JPH05170B2 - - Google Patents

Info

Publication number
JPH05170B2
JPH05170B2 JP62218633A JP21863387A JPH05170B2 JP H05170 B2 JPH05170 B2 JP H05170B2 JP 62218633 A JP62218633 A JP 62218633A JP 21863387 A JP21863387 A JP 21863387A JP H05170 B2 JPH05170 B2 JP H05170B2
Authority
JP
Japan
Prior art keywords
abrasive grains
workpiece
grindstone
mirror
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62218633A
Other languages
Japanese (ja)
Other versions
JPS6464766A (en
Inventor
Tadatomo Suga
Osamu Imanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTOO KK
Original Assignee
MARUTOO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTOO KK filed Critical MARUTOO KK
Priority to JP21863387A priority Critical patent/JPS6464766A/en
Publication of JPS6464766A publication Critical patent/JPS6464766A/en
Publication of JPH05170B2 publication Critical patent/JPH05170B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Polishing Bodies And Polishing Tools (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガラス、セラミツクス、単結晶など
の硬脆材料の鏡面加工技術に係り、詳しくは、硬
脆材料を機能材料または構造用材料として使用す
るときに必要な鏡面加工の手段ならびに、それに
使用する砥石材に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to mirror finishing technology for hard and brittle materials such as glass, ceramics, and single crystals. It relates to the means of mirror polishing necessary for use and the grinding stone used therein.

[従来の技術] 一般に、硬質の材料を加工するに際しては、ダ
イヤモンドを代表とする被加工物よりも硬質の砥
粒を使用する。しかし、このような方法では、硬
質砥粒が被化合物の表面を機械的に破壊し、材料
を除去することによつて加工が進行するため、加
工表面に加工変質層や残留応力が生じる恐れがあ
る。一方、これを避けるためには、材料を機械的
に除去するのではなく、化学的な手段によること
が行われ、その代表的な方法には、液相、気相の
エツチングがあり、また、電解研磨法も知られて
いる。しかし、これらのエツチングや電解研磨法
では、機械的研磨に比べて良好な幾何学的形状、
面精度が得られないことが欠点になつている。
[Prior Art] Generally, when processing hard materials, abrasive grains that are harder than the workpiece, typically diamond, are used. However, in this method, the hard abrasive grains mechanically destroy the surface of the compound and the processing proceeds by removing the material, so there is a risk of forming a damaged layer or residual stress on the processed surface. be. On the other hand, to avoid this, chemical means are used instead of mechanically removing the material. Typical methods include liquid phase and gas phase etching. Electrolytic polishing methods are also known. However, these etching and electrolytic polishing methods produce better geometric shapes and shapes than mechanical polishing.
The disadvantage is that surface accuracy cannot be obtained.

そこで、上記のような欠点の排除を手段とし
て、機械的な加工に化学的な作用をも加える「メ
カノケミカル」の加工方法が提案された。この方
法では、砥粒として被化合物よりも軟質のものを
使用し、被加工物との接触面で固相反応を起こさ
せ、その生成物が被化合物から脱落することによ
り、加工が進行する。従つて、加工効率を上げる
ためには、砥粒として被加工物との反応性の高い
ものを選び、反応を起こし易い雰囲気で加工を行
ない、また、砥粒を加工面に能率よく供給するこ
とが必要となる。
Therefore, in order to eliminate the above-mentioned drawbacks, a ``mechanochemical'' processing method, which adds chemical effects to mechanical processing, was proposed. In this method, abrasive grains that are softer than the compound to be processed are used, a solid phase reaction is caused at the contact surface with the workpiece, and the product falls off from the compound, thereby processing progresses. Therefore, in order to increase machining efficiency, it is necessary to select abrasive grains that are highly reactive with the workpiece, perform machining in an atmosphere that facilitates reactions, and efficiently supply abrasive grains to the machined surface. Is required.

ところで、以上の加工方法は、加工技術に新生
面を開拓したものであり、原理的に優れており、
この方法を応用した加工方法としては、被加工物
として選ばれたサフアイアの正面研磨を、酸化鉄
等を砥粒として使用して行つた発明(特公昭56−
23746号、発明の名称「軟質粒子による結晶材料
の高精度鏡面研磨法」)などが知られている。こ
の例では、石英ガラス、銅、クロスなどをポリシ
ヤとして使用し、ポリシヤと被加工物を相対的に
押し付けながら回転させ、その間に砥粒を供給す
る。砥粒と被化合物との間の固相反応を利用する
ため、これは大気中で乾式で行つており、湿式よ
りも効率が良く、代表的なメカノケミカルポリシ
ング法といてよい。
By the way, the above processing method pioneers a new aspect of processing technology, and is excellent in principle.
As a processing method applying this method, an invention was developed in which the front surface polishing of sapphire, which was selected as the workpiece, was carried out using iron oxide etc. as abrasive grains.
No. 23746, the title of the invention is ``High-precision mirror polishing method for crystalline materials using soft particles''. In this example, quartz glass, copper, cloth, or the like is used as the polisher, the polisher and the workpiece are rotated while being pressed against each other, and abrasive grains are supplied between them. Because it utilizes a solid phase reaction between the abrasive grains and the compound to be treated, it is carried out dry in the atmosphere, which is more efficient than the wet method and can be considered a typical mechanochemical polishing method.

[発明が解決しようとする問題点] 上記の発明は、その基本原理として優位性か
ら、大いに注目され、実用化が嘱望されている。
しかし、他の材料への適用や、被加工物の対象に
ついては進展が図られていない。その大きな理由
の第一は、この方法では、相互に押圧接触されて
いるポリシヤと被化合物との間に、砥粒を効率良
く連続的に供給することが必要であるが、とくに
乾式の場合に、砥粒の効率的かつ連続的な供給が
困難であるため、加工にむらができ、また砥粒が
十分に供給されなかつた部位では、被化合物がポ
リシヤと直接接触して損傷が残るなどの欠点があ
るためである。第二には、乾式で粉体の砥粒を扱
わなければならないため、操作性が悪く、作業環
境が悪くなるという欠点があるためである。
[Problems to be Solved by the Invention] The above invention has attracted much attention because of its superiority as a basic principle, and its practical application is expected.
However, no progress has been made in applying it to other materials or processing objects. The first major reason for this is that in this method, it is necessary to efficiently and continuously supply abrasive grains between the polisher and the compound that are in pressure contact with each other, but this is especially true in the dry method. , it is difficult to supply abrasive grains efficiently and continuously, resulting in uneven machining, and in areas where abrasive grains are not sufficiently supplied, the compound may come into direct contact with the polisher, resulting in damage. This is because there are drawbacks. Second, since powder abrasive grains must be handled in a dry manner, there are drawbacks such as poor operability and a poor working environment.

[問題点を解決するための手段] 本発明は、上述の問題点を解決し、メカノケミ
カルポリシングの原理に基づく加工方法を改良し
て効率よく実施し、広く硬脆材料に適用できるよ
うにするために開発されたものであつて、メカノ
ケミカルポリシングに適した鏡面加工方法と、こ
れに使用する新しい砥石材を提供することを目的
としている。
[Means for Solving the Problems] The present invention solves the above-mentioned problems and improves the processing method based on the principle of mechanochemical polishing so that it can be carried out efficiently and can be widely applied to hard and brittle materials. It was developed for the purpose of providing a mirror polishing method suitable for mechanochemical polishing, and a new grindstone material for use in this process.

本発明の骨子は、メカノケミカルポリシング
を、従来のようなポリシヤ上で遊離砥粒を使用し
て行うのではなく、新たに構成した砥石材をポリ
シヤのように被加工物に押しつけ、相対的に運動
させることによつて砥粒を供給する加工方法を要
旨とするものである。そして、上記問題点を解決
するために本発明が採用した技術手段による加工
方法は、ガラス、セラミツクス、単結晶などの硬
脆材料の被加工物を、被加工物より軟質の砥粒を
成形した砥石材を使用し、この砥石材を被加工物
の加工面に押し付けるとともに砥石材と被化合物
とを相対的に運動させることによつて、機械的な
加工と化学的な作用とを併用する硬脆材料の鏡面
加工方法において、被加工物との化学的反応性に
優れた砥粒と、熱可塑性ないし熱硬化性樹脂の樹
脂とを混合した複合体によつて砥石材を成形し、
砥粒を、ある程度固定しつつも被化合物との接触
によつて砥石材から容易に離脱させると共に、連
続的に被加工物の加工面に供給して鏡面加工する
ことを特徴とするものである。
The gist of the present invention is that mechanochemical polishing is not performed using free abrasive grains on a polisher as in the past, but a newly configured grinding stone material is pressed against the workpiece like a polisher and relatively The gist of this is a processing method that supplies abrasive grains through motion. In order to solve the above-mentioned problems, the processing method using technical means adopted by the present invention is to mold a workpiece made of a hard and brittle material such as glass, ceramics, or single crystal into abrasive grains that are softer than the workpiece. By using a grinding stone, pressing this grinding stone against the processing surface of the workpiece, and moving the grinding stone and the compound relative to each other, a hardening process that combines mechanical processing and chemical action is achieved. In a method for mirror polishing brittle materials, a grindstone material is formed from a composite of abrasive grains that have excellent chemical reactivity with the workpiece and a thermoplastic or thermosetting resin;
It is characterized by fixing the abrasive grains to a certain extent but easily separating them from the grindstone material by contact with the compound to be processed, and continuously supplying the abrasive grains to the processing surface of the workpiece to produce a mirror finish. .

また、本発明に係る砥石材は、その主体を構成
する砥粒として、いずれも被加工物との化学的固
相反応性に優れた材料を使用するものとし、 砥粒を、ある程度固定しつつも被加工物との
接触によつて容易に離脱し、加工面に連続的に
供給できるように樹脂の混合させて成形した複
合体であつて、加圧下で加熱成形して被化合物
より軟質のもの、 砥粒を、ある程度固定しつつも被加工物との
接触によつて容易に離脱し、加工面に連続的に
供給できるように焼結助剤および粘結材と混合
させて成形した複合体であつて、加圧下で加熱
成形したのち高温で焼成して、被加工物より軟
質の多孔質構造としたもの であつて、上記砥石材が被加工物に押し付けら
れ、擦られることにより、砥粒はそのまま加工面
から離脱するが、上記砥粒は砥石材から連続的に
供給されることを特徴とするものである。
In addition, the grindstone material according to the present invention uses a material that has excellent chemical solid phase reactivity with the workpiece as the main abrasive grains, and fixes the abrasive grains to a certain extent. It is a composite molded by mixing resins so that it can be easily detached by contact with the workpiece and can be continuously supplied to the processing surface. A composite formed by mixing abrasive grains with a sintering aid and a caking agent so that they can be fixed to a certain extent but easily detached by contact with the workpiece, and can be continuously supplied to the machined surface. The grindstone is formed into a porous structure that is softer than the workpiece by being heat-formed under pressure and then fired at a high temperature, and when the grindstone material is pressed against the workpiece and rubbed, Although the abrasive grains leave the machined surface as they are, the abrasive grains are continuously supplied from the grindstone material.

[実施例] 本発明の加工方法を、一実施例として示す加工
装置に基づいて説明する。第1図は加工装置の一
部を断面で示す全体の正面図であつて、基本の構
成のみを示し、第2図はその要部の詳細図であ
る。図中において、1は加工装置、2はその基
台、3は加工部、4は被加工部5の支持部、6は
制御部である。基台2は本体21と上面テーブル
22とからなる枠組体であり、本体21の内部上
方に加工部3を装備してある。加工部3は駆動装
置31を主体とし、駆動電動機32の駆動軸33
をテーブル22上に垂直に突出させている。駆動
軸33の上端には、砥石材34を水平に支持する
保持台35が固定してあり、導線36から給電さ
れる駆動電動機32は保持台35を回転させる。
保持台35は通常装置のラツプ盤台に相当するほ
か、加工部3の構成は特に限定されるものではな
い。支持部4は、基台2の上面で、複数の支持脚
41に支持される支持台42を、垂直のスペーサ
43を介して2段に枠組してあり、加工部3の上
方に延びる一側方には、上下のボール軸受44を
介してスプライン45を回転自在に垂直に支持
し、前記した駆動軸33の直上方から所定の距離
eに偏心して位置させている。このスプライン4
5は、支持台41上に配した駆動電動機46か
ら、ギヤ組立体47を経て駆動される。スプライ
ン45の下端には、被加工物5の支持具48が固
着されており、上端には調節可能の複数の荷重ピ
ース49が挿通してあつて、スプライン45を前
記保持台35に押し付け、被加工物5と砥石材3
4とを当接させている。制御部6は制御盤61を
本体21に取付けてあり、上記の駆動電動機32
と駆動電動機46の作動を制御するスイツチ62
を配備している。
[Example] The processing method of the present invention will be explained based on a processing apparatus shown as an example. FIG. 1 is an overall front view showing a part of the processing apparatus in cross section, showing only the basic configuration, and FIG. 2 is a detailed view of the main parts thereof. In the figure, 1 is a processing device, 2 is its base, 3 is a processing section, 4 is a support section for a processed section 5, and 6 is a control section. The base 2 is a frame body consisting of a main body 21 and an upper table 22, and a processing section 3 is provided inside and above the main body 21. The processing section 3 mainly includes a drive device 31, and a drive shaft 33 of a drive motor 32.
is made to protrude vertically above the table 22. A holder 35 that horizontally supports a grinding stone 34 is fixed to the upper end of the drive shaft 33, and a drive motor 32 supplied with power from a conductor 36 rotates the holder 35.
The holding stand 35 corresponds to a lap board stand of a normal device, and the structure of the processing section 3 is not particularly limited. The support part 4 has a support stand 42 supported by a plurality of support legs 41 on the upper surface of the base 2, framed in two stages via vertical spacers 43, and one side extending above the processing part 3. On the other hand, a spline 45 is rotatably supported vertically via upper and lower ball bearings 44, and is eccentrically positioned at a predetermined distance e from directly above the drive shaft 33. This spline 4
5 is driven from a drive motor 46 disposed on the support base 41 via a gear assembly 47. A support 48 for the workpiece 5 is fixed to the lower end of the spline 45, and a plurality of adjustable load pieces 49 are inserted through the upper end of the spline 45 to press the spline 45 against the holding table 35 and to hold the workpiece 5. Workpiece 5 and grindstone material 3
4 are in contact with each other. The control unit 6 has a control panel 61 attached to the main body 21, and the drive motor 32 described above.
and a switch 62 that controls the operation of the drive motor 46.
is being deployed.

次に、本発明の鏡面加工方法を使用する砥石材
34の製造方法について説明する。第3図は砥石
材の成形装置7を概念的に示している。成形装置
7は、基台71と、金型72の周囲の加熱装置7
3と、矢印で示す加圧装置74とからなり、金型
72は筒形の空洞を有する雌型75と、雌型75
内に嵌入される雄型76とで構成されている。加
熱装置73はニクロム線で表示されており、金型
72の外周に、絶縁用グラスウールを介して巻き
付けられている。加熱温度と加圧圧力とは、図示
しない制御装置から制御される。なお、図中の8
は断熱材である。
Next, a method for manufacturing the grindstone material 34 using the mirror finishing method of the present invention will be described. FIG. 3 conceptually shows the forming device 7 for grinding stone material. The molding device 7 includes a base 71 and a heating device 7 around the mold 72.
The mold 72 consists of a female mold 75 having a cylindrical cavity, and a pressurizing device 74 shown by an arrow.
It consists of a male die 76 that is fitted into the inner part. The heating device 73 is shown as a nichrome wire, and is wound around the outer periphery of the mold 72 with insulating glass wool interposed therebetween. The heating temperature and pressurizing pressure are controlled by a control device (not shown). In addition, 8 in the figure
is an insulating material.

砥石材34は円形の盤体に成形されて使用され
るものであるが、成形の工程は次のように実施さ
れる。
The grinding stone material 34 is used after being formed into a circular disk, and the forming process is carried out as follows.

(1) 砥粒の選定の準備工程 砥石材用の砥粒としては、金属、酸化物、窒
化物、珪化物、硼化物、炭化物などの粉体の単
体あるいは混合物を使用する。具体的には、酸
化クロムCr2O3、酸化鉄Fe2O3、酸化セリウム
CeO2等が好適である。
(1) Preparation process for selecting abrasive grains As abrasive grains for grindstone materials, single powders or mixtures of powders such as metals, oxides, nitrides, silicides, borides, and carbides are used. Specifically, chromium oxide Cr 2 O 3 , iron oxide Fe 2 O 3 , cerium oxide
CeO 2 etc. are suitable.

(2) 樹脂の選定の準備工程 樹脂としては、ポリアセタール、ポリエチレ
ン、アクリロニトリル、ポルフエニルサルフア
イドなどの熱可塑性樹脂、ないしは、フエノー
ル、エポキシなどの熱硬化性樹脂の単体あるい
は混合物を使用する。具体的には、アクリロニ
トリル、フエノール等が結合材として適してい
る。
(2) Preparatory process for resin selection As the resin, thermoplastic resins such as polyacetal, polyethylene, acrylonitrile, and porphenyl sulfide, or thermosetting resins such as phenol and epoxy are used alone or in mixtures. Specifically, acrylonitrile, phenol, etc. are suitable as the binder.

(3) 砥粒と樹脂とによる混合体の調製工程 樹脂を基材として使用する場合は、砥粒と樹
脂を、樹脂の体積分率で10%から80%混合し、
金型に充填する。
(3) Process for preparing a mixture of abrasive grains and resin When using resin as a base material, the abrasive grains and resin are mixed at a resin volume fraction of 10% to 80%,
Fill the mold.

(4) 樹脂を使用しない場合の砥粒の調製工程 砥粒のみから砥石材を形成する場合には、焼
結除剤と粘結材を加え、混合して金型に充填す
る。
(4) Process for preparing abrasive grains when resin is not used When forming a whetstone material only from abrasive grains, a sinter remover and a caking agent are added, mixed, and filled into a mold.

(5) 成形の本工程 砥粒と樹脂との混合物を成形装置7の雌型7
5内に充填し、無圧から300MPaの圧力で加圧
しながら180から220℃で熱間成形して樹脂を結
合材とした砥石材が得られる。
(5) Main process of molding The mixture of abrasive grains and resin is placed in the female mold 7 of the molding device 7.
5 and hot-formed at 180 to 220°C while applying pressure from no pressure to 300 MPa to obtain a grindstone material with resin as a binder.

砥粒のみの場合には、砥粒を雌型75内に充
填し、無圧から300MPaの圧力で加圧しながら
180から300℃で熱間成形したのち、これを乾燥
させ、1000℃から1800℃で焼成して、多孔質の
砥石材が得られる。
In the case of using only abrasive grains, fill the abrasive grains into the female mold 75 and pressurize from no pressure to 300 MPa.
After hot forming at 180 to 300°C, this is dried and fired at 1000°C to 1800°C to obtain a porous grindstone material.

次に、本発明の鏡面加工方法について述べる。
第1図に示すように、本発明の鏡面加工方法の対
象となる被化合物5は、支持具48の下面中心に
固着し、荷重ピース49を加減して砥石材34の
上面に当接して押し付け、スプライン45、ギヤ
組立体47を経て、駆動電動機46によつて所定
の速度で回転させる。一方、上記のように成形し
て得られた砥石材34を保持台35の上面凹部に
固定し、駆動電動機33によつて回転させる。被
化合物5は、自転しながら砥石材34の上面を公
転することになり、ここで、鏡面加工が行われ
る。この加工の作用はメカノケミカルポリシング
であり、砥粒と被加工物との間で固相の化学反応
が行われると共に、この反応部分の薄い層を、押
し付け圧力を加えた砥粒と被加工物5との間の摩
擦力によつて除去して、加工するものであるが、
特に本発明においては、砥石材34が被加工物5
に押し付けられ、擦られることによつて、砥粒は
加工面から離脱することから、上記砥粒は砥石材
34から連続的にしかも自動的に加工面に供給さ
れるので、砥粒の供給の操作性を容易化すること
ができるばかりでなく、加工にむらを生ぜず、面
精度の高い鏡面加工を効率よく行うことができ
る。
Next, the mirror finishing method of the present invention will be described.
As shown in FIG. 1, the object 5 to be subjected to the mirror polishing method of the present invention is fixed to the center of the lower surface of the support 48, and is pressed against the upper surface of the grindstone material 34 by adjusting the load piece 49. , a spline 45, and a gear assembly 47, and is rotated at a predetermined speed by a drive motor 46. On the other hand, the grindstone material 34 obtained by molding as described above is fixed in the recessed part of the upper surface of the holding table 35 and rotated by the drive motor 33. The compound to be compounded 5 revolves around the upper surface of the grindstone material 34 while rotating, and mirror finishing is performed here. The action of this processing is mechanochemical polishing, in which a solid phase chemical reaction occurs between the abrasive grains and the workpiece, and a thin layer of this reaction area is pressed between the abrasive grains and the workpiece under pressure. It is removed and processed by the frictional force between the
In particular, in the present invention, the grindstone material 34 is
The abrasive grains are separated from the machined surface by being pressed and rubbed by the grinding wheel material 34, so that the abrasive grains are continuously and automatically supplied to the machined surface from the grindstone material 34, so that the supply of abrasive grains is reduced. Not only can the operability be facilitated, but also mirror finishing with high surface precision can be efficiently performed without causing unevenness in the machining.

[実施例] (1) 本発明の加工方法を実験例によつて説明す
る。加工に使用する砥石材34は直径10mmから
300mm、厚さ5mmから50mmとし、駆動電動機3
3を10〜400rpmで回転させ、被加工物5に対
して、荷重ピース49を加減して、無圧から
20MPaの圧力となるように、スプライン45
を介して被加工物5を砥石材34の上面に当接
した。このとき、スプライン45と駆動軸33
との偏心eにより、被加工物5は砥石材34の
外周の高速回転部分に臨み、加圧の下で加工さ
れた。被化合物5としては、窒化珪素焼結体を
選び、酸化クロムCr2O3を砥粒とし、体積分率
40〜70%のアクリロニトリル、あるいは体積分
率15〜40%のフエノールを樹脂として成形した
砥石材34によつて、加圧能率22μm/Km・
MPaが得られ、表面あらさ40Åを実現した。
これは、同等の鏡面加工を1μmのダイヤモン
ド砥粒によつて行つた場合の約5倍の加圧能率
に相当する。
[Examples] (1) The processing method of the present invention will be explained using experimental examples. The grindstone material 34 used for processing is from 10 mm in diameter.
300mm, thickness 5mm to 50mm, drive motor 3
3 at 10 to 400 rpm and adjust the load piece 49 against the workpiece 5 from no pressure to
Spline 45 so that the pressure is 20MPa.
The workpiece 5 was brought into contact with the upper surface of the grindstone material 34 via the grinding wheel 34 . At this time, the spline 45 and the drive shaft 33
Due to the eccentricity e, the workpiece 5 faced the high-speed rotating portion of the outer periphery of the grinding stone 34, and was machined under pressure. As the compound 5, a silicon nitride sintered body is selected, chromium oxide Cr 2 O 3 is used as the abrasive grain, and the volume fraction is
Pressure efficiency of 22μm/Km・
MPa was obtained, and a surface roughness of 40 Å was achieved.
This corresponds to approximately 5 times the pressing efficiency when equivalent mirror finishing is performed using 1 μm diamond abrasive grains.

(2) 第4図のaは砥石材の回転数と加工速度との
関係、bは加工圧力と加工速度との関係を示し
ている。この結果は、一般の機械的研磨と同様
の傾向であるが、回転数を上げると砥粒が被加
工物と接する頻度が増し、その分だけ化学反応
が多く起こり、また、加工時の押圧圧力を高く
すると摩擦が大きくなり、その発熱により界面
の活性化が進むと考えることができる。別途に
行つたX線マイクロ分析では、試料表面の元素
分析において、Cr原子の残留分が顕著に検出
された。また、X線光電子分光による分析で
は、加工面に検出されたCr原子は、イオンエ
ツチングによつて検出不能になり、反応層が
500Å以下の極めて薄い層であることから、化
学反応が加工に関与していることを裏付けると
いうことができる。
(2) In Fig. 4, a shows the relationship between the rotational speed of the grindstone and the machining speed, and b shows the relationship between the machining pressure and the machining speed. This result shows a similar tendency to general mechanical polishing, but as the rotation speed increases, the frequency with which the abrasive grains come into contact with the workpiece increases, resulting in more chemical reactions occurring, and the pressing pressure during processing increases. It can be thought that increasing friction increases friction, and the resulting heat generation promotes activation of the interface. In a separate X-ray microanalysis, a significant residual amount of Cr atoms was detected in the elemental analysis of the sample surface. In addition, in analysis by X-ray photoelectron spectroscopy, Cr atoms detected on the processed surface became undetectable due to ion etching, and the reaction layer
The fact that the layer is extremely thin, less than 500 Å, confirms that a chemical reaction is involved in the processing.

(3) 次に、窒化珪素焼結体を被加工物とし、砥粒
としてアルミナを使用した砥石材と、アルミナ
に酸化クロムCr2O3を加えて使用した砥石材に
ついて加工速度と比較実験を行つた。後者の酸
化クロムの混合量は20%である。その結果で
は、後者の加工速度は3倍以上であつた。前者
のアルミナは機械的研磨を行つているものと考
えられるが、これに、粒度がほぼ等しく、硬度
の低い酸化クロムを20%ほど混合しても、機械
的な加工速度が大幅に増加することは考えられ
ない。ここで、後者の砥石材が酸化クロムの砥
粒を含むことによつて、その活性が化学的に被
化合物と相性が良く、化学反応を伴つた結果、
加工速度が大きく上昇したと考えることができ
る。
(3) Next, we conducted a comparative experiment on machining speed using a silicon nitride sintered body as the workpiece, and a grindstone using alumina as the abrasive grains and a grindstone using alumina with chromium oxide Cr 2 O 3 added. I went. The amount of chromium oxide mixed in the latter is 20%. The results showed that the machining speed of the latter was more than three times higher. The former alumina is thought to be mechanically polished, but even if 20% of chromium oxide, which has approximately the same particle size and low hardness, is mixed with it, the mechanical processing speed increases significantly. I can't think of it. Here, because the latter grinding wheel material contains chromium oxide abrasive grains, its activity is chemically compatible with the compound to be treated, and as a result of a chemical reaction,
It can be considered that the machining speed has increased significantly.

(4) さらに、ボールベアリングの鋼球に代わるセ
ラミツクスの粗球体を被加工物とし、実験例1
と同様の砥石材によつて球面加工の実験を行つ
た。加工装置は市販品を改造したものであつ
て、回転自在の加工台の上面に平板の砥石材を
据付け、その上面に小間隔をおいて筒形の試料
ホルダを保持した。その内部に試料の球体を敷
き並べ、その上面に試料ホルダに内接する砥石
材の板を敷いて押え板とし、重りを載置した。
試料は上下面から砥石材で挟まれた状態に置か
れた。試料ホルダに駆動力を与えて自転させる
とともに、加工台に対して往復運動を与え、球
体にランダムに転がり摩擦の加工を行つた。加
工時間は47、290、350時間であり、球体の直径
は平均8.5mmからの減少量で加工の能率を評価
し、真球度は鋼球のJISに従つて評価し、さら
に、表面粗さを計測したところ、いずれも満足
な結果を得た。
(4) Furthermore, we used rough ceramic spheres instead of steel balls in ball bearings as the workpiece, and experiment example 1
We conducted experiments on spherical surface machining using the same grindstone material. The processing device was a modified commercially available product, and a flat grinding stone was installed on the upper surface of a rotatable processing table, and a cylindrical sample holder was held on the upper surface at a small distance. The sample spheres were laid out inside it, and a grindstone plate inscribed in the sample holder was laid on the top surface to serve as a holding plate, and a weight was placed on it.
The sample was placed between the top and bottom surfaces of the grindstone. A driving force was applied to the sample holder to rotate it, and a reciprocating motion was applied to the processing table to randomly roll the sphere and perform friction processing. The machining time was 47, 290, and 350 hours, and the efficiency of machining was evaluated based on the decrease in the diameter of the sphere from an average of 8.5 mm.The sphericity was evaluated according to JIS for steel balls, and the surface roughness was When measured, satisfactory results were obtained.

[発明の効果] これを要するに、本発明は、硬脆材料のメカノ
ケミカルな加工方法を改良して、従来のような、
ポリシヤと被化合物との間の砥粒を供給すること
に代えて、被加工物との化学的反応性に優れた砥
粒と、熱可塑性ないしは熱硬化性樹脂の樹脂とを
混合した複合体によつて砥石材を成形し、砥粒を
ある程度固定しつつも被加工物との接触によつて
砥石材から容易に離脱させると共に、砥粒を連続
的に被加工物の加工面に供給して鏡面加工する方
法を提供し、このような新規構成の砥石材と被加
工物との押し付け圧力と相対運動とによつて、砥
石材自体から砥粒を連続的に供給するようにした
から、機械的や化学的な個々の方法に勝る加工方
法であることは勿論のこと、従来の技術において
問題点とされた前記欠点がすべて解消され、しか
も、硬脆材料において特に難削材とされていた窒
化珪素焼結体のような被加工物でも加工むらのな
い面精度の高い加工を効率よく行うことが可能と
なり、新しい脚光を浴びる素材の活用に一新紀元
を画することができる。また、上記加工方法に使
用される砥石材は、その材料に特殊な限定がな
く、しかも、構成の選択自由度が大きいから、セ
ラミツクス等の将来の用途に対しても、対応の可
能性を有しており、加工技術の向上と実用化に寄
与するところが大きく、まことに有意義でかつ画
期的である。
[Effects of the Invention] In summary, the present invention improves the mechanochemical processing method for hard and brittle materials, and
Instead of supplying abrasive grains between the polisher and the compound to be processed, we can use a composite material that mixes abrasive grains with excellent chemical reactivity with the workpiece and thermoplastic or thermosetting resin. Therefore, the abrasive material is shaped, and while the abrasive grains are fixed to some extent, they can be easily separated from the whetstone material by contact with the workpiece, and the abrasive grains are continuously supplied to the processing surface of the workpiece. By providing a method for mirror finishing, and by using the pressing pressure and relative motion between the grinding stone and the workpiece with this new configuration, the abrasive grains are continuously supplied from the grinding stone itself. Not only is it a processing method that is superior to the individual methods using targets and chemicals, but it also eliminates all of the above-mentioned drawbacks of conventional techniques, and is particularly difficult to machine among hard and brittle materials. This makes it possible to efficiently process workpieces such as silicon nitride sintered bodies with high surface accuracy and no unevenness, marking a new era in the utilization of new materials that are in the spotlight. In addition, the grinding stone used in the above processing method has no special limitations on its material and has a high degree of freedom in selecting its configuration, so it has the potential to be used in future applications such as ceramics. This is truly significant and groundbreaking, as it greatly contributes to the improvement and practical application of processing technology.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る硬脆材料の鏡面加工方法お
よびそれに使用する砥石材の一実施例を説明する
ものであり、第1図は本発明の加工方法を実施す
る加工装置の正面図、第2図はその要部の側面
図、第3図は第2の発明の砥石材を製造する成形
装置の実施例を示し、第4図のaは砥石材の回転
数と加工速度(単位時間当り材料除去量)との関
係、bは加工圧力と加工速度(単位時間当りおよ
び単位加工長さ当り材料除去量)との関係を示
す。 1……加工装置、2……基台、3……加工部、
4……支持部、5……被加工物、6……制御部、
7……成形装置、32……駆動電動機、33……
駆動軸、34……砥石材、35……保持台、45
……スプライン、46……駆動電動機、48……
支持具、49……荷重ピース、61……制御盤、
72……金型、73……加熱装置、ニクロム線、
74……加圧装置、75……金型の雌型、76…
…雄型。
The drawings are for explaining an embodiment of the method for mirror-finishing hard and brittle materials and the grindstone material used therein according to the present invention. The figure shows a side view of the main parts, FIG. 3 shows an embodiment of the forming apparatus for manufacturing the grindstone material of the second invention, and a in FIG. b shows the relationship between machining pressure and machining speed (amount of material removed per unit time and per unit machining length). 1... Processing device, 2... Base, 3... Processing section,
4... Support part, 5... Workpiece, 6... Control part,
7... Molding device, 32... Drive motor, 33...
Drive shaft, 34... Grindstone material, 35... Holding stand, 45
... Spline, 46 ... Drive motor, 48 ...
Support, 49...load piece, 61...control panel,
72...mold, 73...heating device, nichrome wire,
74... Pressure device, 75... Female mold, 76...
...male type.

Claims (1)

【特許請求の範囲】 1 ガラス、セラミツクス、単結晶などの硬脆材
料の被加工物を、被加工物より軟質の砥粒を成形
した砥石材を使用し、この砥石材を被加工物の加
工面に押し付けるとともに砥石材と被化合物とを
相対的に運動させることによつて、機械的な加工
と化学的な作用とを併用する硬脆材料の鏡面加工
方法において、被加工物との化学的反応性に優れ
た砥粒と、熱可塑性ないしは熱硬化性樹脂の樹脂
とを混合した複合体によつて砥石材を成形し、砥
粒を、ある程度固定しつつも被化合物との接触に
よつて砥石材から容易に離脱させると共に、連続
的に被加工物の加工面に供給して鏡面加工するこ
とを特徴とする硬脆材料の鏡面加工方法。 2 ガラス、セラミツクス、単結晶などの硬脆材
料の被加工物を鏡面加工するための砥石材におい
て、該砥石材は、砥粒を、ある程度固定しつつも
被化合物との接触によつて容易に離脱し、加工面
に連続的に供給できるように樹脂と混合させて成
形した複合体であつて、砥粒は、被加工物との化
学的固相反応性に優れた金属、酸化物、窒化物、
珪化物、硼化物、炭化物などの粉体の単体あるい
は混合物から選ばれるものを使用し、樹脂は、ポ
リアセタール、ポリエチレン、アクリロニトリ
ル、ポリフエニルサルフアイドなどの熱可塑性樹
脂、ないしは、フエノール、エポキシなどの熱硬
化性樹脂の単体あるいは混合物を使用し、前記砥
粒と樹脂とを混合して加圧下で加熱成形し、被加
工物より軟質に成形してなることを特徴とする硬
脆材料の鏡面加工方法に使用する砥石材。 3 砥石材は、砥粒と焼結助剤および粘結材とを
混合させて成形した複合体であつて、砥粒は、被
化合物との化学的固相反応性に優れた粉体の単体
あるいは混合物から選ばれるものを使用し、前記
砥粒と焼結助剤および粘結材とを混合して加圧下
で加熱成形したのち高温で焼成し、被加工物より
軟質の多孔質構造としたことを特徴とする特許請
求の範囲第2項に記載の硬脆材料の鏡面加工方法
に使用する砥石材。
[Claims] 1. Processing of a workpiece made of a hard and brittle material such as glass, ceramics, or single crystal using a grindstone material formed with softer abrasive grains than the workpiece material. In the mirror finishing method for hard brittle materials that combines mechanical processing and chemical action, by pressing the grinding stone against the surface and moving the grinding stone and the compound relative to each other, chemical interaction with the workpiece is achieved. The abrasive material is molded from a composite of highly reactive abrasive grains and thermoplastic or thermosetting resin, and the abrasive grains are fixed to some extent while still being able to contact with the compound. A method for mirror-finishing a hard and brittle material, which is characterized in that it is easily removed from a grindstone and is continuously supplied to the processing surface of a workpiece to create a mirror-finish finish. 2. In a grindstone material for mirror-finishing a workpiece made of hard and brittle materials such as glass, ceramics, and single crystals, the grindstone material fixes the abrasive grains to a certain extent, but easily loosens them through contact with the compound to be processed. It is a composite formed by mixing with resin so that it can be released and continuously supplied to the processing surface.The abrasive grains are made of metals, oxides, and nitrides that have excellent chemical solid phase reactivity with the workpiece. thing,
Powders such as silicides, borides, and carbides are used alone or in mixtures, and the resins are thermoplastic resins such as polyacetal, polyethylene, acrylonitrile, and polyphenyl sulfide, or thermoplastic resins such as phenol and epoxy. A method for mirror-finishing hard and brittle materials, characterized in that a hardening resin alone or a mixture is used, the abrasive grains are mixed with the resin, and the mixture is heated and molded under pressure to form a material softer than the workpiece. Whetstone material used for. 3. The grindstone material is a composite formed by mixing abrasive grains, a sintering aid, and a caking agent, and the abrasive grains are a single powder that has excellent chemical solid-state reactivity with the compound. Alternatively, using a mixture selected from the above, the abrasive grains are mixed with a sintering aid and a caking agent, heated and formed under pressure, and then fired at a high temperature to form a porous structure that is softer than the workpiece. A grindstone material used in the method for mirror finishing a hard and brittle material according to claim 2.
JP21863387A 1987-09-01 1987-09-01 Machining method for specular surface of hard and brittle material and grinding wheel member used therefor Granted JPS6464766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21863387A JPS6464766A (en) 1987-09-01 1987-09-01 Machining method for specular surface of hard and brittle material and grinding wheel member used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21863387A JPS6464766A (en) 1987-09-01 1987-09-01 Machining method for specular surface of hard and brittle material and grinding wheel member used therefor

Publications (2)

Publication Number Publication Date
JPS6464766A JPS6464766A (en) 1989-03-10
JPH05170B2 true JPH05170B2 (en) 1993-01-05

Family

ID=16723009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21863387A Granted JPS6464766A (en) 1987-09-01 1987-09-01 Machining method for specular surface of hard and brittle material and grinding wheel member used therefor

Country Status (1)

Country Link
JP (1) JPS6464766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886388A (en) * 2012-10-19 2013-01-23 刘显 Chaineded continuous drawing machine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04336949A (en) * 1991-05-13 1992-11-25 Marutoo:Kk Method for polishing mirror surface of ceramics by lapping
AT403671B (en) * 1996-02-14 1998-04-27 Swarovski Tyrolit Schleif GRINDING TOOL WITH A METAL RESIN BINDING AGENT AND METHOD FOR THE PRODUCTION THEREOF
JP4809509B2 (en) * 1998-10-02 2011-11-09 財団法人ファインセラミックスセンター Ceramic processing tools.
JP2017042890A (en) * 2015-08-28 2017-03-02 国立大学法人京都工芸繊維大学 Polishing tool and method for producing the same, and polishing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117390A (en) * 1975-04-07 1976-10-15 Asahi Daiyamondo Kogyo Kk Diamond grindstone for polishing glass
JPS5279398A (en) * 1975-11-11 1977-07-04 Showa Denko Kk Polishing device for glass face finishing
JPS5623746A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59134647A (en) * 1983-01-19 1984-08-02 Olympus Optical Co Ltd Polishing method and tool of optical part
JPS61182774A (en) * 1985-02-09 1986-08-15 Kanebo Ltd Soft metal polishing wheel
JPS61192480A (en) * 1985-02-22 1986-08-27 Kanebo Ltd Synthetic grinding stone for soft metal
JPS61219565A (en) * 1985-03-22 1986-09-29 Taihoo Kogyo Kk Polishing method
JPS62107954A (en) * 1985-11-05 1987-05-19 Tomiji Saito Plastic polishing material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51117390A (en) * 1975-04-07 1976-10-15 Asahi Daiyamondo Kogyo Kk Diamond grindstone for polishing glass
JPS5279398A (en) * 1975-11-11 1977-07-04 Showa Denko Kk Polishing device for glass face finishing
JPS5623746A (en) * 1979-08-01 1981-03-06 Matsushita Electronics Corp Manufacture of semiconductor device
JPS59134647A (en) * 1983-01-19 1984-08-02 Olympus Optical Co Ltd Polishing method and tool of optical part
JPS61182774A (en) * 1985-02-09 1986-08-15 Kanebo Ltd Soft metal polishing wheel
JPS61192480A (en) * 1985-02-22 1986-08-27 Kanebo Ltd Synthetic grinding stone for soft metal
JPS61219565A (en) * 1985-03-22 1986-09-29 Taihoo Kogyo Kk Polishing method
JPS62107954A (en) * 1985-11-05 1987-05-19 Tomiji Saito Plastic polishing material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886388A (en) * 2012-10-19 2013-01-23 刘显 Chaineded continuous drawing machine

Also Published As

Publication number Publication date
JPS6464766A (en) 1989-03-10

Similar Documents

Publication Publication Date Title
CN101972979B (en) Diamond surface chemical mechanical combined machining method and device thereof
CN102170999A (en) Apparatus for polishing spherical body, method for polishing spherical body and method for manufacturing spherical member
JPH05170B2 (en)
US6261162B1 (en) Polishing apparatus and method of manufacturing grinding plate
JP6145548B1 (en) Chamfering grinding method and chamfering grinding apparatus
JPH09193001A (en) Honing tool
JPH08506769A (en) Method for machining brittle material members and apparatus for carrying out the method
JP4746788B2 (en) Super-abrasive wheel for surface honing, dressing method thereof, and grinding apparatus using the wheel
JP2022047538A (en) Chamfer grinding method and chamfer grinding device
Yasunaga et al. Development of sequential grinding-polishing process applicable to large-size Si wafer finishing
WO2021002216A1 (en) Synthetic grinding stone
WO2000024548A1 (en) Polishing apparatus and a semiconductor manufacturing method using the same
JPH04201180A (en) Putty for polishing, grinding wheel material using the same, and polishing machine having the same grinding wheel material
JP6178216B2 (en) Grinding / lapping / polishing method and apparatus thereof
JPS61136762A (en) Manufacture of rough spherical body
JPH06775A (en) Grinding wheel for electrolytic dressing generating mechanochemical action
JP3317910B2 (en) Grinding equipment in grinder
JPS6339007Y2 (en)
JPH0569309A (en) Super finishing method
JP2023139462A (en) Grinding wheel and grinding device
JP2645044B2 (en) Sphere processing equipment
TWI231246B (en) Method for polishing diamond wafer
KR200420508Y1 (en) The polishing plate for slurry block
JP2001009731A (en) Mechanochemical grinding wheel
JPH01109063A (en) Cutting and grinding method through grinding wheel