0009】[0009]

【発明の実施の形態】図1乃至図3は本発明の燃焼装置
の第1形態例を示すもので、図1は断面平面図、図2は
断面正面図、図3は断面側面図である。この燃焼装置
は、炉壁11の一部に開口部12を形成し、この開口部
12内に、燃焼室形成用の耐火物からなるタイル13を
埋め込んだものである。タイル13には、縦断面が長円
形状で、所定の奥行き寸法を有する燃焼室14が設けら
れており、その奥部壁面15に、燃料を噴出する燃料噴
出口16と、一次支燃性ガスを噴出する一次支燃性ガス
噴出口17と、二次支燃性ガスを噴出する二次支燃性ガ
ス噴出口18とが設けられている。
1 to 3 show a first embodiment of a combustion apparatus according to the present invention. FIG. 1 is a sectional plan view, FIG. 2 is a sectional front view, and FIG. 3 is a sectional side view. . In this combustion apparatus, an opening 12 is formed in a part of a furnace wall 11, and a tile 13 made of a refractory for forming a combustion chamber is embedded in the opening 12. The tile 13 is provided with a combustion chamber 14 having an elliptical longitudinal section and a predetermined depth dimension. A fuel outlet 16 for discharging fuel, a primary combustion supporting gas, And a secondary combustible gas spout 18 for spouting secondary combustible gas.

【0010】前記燃料噴出口16と一次支燃性ガス噴出
口17とは、燃料噴出口16の外周に一次支燃性ガス噴
出口17を設けた二重管構造に形成されており、二次支
燃性ガス噴出口18は、これらの噴出口16,17の水
平方向両側、すなわち、この燃焼装置で発生した火炎に
より加熱される被加熱物19の表面に対して平行な方向
の所定位置にそれぞれ設けられている。なお、本形態例
では、一次支燃性ガス噴出口17を燃料噴出口16の周
囲にスリット状に開口させているが、複数の小噴出口を
円形に配置した、いわゆるマルチホール構造にすること
もできる。
The fuel injection port 16 and the primary combustion supporting gas injection port 17 are formed in a double pipe structure in which the primary combustion supporting gas injection port 17 is provided on the outer periphery of the fuel injection port 16. The flammable gas jets 18 are located on both sides in the horizontal direction of the jets 16 and 17, that is, at predetermined positions in a direction parallel to the surface of the object 19 to be heated by the flame generated by the combustion device. Each is provided. In the present embodiment, the primary combustible gas jet 17 is opened in a slit shape around the fuel jet 16, but a so-called multi-hole structure in which a plurality of small jets are arranged in a circle is used. Can also.

【0011】燃料や支燃性ガスには、任意のものを使用
することが可能であり、燃料には、LPG,LNG,ブ
タンのような気体燃料、灯油,重油,軽油等の液体燃
料、微粉炭のような固体燃料、あるいはこれらの混合物
を使用することができる。燃料噴出口16の形状は、燃
料の性状に応じて適宜なものを選択することができ、水
平方向に燃料を噴出する偏平ノズルを用いることもでき
る。
As the fuel or the supporting gas, any one can be used. Examples of the fuel include gaseous fuels such as LPG, LNG and butane, liquid fuels such as kerosene, heavy oil and light oil, and fine powders. Solid fuels, such as charcoal, or mixtures thereof can be used. The shape of the fuel ejection port 16 can be appropriately selected according to the properties of the fuel, and a flat nozzle that ejects the fuel in the horizontal direction can also be used.

【0012】また、支燃性ガスには、空気を用いること
もできるが、NOx排出量及び放射伝熱性能を考慮する
と、酸素濃度が90体積%以上の酸素ガスが好適であ
る。なお、一次、二次で異なる支燃性ガスを使用するこ
とも可能である。
Although air can be used as the combustion supporting gas, oxygen gas having an oxygen concentration of 90% by volume or more is preferable in consideration of NOx emission and radiation heat transfer performance. In addition, it is also possible to use different combustion supporting gases for the primary and the secondary.

【0013】前記、一次支燃性ガス噴出口17からの一
次支燃性ガスの噴出速度は、該一次支燃性ガスの流量、
噴出口の形状の他、燃料の種類や噴出速度等に応じて適
宜に設定することができるが、通常は毎秒30m以下で
火炎に十分な推進力を与えることができる範囲に設定す
ればよい。この一次支燃性ガスの噴出速度が速すぎる
と、NOxの排出量や放射伝熱特性に悪影響を与え、ま
た、噴出口部分を損傷させることもある。
[0013] The ejection speed of the primary combustion supporting gas from the primary combustion supporting gas outlet 17 is determined by the flow rate of the primary combustion supporting gas,
Although it can be appropriately set according to the type of fuel, the injection speed, and the like, in addition to the shape of the injection port, it is usually sufficient to set the range to 30 m or less per second so that a sufficient propulsive force can be applied to the flame. If the ejection speed of the primary combustible gas is too high, the emission amount of NOx and the radiation heat transfer characteristics are adversely affected, and the ejection port may be damaged.

【0014】また、二次支燃性ガス噴出口18からの二
次支燃性ガスの噴出速度は、燃料噴出口16及び一次支
燃性ガス噴出口17からの距離、燃焼室14の形状や大
きさ、燃料及び一次支燃性ガスの噴出状態によって異な
るが、一次支燃性ガスの噴出速度以上であれば、速度が
高まるほど、周囲の燃焼ガスを火炎中に巻込み、火炎温
度及び局部的な酸素濃度が低下するため、NOx排出量
を減少させることができる。しかし、噴出速度が毎秒1
50mを超えると、燃焼室14内での燃焼が速くなりす
ぎ、噴出口部分を損傷させることがある。
Further, the ejection speed of the secondary combustion supporting gas from the secondary combustion supporting gas ejection port 18 depends on the distance from the fuel ejection port 16 and the primary combustion supporting gas ejection port 17, the shape of the combustion chamber 14, and the like. Depending on the size, fuel and the state of ejection of the primary combustion supporting gas, if the velocity is higher than the ejection speed of the primary combustion supporting gas, the higher the speed, the more the surrounding combustion gas is caught in the flame, and the flame temperature and local temperature As a result, the NOx emission can be reduced. However, the ejection speed is 1 per second
If it exceeds 50 m, the combustion in the combustion chamber 14 will be too fast, which may damage the injection port.

【0015】一次支燃性ガス噴出口17から噴出する一
次支燃性ガス量は、燃料噴出口16から噴出する燃料に
対する酸素比が1.0未満となるように設定し、この一
次支燃性ガスと二次支燃性ガス噴出口18からの二次支
燃性ガスとの合計量、すなわち、全支燃性ガス量は、燃
料を完全に燃焼させるため、燃料に対する酸素比が1.
0以上になるように設定することが好ましい。このよう
に、一次支燃性ガス量を少なくして燃料を不完全燃焼さ
せることにより、すす量が多く、放射率の高い火炎が形
成されるため、放射伝熱能力が向上する。また、このよ
うな火炎中ではNOxの発生量も少ない。
The amount of the primary oxidizing gas ejected from the primary oxidizing gas injection port 17 is set so that the oxygen ratio to the fuel injected from the fuel injection port 16 is less than 1.0. The total amount of the gas and the secondary combustion supporting gas from the secondary combustion supporting gas outlet 18, that is, the total combustion supporting gas amount, is such that the oxygen ratio to the fuel is 1.
It is preferable to set it to be 0 or more. In this way, by performing the incomplete combustion of the fuel by reducing the amount of the primary combustion supporting gas, a flame having a high soot amount and a high emissivity is formed, so that the radiation heat transfer capability is improved. Further, the amount of generated NOx in such a flame is small.

【0016】さらに、限られた空間である燃焼室14の
奥部壁面15から燃料、一次支燃性ガス及び二次支燃性
ガスを噴出させ、しかも、二次支燃性ガスをある程度離
れた距離から高速で噴出させているため、燃焼室中央で
発生した火炎が両側の二次支燃性ガス噴出口18から噴
出する二次支燃性ガスに引き込まれ、水平方向に幅広の
火炎が形成される。これにより、被加熱物19の表面を
幅広く加熱することが可能となり、放射伝熱量を増大さ
せることができる。
Further, fuel, primary flammable gas and secondary flammable gas are ejected from the inner wall 15 of the combustion chamber 14 which is a limited space, and the secondary flammable gas is separated to some extent. Since the fuel is ejected at a high speed from a distance, the flame generated at the center of the combustion chamber is drawn into the secondary combustion supporting gas ejected from the secondary combustion supporting gas outlets 18 on both sides, forming a wide flame in the horizontal direction. Is done. Thereby, the surface of the object 19 to be heated can be heated widely, and the amount of radiation heat transfer can be increased.

【0017】このときの一次支燃性ガスと二次支燃性ガ
スとの供給割合(体積比)は、一次支燃性ガスの割合が
多すぎると二次支燃性ガスを噴出させる意味が低下して
しまうため好ましくない。逆に、一次支燃性ガスの割合
が少ない場合は、燃料噴出口16から噴出した燃料が確
実に着火して火炎が形成されればよく、一次支燃性ガス
がほとんど無くてもある程度の効果は期待できる。
At this time, the supply ratio (volume ratio) between the primary combustion supporting gas and the secondary combustion supporting gas means that if the ratio of the primary combustion supporting gas is too large, the secondary combustion supporting gas is ejected. It is not preferable because it is lowered. Conversely, when the proportion of the primary supporting gas is small, it is sufficient that the fuel ejected from the fuel injection port 16 is ignited and a flame is formed. Can be expected.

【0018】さらに、燃焼室14の形状や各部の寸法
は、この燃焼装置における燃焼量により、ある程度の最
適な範囲を規定することができる。例えば、燃焼室14
の奥行寸法は、燃焼室14における燃焼量が700kw
未満のときは100〜300mm、燃焼量が700〜1
500kwのときは200〜350mm、燃焼量が15
00〜2500kwのときは250〜400mmが適当
である。燃焼量に対して奥行き寸法が小さすぎると、火
炎が幅広くならず、奥行き寸法が大きすぎると、二次支
燃性ガスによる周囲の燃焼ガスの巻込み量が少なくな
り、NOx低減の効果が十分に得られなくなる。
Further, the shape of the combustion chamber 14 and the dimensions of each part can be defined to some extent optimal by the amount of combustion in the combustion apparatus. For example, the combustion chamber 14
The depth dimension of the combustion chamber 14 is 700 kW.
If less than 100-300 mm, combustion amount is 700-1
When the power is 500 kW, 200 to 350 mm, the combustion amount is 15
When it is 00 to 2500 kW, 250 to 400 mm is appropriate. If the depth dimension is too small with respect to the amount of combustion, the flame will not be wide, and if the depth dimension is too large, the amount of surrounding combustion gas entrained by the secondary combustion supporting gas will decrease, and the effect of reducing NOx will be sufficient. Can not be obtained.

【0019】また、燃焼室14における燃焼量に対する
前記二次支燃性ガス噴出口18同士の距離は、燃焼量が
700kw未満のときは100〜300mm、燃焼量が
700〜1500kwのときは200〜400mm、燃
焼量が1500〜2500kwのときは200〜500
mmが適当である。一般に、二次支燃性ガス噴出口18
同士の距離が遠いほど、NOxの排出量が少なくなり、
遠すぎると燃焼が不安定になる。
The distance between the secondary combustion supporting gas outlets 18 with respect to the amount of combustion in the combustion chamber 14 is 100 to 300 mm when the amount of combustion is less than 700 kW, and 200 to 300 mm when the amount of combustion is 700 to 1500 kW. 400 mm, 200 to 500 when the combustion amount is 1500 to 2500 kw
mm is appropriate. Generally, the secondary combustible gas jet 18
The farther the distance between them, the lower the NOx emissions,
If it is too far, combustion becomes unstable.

【0020】燃焼室14の断面寸法は、火炎の発生状態
や燃焼量に応じて設定すればよいが、火炎によるタイル
13の損傷を抑制するためには、火炎が直接タイル13
に当たらないようにすることが好ましい。逆に、燃焼室
14の断面寸法を大きくしすぎると、燃焼室14を設け
た効果が十分に得られなくなり、また、炉内からの放射
熱量が増大するため、噴出口部分が損傷する可能性があ
る。
The cross-sectional dimension of the combustion chamber 14 may be set according to the state of generation of the flame or the amount of combustion.
It is preferable not to hit. Conversely, if the cross-sectional dimension of the combustion chamber 14 is too large, the effect of providing the combustion chamber 14 will not be sufficiently obtained, and the amount of radiant heat from the furnace will increase, so that the injection port may be damaged. There is.

【0021】図4は本発明の燃焼装置の第2形態例を示
す断面平面図である。この燃焼装置は、二次支燃性ガス
噴出口18の噴出方向を燃焼室14の軸線から離れる方
向、即ち外側に向けたものである。このように、二次支
燃性ガス噴出口18から噴出する二次支燃性ガスの噴出
方向を外側に向けることにより、燃焼室14から噴出す
る火炎の水平方向の広がりを拡大することができる。た
だし、噴出方向を外側に向けすぎると、燃焼が不安定に
なることがあるため、燃焼室14の軸線と二次支燃性ガ
ス噴出口18の噴出方向との角度は、通常は、3〜20
度の範囲が適当である。
FIG. 4 is a sectional plan view showing a second embodiment of the combustion apparatus of the present invention. In this combustion apparatus, the ejection direction of the secondary combustion supporting gas ejection port 18 is directed away from the axis of the combustion chamber 14, that is, outward. In this way, by directing the ejection direction of the secondary combustion supporting gas ejected from the secondary combustion supporting gas ejection port 18 outward, it is possible to expand the horizontal spread of the flame ejected from the combustion chamber 14. . However, if the ejection direction is directed outward too much, combustion may become unstable. Therefore, the angle between the axis of the combustion chamber 14 and the ejection direction of the secondary combustion supporting gas ejection port 18 is usually 3 to 3. 20
A range of degrees is appropriate.

【0022】図5は本発明の燃焼装置の第3形態例を示
す断面平面図である。この燃焼装置は、燃焼室14内
に、二重管構造の燃料噴出口16及び一次支燃性ガス噴
出口17を2個設けるとともに、その中間及び両側に二
次支燃性ガス噴出口18それぞれ設けた例を示すもので
ある。このように形成することにより、一つの燃焼室1
4における燃焼量を増大させることができる。
FIG. 5 is a sectional plan view showing a third embodiment of the combustion apparatus of the present invention. In this combustion device, a fuel injection port 16 having a double pipe structure and two primary combustion supporting gas injection ports 17 are provided in a combustion chamber 14, and secondary combustion supporting gas injection ports 18 are provided at intermediate and both sides thereof, respectively. This is an example of the provision. By forming in this manner, one combustion chamber 1
4 can increase the amount of combustion.

【0023】図6及び図7は、本発明の燃焼装置の第4
形態例を示すもので、図6は断面平面図、図7は断面正
面図である。本形態例に示す燃焼装置は、前記同様に形
成した燃焼室14の奥部壁面15に、それぞれ独立した
状態で、燃料噴出口16、一次支燃性ガス噴出口17及
び二次支燃性ガス噴出口18を設けたものである。
FIGS. 6 and 7 show a fourth embodiment of the combustion apparatus according to the present invention.
6 shows a sectional plan view, and FIG. 7 is a sectional front view. The combustion apparatus shown in the present embodiment has a fuel injection port 16, a primary combustion-supporting gas injection port 17, and a secondary combustion-supporting gas, which are independently provided on a rear wall surface 15 of a combustion chamber 14 formed in the same manner as described above. An ejection port 18 is provided.

【0024】一次支燃性ガス噴出口17の設置位置は、
燃料噴出口16から噴出する燃料を所定の条件で燃焼さ
せることができればよく、二次支燃性ガス噴出口18の
設置位置は、前記同様に、低NOx化と火炎の広がりと
が得られるように設定すればよい。
The installation position of the primary combustible gas outlet 17 is as follows:
It suffices if the fuel ejected from the fuel ejection port 16 can be burned under predetermined conditions, and the installation position of the secondary combustible gas ejection port 18 is set such that low NOx and flame spread can be obtained as described above. Should be set to.

【0025】このように形成した燃焼装置は、前記各形
態例に比べて燃料と一次支燃性ガスとの混合が抑制され
るため、すす量が多くなり、放射率がより高い火炎が得
られる。また、NOxは、火炎温度が最も高い燃料噴流
と一次支燃性ガス噴流との界面で生成すると考えられる
ので、燃料の周囲から一次支燃性ガスを噴出させた場合
と比較して界面が減少するため、NOxの生成も低減す
る。
In the combustion device thus formed, the mixing of the fuel and the primary supporting gas is suppressed as compared with the above embodiments, so that the amount of soot increases and a flame having a higher emissivity can be obtained. . Since NOx is considered to be generated at the interface between the fuel jet having the highest flame temperature and the primary combustion supporting gas jet, the interface is reduced as compared with the case where the primary combustion supporting gas is ejected from around the fuel. Therefore, generation of NOx is also reduced.

【0026】一方、燃料と一次支燃性ガスとの混合性が
前記形態例に比べて低下するため、火炎の安定性が劣る
傾向があり、一酸化炭素や未燃炭化水素が多く発生する
おそれがあるが、燃焼室14の形状や各噴出口の位置及
び燃料や支燃性ガスの噴出量及び流速を適正に設定する
ことにより、前記同様に、放射率が高く、NOx生成量
の少ない火炎を得ることができる。
On the other hand, since the mixing property between the fuel and the primary combustion supporting gas is lower than that of the above embodiment, the stability of the flame tends to be inferior, and a large amount of carbon monoxide and unburned hydrocarbons may be generated. However, by appropriately setting the shape of the combustion chamber 14, the position of each injection port, and the ejection amount and flow velocity of the fuel and the supporting gas, a flame having a high emissivity and a small NOx generation amount can be obtained as described above. Can be obtained.

【0027】[0027]

【実施例】実施例1 第1形態例に示す構造の燃焼装置を使用して燃焼試験を
行った。燃料には灯油を使用し、支燃性ガスには酸素濃
度が99.99体積%以上の純酸素を使用し、燃焼量は
243kWとした。燃焼室は、高さ70mm、幅220
mm、奥行き200mmとし、二次支燃性ガス噴出口の
間隔は150mmとした。また、通常の二重管構造のバ
ーナーを使用して比較例とした。
EXAMPLE 1 A combustion test was performed using a combustion apparatus having the structure shown in the first embodiment. Kerosene was used as the fuel, pure oxygen having an oxygen concentration of 99.99% by volume or more was used as the combustion supporting gas, and the combustion amount was 243 kW. The combustion chamber is 70 mm high and 220 mm wide.
mm, the depth was 200 mm, and the interval between the secondary combustible gas jets was 150 mm. In addition, a comparative example was prepared by using a normal double-tube burner.

【0028】一次支燃性ガスと二次支燃性ガスとの体積
比を7:3とし、一次支燃性ガスの流速を毎秒10m
(10m/s)に固定した状態で二次支燃性ガスの流速
を10m/s,20m/s,50m/s及び100m/
sに設定し、各流速において燃焼室前端から所定距離の
位置における放射熱流束をそれぞれ測定した。結果を図
8に示す。
The volume ratio of the primary supporting gas to the secondary supporting gas is 7: 3, and the flow rate of the primary supporting gas is 10 m / sec.
(10 m / s), the flow rate of the secondary combustion supporting gas was set to 10 m / s, 20 m / s, 50 m / s and 100 m / s.
The radiant heat flux was measured at a position at a predetermined distance from the front end of the combustion chamber at each flow rate. FIG. 8 shows the results.

【0029】実施例2 支燃性ガス中の窒素濃度を変化させ、窒素濃度に対する
NOxの排出量を測定した。支燃性ガスが異なる以外は
実施例1と同じ条件とした。結果を図9に示す。
Example 2 The nitrogen concentration in the combustion-supporting gas was changed, and the emission of NOx with respect to the nitrogen concentration was measured. The conditions were the same as in Example 1 except that the supporting gas was different. FIG. 9 shows the results.

【0030】実施例3 二次支燃性ガスの流速を50m/sに固定し、一次支燃
性ガスと二次支燃性ガスとの体積比を変化させ、体積比
に対する放射熱流束を測定した。これ以外の条件は実施
例1と同様にした。結果を図10に示す。
Example 3 The flow rate of the secondary combustion supporting gas was fixed at 50 m / s, the volume ratio between the primary combustion supporting gas and the secondary combustion supporting gas was changed, and the radiant heat flux with respect to the volume ratio was measured. did. Other conditions were the same as in Example 1. The results are shown in FIG.

【0031】実施例4 支燃性ガス中の窒素濃度を変化させ、窒素濃度に対する
NOxの排出量を測定した。支燃性ガスが異なる以外は
実施例3と同じ条件とした。結果を図11に示す。
Example 4 The nitrogen concentration in the combustion supporting gas was changed, and the emission of NOx with respect to the nitrogen concentration was measured. The conditions were the same as in Example 3 except that the supporting gas was different. The results are shown in FIG.

【0032】実施例5 副噴出口の間隔を100mm,150mm,200mm
とし、燃焼室の幅を170mm、220mm、250m
mにそれぞれ設定し、副噴出口の間隔に対する放射熱流
束を測定した。二次支燃性ガスの流速は50m/sに固
定した。これ以外の条件は実施例1と同じとした。結果
を図12に示す。
Example 5 The intervals between the sub-jet ports were 100 mm, 150 mm, and 200 mm.
And the width of the combustion chamber is 170 mm, 220 mm, 250 m
m, and the radiant heat flux with respect to the interval between the sub-jet ports was measured. The flow rate of the secondary combustion supporting gas was fixed at 50 m / s. Other conditions were the same as in Example 1. The result is shown in FIG.

【0033】実施例6 支燃性ガス中の窒素濃度を変化させ、窒素濃度に対する
NOxの排出量を測定した。支燃性ガスが異なる以外は
実施例5と同じ条件とした。結果を図13に示す。
Example 6 The nitrogen concentration in the combustion-supporting gas was changed, and the emission of NOx with respect to the nitrogen concentration was measured. The conditions were the same as in Example 5 except that the supporting gas was different. FIG. 13 shows the results.

【0034】実施例7 燃焼室の高さを70mm、幅を220mm、奥行きを2
00mm、二次支燃性ガス噴出口の間隔を150mm、
一次支燃性ガスと二次支燃性ガスとの体積比を5:5、
二次支燃性ガスの流速を100m/sとしたもの(実施
例)と、燃焼室を設けずにその他の寸法及び燃焼条件を
同じとしたもの(平面型)と、前記比較例バーナーとを
使用し、支燃性ガスに純酸素を使用して放射熱流束を測
定した。その結果を図14に示す。また、支燃性ガス中
の窒素濃度を変化させてNOxの排出量を測定した結果
を図15に示す。これらの結果から、燃焼室を持つこと
により、低NOx化及び放射伝熱能力の向上が同時に達
成されることがわかる。
Example 7 The height of the combustion chamber was 70 mm, the width was 220 mm, and the depth was 2 mm.
00 mm, the interval between the secondary combustible gas jets is 150 mm,
The volume ratio of the primary supporting gas to the secondary supporting gas is 5: 5,
A burner having a flow rate of the secondary combustion supporting gas of 100 m / s (Example), a burner having no other combustion chamber and other dimensions and the same combustion conditions (a flat type), and the burner of the comparative example. The radiant heat flux was measured using pure oxygen as the supporting gas. The result is shown in FIG. FIG. 15 shows the result of measuring the amount of NOx emission by changing the nitrogen concentration in the combustion supporting gas. From these results, it can be seen that by having a combustion chamber, reduction in NOx and improvement in radiation heat transfer capability are simultaneously achieved.

【0035】実施例8 第4形態例に示す構造の燃焼装置を使用して燃焼試験を
行った。燃料には灯油を使用し、支燃性ガスには酸素濃
度が99.99体積%以上の純酸素を使用し、燃焼量は
243kWとした。燃焼室は、高さ70mm、幅200
mm、奥行き200mmとし、一次支燃性ガス噴出口の
間隔は70mm、二次支燃性ガス噴出口の間隔は150
mmとした。一次支燃性ガスと二次支燃性ガスとの体積
比は5:5とし、一次支燃性ガスの流速は10m/s、
二次支燃性ガスの流速は50m/sとした。また、通常
の二重管構造のバーナーを使用して比較例とした。
Example 8 A combustion test was performed using a combustion apparatus having the structure shown in the fourth embodiment. Kerosene was used as the fuel, pure oxygen having an oxygen concentration of 99.99% by volume or more was used as the combustion supporting gas, and the combustion amount was 243 kW. The combustion chamber is 70 mm high and 200 mm wide.
mm, depth 200 mm, the interval between the primary supporting gas outlets is 70 mm, and the interval between the secondary supporting gas outlets is 150.
mm. The volume ratio of the primary combustion supporting gas to the secondary combustion supporting gas is 5: 5, the flow rate of the primary combustion supporting gas is 10 m / s,
The flow rate of the secondary combustion supporting gas was set to 50 m / s. In addition, a comparative example was prepared by using a normal double-tube burner.

【0036】燃焼室前端(バーナー前端)からの距離と
放射熱流束との関係を測定した結果を図16に、支燃性
ガス中の窒素濃度とNOx排出量との関係を測定した結
果を図17に示す。
FIG. 16 shows the result of measuring the relationship between the distance from the front end of the combustion chamber (burner front end) and the radiant heat flux, and FIG. 16 shows the result of measuring the relationship between the nitrogen concentration in the combustion supporting gas and the NOx emission. 17 is shown.

【0037】[0037]

【発明の効果】以上説明したように、本発明の燃焼装置
によれば、NOxの発生を抑制しながら、同時に、炉内
壁面に燃焼室を凹設したことにより、被加熱物の表面に
平行な方向に広がった火炎を形成することができ、放射
伝熱特性も向上した火炎を得ることができる。
As described above, according to the combustion apparatus of the present invention, the generation of NOx is suppressed and at the same time, the combustion chamber is recessed on the inner wall of the furnace, so that the combustion chamber is parallel to the surface of the object to be heated. A flame spreading in various directions can be formed, and a flame having improved radiation heat transfer characteristics can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の燃焼装置の第1形態例を示す断面平
面図である。
FIG. 1 is a sectional plan view showing a first embodiment of a combustion apparatus of the present invention.

【図2】 同じく断面正面図である。FIG. 2 is a sectional front view of the same.

【図3】 同じく断面側面図である。FIG. 3 is a sectional side view of the same.

【図4】 本発明の燃焼装置の第2形態例を示す断面平
面図である。
FIG. 4 is a sectional plan view showing a second embodiment of the combustion device of the present invention.

【図5】 本発明の燃焼装置の第3形態例を示す断面平
面図である。
FIG. 5 is a sectional plan view showing a third embodiment of the combustion apparatus of the present invention.

【図6】 本発明の燃焼装置の第4形態例を示す断面平
面図である。
FIG. 6 is a sectional plan view showing a fourth embodiment of the combustion apparatus of the present invention.

【図7】 同じく断面正面図である。FIG. 7 is a sectional front view of the same.

【図8】 実施例1の測定結果を示すもので、二次支燃
性ガスの流速と燃焼室からの距離と放射熱流束との関係
を示す図である。
FIG. 8 is a view showing measurement results of Example 1 and showing a relationship among a flow rate of a secondary combustion supporting gas, a distance from a combustion chamber, and a radiant heat flux.

【図9】 実施例2の測定結果を示すもので、二次支燃
性ガスの流速と支燃性ガス中の窒素濃度とNOx排出量
との関係を示す図である。
FIG. 9 is a view showing a measurement result of Example 2 and showing a relationship between a flow rate of a secondary combustion supporting gas, a nitrogen concentration in the combustion supporting gas, and a NOx emission amount.

【図10】 実施例3の測定結果を示すもので、一次,
二次支燃性ガスの体積比と燃焼室からの距離と放射熱流
束との関係を示す図である。
FIG. 10 shows the measurement results of Example 3;
It is a figure which shows the relationship between the volume ratio of a secondary combustion supporting gas, the distance from a combustion chamber, and radiant heat flux.

【図11】 実施例4の測定結果を示すもので、一次,
二次支燃性ガスの体積比と支燃性ガス中の窒素濃度とN
Ox排出量との関係を示す図である。
FIG. 11 shows the measurement results of Example 4;
Volume ratio of secondary combustible gas, nitrogen concentration in combustible gas and N
It is a figure showing relation with Ox discharge.

【図12】 実施例5の測定結果を示すもので、副噴出
口の間隔と燃焼室からの距離と放射熱流束との関係を示
す図である。
FIG. 12 shows the measurement results of Example 5, and shows the relationship between the distance between the sub-injection ports, the distance from the combustion chamber, and the radiant heat flux.

【図13】 実施例6の測定結果を示すもので、副噴出
口の間隔と支燃性ガス中の窒素濃度とNOx排出量との
関係を示す図である。
FIG. 13 shows the measurement results of Example 6 and shows the relationship between the interval between the sub-injection ports, the nitrogen concentration in the combustion supporting gas, and the NOx emission amount.

【図14】 実施例7の測定結果を示すもので、燃焼室
の有無と燃焼室からの距離と放射熱流束との関係を示す
図である。
FIG. 14 shows the measurement results of Example 7, and shows the relationship between the presence or absence of a combustion chamber, the distance from the combustion chamber, and the radiant heat flux.

【図15】 実施例7の測定結果を示すもので、燃焼室
の有無と支燃性ガス中の窒素濃度とNOx排出量との関
係を示す図である。
FIG. 15 shows the measurement results of Example 7, and shows the relationship between the presence or absence of a combustion chamber, the nitrogen concentration in the supporting gas, and the NOx emission.

【図16】 実施例8の燃焼室からの距離と放射熱流束
との関係を示す図である。
FIG. 16 is a diagram illustrating a relationship between a distance from a combustion chamber and a radiant heat flux according to the eighth embodiment.

【図17】 実施例8の測定結果を示すもので、支燃性
ガス中の窒素濃度とNOx排出量との関係を示す図であ
る。
FIG. 17 shows the measurement result of Example 8, and is a diagram showing the relationship between the nitrogen concentration in the combustion supporting gas and the NOx emission amount.

【符号の説明】[Explanation of symbols]

11…炉壁、12…開口部、13…タイル、14…燃焼
室、15…奥部壁面、16…燃料噴出口、17…一次支
燃性ガス噴出口、18…二次支燃性ガス噴出口19…被
加熱物
Reference numeral 11: furnace wall, 12: opening, 13: tile, 14: combustion chamber, 15: inner wall surface, 16: fuel jet port, 17: primary flammable gas jet, 18: secondary flammable gas jet Exit 19: Heated object

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 炉壁内面に凹設した燃焼室の奥部壁面
に、燃料を噴出する燃料噴出口と、該燃料噴出口の近傍
に一次支燃性ガスを噴出する一次支燃性ガス噴出口と、
被加熱物の表面に対して平行な方向の燃料噴出口の両側
に二次支燃性ガスを噴出する二次支燃性ガス噴出口とを
設けたことを特徴とする燃焼装置。
1. A fuel ejection port for ejecting fuel on a back wall surface of a combustion chamber recessed in a furnace wall, and a primary combustion supporting gas jet for ejecting primary combustion supporting gas near the fuel ejection port. Exit and
A combustion device comprising: a secondary combustion supporting gas ejection port for ejecting a secondary combustion supporting gas on both sides of a fuel ejection port in a direction parallel to a surface of an object to be heated.
【請求項2】 前記一次支燃性ガス噴出口が、前記燃料
噴出口の外周に設けられていることを特徴とする請求項
1記載の燃焼装置。
2. The combustion apparatus according to claim 1, wherein the primary combustible gas ejection port is provided on an outer periphery of the fuel ejection port.
【請求項3】 前記一次支燃性ガスの噴出速度が、毎秒
30m以下であることを特徴とする請求項1又は2記載
の燃焼装置。
3. The combustion device according to claim 1, wherein an ejection speed of the primary combustion supporting gas is 30 m or less per second.
【請求項4】 前記二次支燃性ガスの噴出速度が、一次
支燃性ガスの噴出速度以上で、毎秒150m以下である
ことを特徴とする請求項1又は2記載の燃焼装置。
4. The combustion apparatus according to claim 1, wherein the ejection speed of the secondary combustion supporting gas is equal to or higher than the ejection speed of the primary combustion supporting gas and is equal to or lower than 150 m / sec.
【請求項5】 前記一次支燃性ガスの流量は、燃料に対
する酸素比が1.0未満となるように設定され、一次支
燃性ガスと二次支燃性ガスとの合計流量は、燃料に対す
る酸素比が1.0以上になるように設定されていること
を特徴とする請求項1又は2記載の燃焼装置。
5. A flow rate of the primary combustion supporting gas is set so that an oxygen ratio to fuel is less than 1.0, and a total flow rate of the primary combustion supporting gas and the secondary combustion supporting gas is a fuel flow rate. 3. The combustion apparatus according to claim 1, wherein an oxygen ratio with respect to is set to be 1.0 or more.
【請求項6】 前記一次支燃性ガス及び二次支燃性ガス
の酸素濃度が90体積%以上であることを特徴とする請
求項1又は2記載の燃焼装置。
6. The combustion apparatus according to claim 1, wherein the oxygen concentration of the primary combustion supporting gas and the secondary combustion supporting gas is 90% by volume or more.
【請求項7】 前記二次支燃性ガス噴出口同士の距離
と、前記燃焼室の奥行寸法とは、燃焼量が700kw未
満のときは二次支燃性ガス噴出口同士の距離が100〜
300mm、奥行寸法が100〜300mmであり、燃
焼量が700〜1500kwのときは二次支燃性ガス噴
出口同士の距離が200〜400mm、奥行寸法が20
0〜350mmであり、燃焼量が1500〜2500k
wのときは二次支燃性ガス噴出口同士の距離が200〜
500mm、奥行寸法が250〜400mmであること
を特徴とする請求項1又は2記載の燃焼装置。
7. The distance between the secondary combustion supporting gas jets and the depth dimension of the combustion chamber is such that when the combustion amount is less than 700 kW, the distance between the secondary combustion supporting gas jets is 100 to 100.
300 mm, the depth dimension is 100 to 300 mm, and when the combustion amount is 700 to 1500 kW, the distance between the secondary combustion supporting gas ejection ports is 200 to 400 mm, and the depth dimension is 20.
0-350mm, combustion amount is 1500-2500k
When w, the distance between the secondary combustible gas jets is 200 to
3. The combustion device according to claim 1, wherein the combustion device has a depth of 500 to 500 mm.
JP15515699A 1999-06-02 1999-06-02 Combustion device Expired - Lifetime JP4132409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15515699A JP4132409B2 (en) 1999-06-02 1999-06-02 Combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15515699A JP4132409B2 (en) 1999-06-02 1999-06-02 Combustion device

Publications (2)

Publication Number Publication Date
JP2000346316A true JP2000346316A (en) 2000-12-15
JP4132409B2 JP4132409B2 (en) 2008-08-13

Family

ID=15599764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15515699A Expired - Lifetime JP4132409B2 (en) 1999-06-02 1999-06-02 Combustion device

Country Status (1)

Country Link
JP (1) JP4132409B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295812A (en) * 2001-03-30 2002-10-09 Chugai Ro Co Ltd Diffusion flame two-stage combustion gas burner
JP2008513721A (en) * 2004-09-15 2008-05-01 エージーエー エービー Combustion method and burner
JP2012032084A (en) * 2010-07-30 2012-02-16 Tokyo Gas Co Ltd Hydrogen combustion device
JP2013079753A (en) * 2011-10-03 2013-05-02 Taiyo Nippon Sanso Corp Burner and burner combustion method
KR101309955B1 (en) 2011-12-20 2013-09-17 재단법인 포항산업과학연구원 Oxygen burner
JP2014505851A (en) * 2010-12-30 2014-03-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Distributed combustion process and burner
WO2019123783A1 (en) * 2017-12-19 2019-06-27 中外炉工業株式会社 Burner

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012083045A (en) * 2010-10-13 2012-04-26 Taiyo Nippon Sanso Corp Combustion method of burner
JP5485193B2 (en) 2011-01-26 2014-05-07 大陽日酸株式会社 Burner burning method
DE102018102832B4 (en) * 2018-02-08 2023-01-05 RF360 Europe GmbH Filter circuit with a notch filter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002295812A (en) * 2001-03-30 2002-10-09 Chugai Ro Co Ltd Diffusion flame two-stage combustion gas burner
JP2008513721A (en) * 2004-09-15 2008-05-01 エージーエー エービー Combustion method and burner
JP2012032084A (en) * 2010-07-30 2012-02-16 Tokyo Gas Co Ltd Hydrogen combustion device
JP2014505851A (en) * 2010-12-30 2014-03-06 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Distributed combustion process and burner
JP2015121398A (en) * 2010-12-30 2015-07-02 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Distributed combustion process and burner
JP2013079753A (en) * 2011-10-03 2013-05-02 Taiyo Nippon Sanso Corp Burner and burner combustion method
KR101309955B1 (en) 2011-12-20 2013-09-17 재단법인 포항산업과학연구원 Oxygen burner
WO2019123783A1 (en) * 2017-12-19 2019-06-27 中外炉工業株式会社 Burner
JP2019109021A (en) * 2017-12-19 2019-07-04 中外炉工業株式会社 Burner
TWI742313B (en) * 2017-12-19 2021-10-11 日商中外爐工業股份有限公司 burner

Also Published As

Publication number Publication date
JP4132409B2 (en) 2008-08-13

Similar Documents

Publication Publication Date Title
US5542840A (en) Burner for combusting gas and/or liquid fuel with low NOx production
JP3358527B2 (en) Tubular flame burner
JP3343855B2 (en) Pulverized coal combustion burner and combustion method of pulverized coal combustion burner
JPH06213416A (en) Burner
JP2000346316A (en) Combustion equipment
GB2098720A (en) Stationary gas turbine combustor arrangements
KR200448947Y1 (en) Low nitrogen oxide burner
US20230047390A1 (en) Atmosphere-adjustable multi-staged swirl ammonia burner
JP3675163B2 (en) Tubular flame burner
KR100973414B1 (en) Coal breeze burner unnecessary preheating
JP3139946B2 (en) Low NOx burner gas nozzle
JP3680659B2 (en) Combustion apparatus and combustion method
TWI524039B (en) Tubular shape fire burner
JPS59210205A (en) Pulverized coal burner equipment
JP3702460B2 (en) Multistage combustion equipment
JP4068041B2 (en) Low NOx burner
KR100400418B1 (en) Oxygen enriched combustion burner for low NOx emission
KR101985999B1 (en) Fast mixing type burner and combustion system having the same
JPH0777310A (en) Low nitrogen oxide generating burner and burning method therefor
JP3946575B2 (en) Air heat burner
JP7262521B2 (en) Gas burner and combustion equipment
JP2003343818A (en) Air heat burner
KR20040093272A (en) A burner system reducing air-polution material
JP2006162185A (en) Coal burning boiler and combustion method
JP2004077010A (en) Furnace with tubular flame burner installed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080602

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4132409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120606

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130606

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term