JPH05170547A - Production of sintered silicon nitride - Google Patents

Production of sintered silicon nitride

Info

Publication number
JPH05170547A
JPH05170547A JP3354602A JP35460291A JPH05170547A JP H05170547 A JPH05170547 A JP H05170547A JP 3354602 A JP3354602 A JP 3354602A JP 35460291 A JP35460291 A JP 35460291A JP H05170547 A JPH05170547 A JP H05170547A
Authority
JP
Japan
Prior art keywords
temperature
sintering
silicon nitride
sintered
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3354602A
Other languages
Japanese (ja)
Other versions
JP3146042B2 (en
Inventor
Nobuyuki Hashimoto
信行 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP35460291A priority Critical patent/JP3146042B2/en
Publication of JPH05170547A publication Critical patent/JPH05170547A/en
Application granted granted Critical
Publication of JP3146042B2 publication Critical patent/JP3146042B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the denseness of sintered Si3N4 by sintering a compact containing Si3N4 powder in an inert gas atmosphere at a temperature higher than a prescribed temperature and lowering the temperature to the prescribed temperature at a specific cooling rate. CONSTITUTION:A slurry is prepared by adding and mixing 5-15wt.% of an oxide sintering assistant and/or a nitride sintering assistant such as MgO and AlN and a water-based binder to Si3N4 powder having particle diameter of <=2mum. Granules prepared from the slurry are press-compacted and the produced compact is coated with powder having similar composition, put into a graphite vessel and inserted into a sintering furnace. The compact is heated at 900 deg.C or thereabout in vacuum to eliminate the binder and sintered by maintaining in N2 gas atmosphere at >=1600 deg.C for a prescribed period. The sintered product is cooled to 1600 deg.C at a cooling rate of 45-50 deg.C/h (when the wall thickness of the molding is <=15mm), 10-45 deg.C/h (when the thickness is 15-30mm) or 5-10 deg.C/h (when the thickness is 30-50mm). The product is cooled to the room temperature by passing through the temperature range of <1600 deg.C at a cooling rate of 200-500 deg.C/h to obtain a sintered Si3N4 free from blister and crack.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、特に緻密な大型形状の
窒化珪素焼結体を製造するのに好適な窒化珪素焼結体の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a silicon nitride sintered body suitable for producing a particularly dense and large-sized silicon nitride sintered body.

【0002】[0002]

【従来の技術】窒化珪素焼結体は、耐熱性、耐熱衝撃
性、耐摩耗性、耐食性等に優れていることから、ガスタ
ービン用部材、ノズル等の高温構造用部材への応用が試
みられている。このような部材は、大型化かつ複雑形状
になる場合が多く、従来、これを工業的に製造するに
は、適切な酸化物系焼結助剤の添加された窒化珪素成形
体を窒素等の不活性ガス雰囲気中で焼結する液相焼結法
が採用されている。
2. Description of the Related Art Since a silicon nitride sintered body is excellent in heat resistance, heat shock resistance, wear resistance, corrosion resistance, etc., it has been attempted to be applied to a gas turbine member, a high temperature structural member such as a nozzle. ing. In many cases, such a member becomes large and has a complicated shape. Conventionally, in order to industrially manufacture the member, a silicon nitride molded body to which an appropriate oxide-based sintering aid has been added is used as nitrogen or the like. The liquid phase sintering method of sintering in an inert gas atmosphere is adopted.

【0003】液相焼結法においては、焼結過程におい
て、窒化珪素の一部が分解したり、窒化珪素表面に存在
する二酸化珪素により酸化されたり、さらには焼結助剤
の分解・揮散等によって発生したガスによって焼結体の
緻密化が阻害されたりする。特に大型形状の場合、成形
体の表面と内部との温度差によって、フクレや割れ等が
生じやすく厚肉品の焼結が困難であった。
In the liquid phase sintering method, in the sintering process, a part of silicon nitride is decomposed or oxidized by silicon dioxide existing on the surface of silicon nitride, and further, decomposition and volatilization of a sintering aid, etc. The densification of the sintered body is hindered by the gas generated by the above. In particular, in the case of a large shape, blisters, cracks and the like are likely to occur due to the temperature difference between the surface and the inside of the molded product, making it difficult to sinter thick products.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記問題点
を解決し、大型形状の窒化珪素焼結体であってもフクレ
や割れ等の欠陥のない緻密な窒化珪素焼結体を製造する
ことを目的とする。
SUMMARY OF THE INVENTION The present invention solves the above problems and produces a dense silicon nitride sintered body which is free from defects such as blisters and cracks even in a large-sized silicon nitride sintered body. The purpose is to

【0005】[0005]

【課題を解決するための手段】すなわち、本発明は、窒
化珪素粉末を含む成形体を不活性ガス雰囲気下、1600℃
以上の温度で焼結した後、1600℃までを50℃/Hr未満の
速度で降温することを特徴とする窒化珪素焼結体の製造
方法である。
[Means for Solving the Problems] That is, according to the present invention, a molded body containing silicon nitride powder is treated at 1600 ° C. under an inert gas atmosphere.
After sintering at the above temperature, the temperature is reduced to 1600 ° C. at a rate of less than 50 ° C./Hr.

【0006】以下、さらに詳しく本発明について説明す
る。
The present invention will be described in more detail below.

【0007】本発明で使用される窒化珪素粉末は、その
製法には何ら制約を受けず、金属珪素の直接窒化法、二
酸化珪素の還元法、含窒素シラン化合物又は非晶質窒化
珪素の加熱結晶化法等によって得られたものが使用され
る。粒径は2 μm 以下、α率は50%以上、純度は97%以
上が望ましい。
The silicon nitride powder used in the present invention is not subject to any restrictions in its production method, and may be a direct nitriding method of metallic silicon, a reducing method of silicon dioxide, a nitrogen-containing silane compound or a heated crystal of amorphous silicon nitride. What was obtained by the chemical method etc. is used. It is desirable that the particle size is 2 μm or less, the α ratio is 50% or more, and the purity is 97% or more.

【0008】本発明で使用される窒化珪素粉末には、酸
化物系焼結助剤及び/又は窒化物系焼結助剤が添加され
ていることが好ましい。酸化物系焼結助剤としては、酸
化マグネシウム(MgO)、酸化アルミニウム(Al2O3 )、
酸化イットリウム(Y2O3) 、アルミン酸マグネシウム
(MgAl2O4)、フオルステライト(Mg2SiO4)、アルミン酸
コバルト(CoAl2O4)等を、また、窒化物系焼結助剤とし
ては、窒化アルミニウム(AlN)等をあげることができ
る。焼結助剤の添加量は、窒化珪素粉末に対し1 〜15重
量%程度である。
The silicon nitride powder used in the present invention preferably contains an oxide-based sintering aid and / or a nitride-based sintering aid. As oxide-based sintering aids, magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ),
Yttrium oxide (Y 2 O 3 ), magnesium aluminate (MgAl 2 O 4 ), forsterite (Mg 2 SiO 4 ), cobalt aluminate (CoAl 2 O 4 ), etc. as a nitride-based sintering additive. Examples thereof include aluminum nitride (AlN). The amount of the sintering aid added is about 1 to 15% by weight based on the silicon nitride powder.

【0009】窒化珪素粉末又は窒化珪素粉末と焼結助剤
の混合粉末を所定形状に成形する方法としては、プレス
成形、CIP成形、射出成形、押出し成形、スリップキ
ャスト成形等を採用することができる。通常、成形時に
添加したバインダーは予め脱脂炉にて脱脂される。
As a method of molding the silicon nitride powder or the mixed powder of the silicon nitride powder and the sintering aid into a predetermined shape, press molding, CIP molding, injection molding, extrusion molding, slip cast molding or the like can be adopted. .. Usually, the binder added at the time of molding is degreased beforehand in a degreasing furnace.

【0010】焼結工程において、上記成形体は、900 ℃
近傍までは真空加熱されてバインダーが除去される。次
いで、窒素、アルゴン等の不活性ガスが導入され、該雰
囲気中、1600℃以上の温度で0 〜20時間保持されて焼結
される。焼結温度は、成形体の肉厚や焼結助剤の種類と
量によって異なるが、通常、1600〜1800℃である。焼結
温度が1600℃未満では、たとえその温度で長時間保持し
ても緻密化が不十分となり、一方、1800℃を越えると成
形体表面に緻密層が生成し、成形体内部で窒化珪素の分
解や焼結助剤の分解・揮散等によって発生したガスが容
易に抜けなくなって内圧が高まり、緻密化を著しく阻害
させたり、大きなフクレや割れを生じさせたりする。好
ましい焼結温度は1630〜1750℃である。
In the sintering step, the above-mentioned molded body is 900 ° C.
The binder is removed by vacuum heating to the vicinity. Then, an inert gas such as nitrogen or argon is introduced, and the atmosphere is maintained at a temperature of 1600 ° C. or higher for 0 to 20 hours for sintering. The sintering temperature varies depending on the wall thickness of the compact and the type and amount of the sintering aid, but is usually 1600 to 1800 ° C. If the sintering temperature is lower than 1600 ° C, the densification will be insufficient even if the temperature is maintained for a long time. On the other hand, if it exceeds 1800 ° C, a dense layer will be formed on the surface of the molded body, and the silicon nitride inside the molded body will be formed. The gas generated by decomposition and decomposition / volatilization of the sintering aid does not easily escape and the internal pressure increases, which significantly impedes densification and causes large blisters and cracks. The preferred sintering temperature is 1630 to 1750 ° C.

【0011】焼結温度までの昇温速度は成形体の形状等
によって異なるが、通常、焼結開始温度近傍(1200〜13
50℃)より、10〜100 ℃/Hrの昇温速度で行う。その際
の不活性ガスの圧力は絶対圧力で 1.1〜9.8 kg/cm2
するのが望ましい。肉厚 100mm以上の大型成形体では昇
温速度が 150℃/Hrを越えると割れ等が生じやすくなる
ので注意が必要である。
Although the rate of temperature increase up to the sintering temperature depends on the shape of the compact, etc., it is usually near the sintering start temperature (1200 to 13).
50 ° C) at a heating rate of 10 to 100 ° C / Hr. The pressure of the inert gas at that time is preferably 1.1 to 9.8 kg / cm 2 in absolute pressure. Attention must be paid to large molded products with a wall thickness of 100 mm or more because cracks are likely to occur when the heating rate exceeds 150 ° C / Hr.

【0012】本発明の大きな特徴は、成形体を上記温度
で焼結した後は1600℃までの温度を50℃/Hr未満の速度
で降温することである。この条件は、焼結後電源を切り
自然冷却した場合における従来の降温速度200 〜500 ℃
/Hrに比べて著しく緩やかである。本発明において、上
記降温速度が50℃/Hrを越えると緻密化速度が減少し、
全体の焼結時間が短かくなって焼結不足となる。降温速
度の下限については特に制約はないが 0.5℃/Hrが好ま
しい。 0.5℃/Hr未満では焼結時間が長くなり不経済と
なる。降温速度の調節は、プログラムコントローラにあ
らかじめ降温速度条件を入力しておき電力コントロール
によって行うことができる。
A major feature of the present invention is that the temperature of up to 1600 ° C. is lowered at a rate of less than 50 ° C./Hr after the compact is sintered at the above temperature. This condition is the conventional cooling rate of 200-500 ° C when the power is turned off after sintering and naturally cooled.
Remarkably gentler than / Hr. In the present invention, when the temperature decrease rate exceeds 50 ° C./Hr, the densification rate decreases,
The whole sintering time becomes short and the sintering becomes insufficient. The lower limit of the temperature lowering rate is not particularly limited, but 0.5 ° C / Hr is preferable. If it is less than 0.5 ° C / Hr, the sintering time becomes long and it is uneconomical. The temperature decrease rate can be adjusted by inputting the temperature decrease rate condition into the program controller in advance and controlling the power.

【0013】さらに詳しく説明すると、本発明において
は、上記降温速度の範囲内にあっても、成形体の肉厚に
応じて適切な降温速度を選定することが望ましく、焼結
温度から1600℃までの温度における降温速度v(℃/H
r)とグリーン成形体の肉厚t(mm)とが、v=(7000
〜10000)/t2 の関係を満たす条件で降温するのが望まし
い。具体的には、グリーン成形体の肉厚が15mm以下の場
合は45〜50℃/Hr、15〜30mmの場合は10〜45℃/Hr、30
〜50mmの場合は5 〜10℃/Hr、50〜70mmの場合は2 〜5
℃/Hr、70〜100mm の場合は1 〜2 ℃/Hr、100mm 以上
の場合は0.5 〜1℃/Hrである。
More specifically, in the present invention, it is desirable to select an appropriate cooling rate according to the wall thickness of the molded product even within the above cooling rate range. From the sintering temperature to 1600 ° C. Cooling rate v (℃ / H
r) and the wall thickness t (mm) of the green molded body are v = (7000
It is desirable to lower the temperature under the condition that the relationship of ~ 10000) / t 2 is satisfied. Specifically, when the thickness of the green molded body is 15 mm or less, 45 to 50 ° C / Hr, and when it is 15 to 30 mm, 10 to 45 ° C / Hr, 30
5 to 10 ° C / Hr for ~ 50 mm, 2 to 5 for 50 to 70 mm
C / Hr, 70 to 100 mm, 1 to 2 C / Hr, 100 mm or more, 0.5 to 1 C / Hr.

【0014】上記降温速度の必要な温度領域は、焼結温
度から1600℃までの温度であり、それよりも低い温度領
域ではその条件で降温する必要はない。1600℃未満の温
度領域では、例えば電源を切り自然放冷した場合におけ
る200 〜500 ℃/Hr、さらには不活性ガスの供給量を増
してそれ以上に強制冷却することもできる。
The temperature range in which the temperature lowering rate is required is a temperature from the sintering temperature to 1600 ° C., and it is not necessary to lower the temperature in that temperature range lower than that. In the temperature range of less than 1600 ° C., for example, the temperature may be 200 to 500 ° C./Hr when the power is turned off and the air is naturally cooled, and further the amount of the inert gas supplied may be increased to perform forced cooling further.

【0015】[0015]

【実施例】以下、実施例と比較例をあげてさらに具体的
に本発明を説明する。 実施例1 Si3N4粉末(電気化学工業社製商品名「SN−9S」:平均
粒径1μm :α率90%以上)89重量%及びMg2SiO4 粉末
(市販品の粉砕物:平均粒径 1.3μm )9 重量%、CoO
粉末(市販品の粉砕物:平均粒径 1.5μm )2 重量%に
水系バインダー(中京油脂社製商品名「WD-830」)及び
水をボールミルにて混合しスラリーとした。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. Example 1 89% by weight of Si 3 N 4 powder (trade name “SN-9S” manufactured by Denki Kagaku Kogyo Co., Ltd .: average particle size 1 μm: α ratio of 90% or more) and Mg 2 SiO 4 powder (commercially available pulverized product: average) Particle size 1.3 μm) 9% by weight, CoO
An aqueous binder (trade name "WD-830" manufactured by Chukyo Yushi Co., Ltd.) and 2% by weight of powder (commercially available pulverized product: average particle size 1.5 μm) and water were mixed in a ball mill to form a slurry.

【0016】このスラリーをスプレードライヤにて造粒
し、それをゴム型に充填して 2.7t/cm2の圧力下、直径
150mm×長さ 170mmの円柱体に成形した。次いで、この
成形体を大気雰囲気の脱脂炉に入れ、10℃/Hrの昇温速
度で 450℃まで昇温しその温度で8時間保持してバイン
ダーの除去を行った。
This slurry was granulated with a spray dryer, filled in a rubber mold, and the diameter was increased under a pressure of 2.7 t / cm 2.
It was molded into a 150 mm x 170 mm long cylinder. Next, this molded body was placed in a degreasing furnace in an air atmosphere, heated to 450 ° C. at a temperature rising rate of 10 ° C./Hr, and held at that temperature for 8 hours to remove the binder.

【0017】上記窒化珪素の脱脂体を、焼結時の分解抑
制のため、成形体と類似組成の焼結助剤を含む Si3N4
BN系詰粉で覆って黒鉛容器に収納し、それを常圧焼結炉
に入れ焼結した。焼結は、 900℃までは0.2torr の真空
中で 600℃/Hrで昇温し、その温度で1時間保持後、次
いで、N2ガスを9 kg/cm2 まで導入し、900 〜1200℃を
300℃/Hrで、1200〜1630℃を75℃/Hrでそれぞれ昇温
し、1630℃の焼結温度に到達後直ちに 0.6℃/Hrの速度
で降温し、1600℃で加熱電源を切ることによって行っ
た。
The degreased body of silicon nitride described above contains Si 3 N 4 -containing a sintering aid having a composition similar to that of the molded body in order to suppress decomposition during sintering.
It was covered with BN-based powder and housed in a graphite container, which was then placed in an atmospheric pressure sintering furnace and sintered. Sintering is performed by heating up to 900 ° C in a vacuum of 0.2 torr at 600 ° C / Hr, holding at that temperature for 1 hour, and then introducing N 2 gas up to 9 kg / cm 2 at 900-1200 ° C. To
By increasing the temperature from 1200 to 1630 ℃ at 75 ℃ / Hr at 300 ℃ / Hr, and immediately after reaching the sintering temperature of 1630 ℃, lower the temperature at a rate of 0.6 ℃ / Hr, and turn off the heating power at 1600 ℃. went.

【0018】得られた焼結体について、フクレと割れの
外観観察及び相対密度をアルキメデス法により測定した
結果、フクレや割れは全くなく、相対密度98.1%の良好
な窒化珪素焼結体が得られた。
With respect to the obtained sintered body, the appearance of blisters and cracks was observed and the relative density was measured by the Archimedes method. As a result, there was no blistering or cracks and a good silicon nitride sintered body having a relative density of 98.1% was obtained. It was

【0019】実施例2 窒化珪素の脱脂体の大きさを直径70mm×長さ100mm 、焼
結温度を1680℃とし、そして1680℃から1630℃までの温
度を5 ℃/Hr、1630℃から1600℃までの温度を3 ℃/Hr
の速度で1600℃まで降温し加熱電源を切ったこと以外は
実施例1と同様にして行った。その結果、得られた窒化
珪素焼結体にはフクレや割れは全くなく、相対緻密度は
99.0%と良好であった。
Example 2 The size of the degreased body of silicon nitride was 70 mm in diameter × 100 mm in length, the sintering temperature was 1680 ° C., and the temperature from 1680 ° C. to 1630 ° C. was 5 ° C./Hr, 1630 ° C. to 1600 ° C. Up to 3 ℃ / hr
Example 1 was repeated except that the temperature was lowered to 1600 ° C. at that rate and the heating power was turned off. As a result, the obtained silicon nitride sintered body had no blisters or cracks and the relative compactness was
It was a good 99.0%.

【0020】比較例1 焼結温度を1830℃とし、その温度における保持時間を50
時間としてから加熱電源を切り1830℃から1600℃までの
降温速度がおよそ450 ℃/Hrとなったこと以外は実施例
1と同様にして行った。その結果、得られた窒化珪素焼
結体には著しいフクレが生じ、また、相対密度も78%と
著しく低くかった。
Comparative Example 1 The sintering temperature was 1830 ° C. and the holding time at that temperature was 50.
After a lapse of time, the heating power source was turned off, and the same procedure as in Example 1 was performed except that the temperature decreasing rate from 1830 ° C. to 1600 ° C. was about 450 ° C./Hr. As a result, the obtained silicon nitride sintered body had significant blistering, and the relative density was also extremely low at 78%.

【0021】比較例2 焼結温度を1630℃とし、その温度における保持時間を50
時間としてから加熱電源を切り1630℃から1600℃までの
降温速度がおよそ200 ℃/Hrとなったこと以外は実施例
1と同様にして行った。その結果、得られた窒化珪素焼
結体にはフクレや割れはなかったが、相対密度は95%と
実施例1に比べて小さいものであった。
Comparative Example 2 The sintering temperature was 1630 ° C. and the holding time at that temperature was 50.
After a lapse of time, the heating power source was turned off, and the same procedure as in Example 1 was performed except that the temperature decreasing rate from 1630 ° C to 1600 ° C was about 200 ° C / Hr. As a result, there was no blistering or cracking in the obtained silicon nitride sintered body, but the relative density was 95%, which was smaller than that in Example 1.

【0022】比較例3 焼結温度1550℃で50時間保持してから加熱電源を切った
こと以外は実施例2と同様にして行った。その結果、得
られた窒化珪素焼結体にはフクレや割れはなかったが、
相対密度は85.2%と低く、著しく緻密化不足であった。
Comparative Example 3 The procedure of Example 2 was repeated, except that the sintering power was kept at 1550 ° C. for 50 hours and then the heating power was turned off. As a result, there was no blistering or cracks in the obtained silicon nitride sintered body,
The relative density was as low as 85.2%, indicating a significant lack of densification.

【0023】比較例4 焼結温度を1680℃とし、その温度における保持時間を30
時間としてから加熱電源を切り1680℃から1600℃までの
降温速度がおよそ300 ℃/Hrとなったこと以外は実施例
2と同様にして行った。その結果、得られた窒化珪素焼
結体にはフクレや割れはなかったが、相対密度が95.3%
と低く、実施例2に比べて緻密化が阻害された。
Comparative Example 4 The sintering temperature was 1680 ° C. and the holding time at that temperature was 30.
After a certain period of time, the heating power source was turned off and the temperature decreasing rate from 1680 ° C to 1600 ° C was about 300 ° C / Hr. As a result, there was no blistering or cracks in the obtained silicon nitride sintered body, but the relative density was 95.3%.
And the densification was inhibited as compared with Example 2.

【0024】[0024]

【発明の効果】本発明によれば、特に大型形状の成形体
に生じやすいフクレや割れ等の欠陥がなく、かつ緻密な
窒化珪素焼結体を製造することができる。
According to the present invention, it is possible to manufacture a dense silicon nitride sintered body which is free from defects such as blisters and cracks which are apt to occur in a large-sized molded body.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 窒化珪素粉末を含む成形体を不活性ガス
雰囲気下、1600℃以上の温度で焼結した後、1600℃まで
を50℃/Hr未満の速度で降温することを特徴とする窒化
珪素焼結体の製造方法。
1. A nitriding method characterized in that a compact containing silicon nitride powder is sintered in an inert gas atmosphere at a temperature of 1600 ° C. or higher, and then cooled to 1600 ° C. at a rate of less than 50 ° C./Hr. A method for manufacturing a silicon sintered body.
JP35460291A 1991-12-19 1991-12-19 Method for producing silicon nitride sintered body Expired - Fee Related JP3146042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35460291A JP3146042B2 (en) 1991-12-19 1991-12-19 Method for producing silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35460291A JP3146042B2 (en) 1991-12-19 1991-12-19 Method for producing silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPH05170547A true JPH05170547A (en) 1993-07-09
JP3146042B2 JP3146042B2 (en) 2001-03-12

Family

ID=18438669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35460291A Expired - Fee Related JP3146042B2 (en) 1991-12-19 1991-12-19 Method for producing silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JP3146042B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128386A1 (en) * 2008-04-18 2009-10-22 株式会社東芝 Anti-wear member, anti-wear instrument and method of producing anti-wear member
CN113636844A (en) * 2021-08-25 2021-11-12 北京科技大学 Method for preparing high-strength high-thermal-conductivity silicon nitride ceramic through two-step sintering
CN116390839A (en) * 2020-10-05 2023-07-04 株式会社德山 Method for producing green sheet
EP4159703A4 (en) * 2020-05-26 2024-07-10 Toshiba Kk Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009128386A1 (en) * 2008-04-18 2009-10-22 株式会社東芝 Anti-wear member, anti-wear instrument and method of producing anti-wear member
EP2266935A1 (en) * 2008-04-18 2010-12-29 Kabushiki Kaisha Toshiba Anti-wear member, anti-wear instrument and method of producing anti-wear member
EP2266935A4 (en) * 2008-04-18 2011-09-14 Toshiba Kk Anti-wear member, anti-wear instrument and method of producing anti-wear member
US8377837B2 (en) 2008-04-18 2013-02-19 Kabushiki Kaisha Toshiba Wear resistant member, wear resistant device and method for manufacturing the wear resistant member
JP5487099B2 (en) * 2008-04-18 2014-05-07 株式会社東芝 Wear-resistant member, wear-resistant device, and method for manufacturing wear-resistant member
EP4159703A4 (en) * 2020-05-26 2024-07-10 Toshiba Kk Silicon nitride sintered body, wear-resistant member using same, and method for producing silicon nitride sintered body
CN116390839A (en) * 2020-10-05 2023-07-04 株式会社德山 Method for producing green sheet
CN113636844A (en) * 2021-08-25 2021-11-12 北京科技大学 Method for preparing high-strength high-thermal-conductivity silicon nitride ceramic through two-step sintering
CN113636844B (en) * 2021-08-25 2022-11-18 北京科技大学 Method for preparing high-strength high-thermal-conductivity silicon nitride ceramic through two-step sintering

Also Published As

Publication number Publication date
JP3146042B2 (en) 2001-03-12

Similar Documents

Publication Publication Date Title
EP1899508B1 (en) Crucible for the crystallization of silicon and process for its preparation
CN112144115B (en) Quartz crucible with long service life and low deformation rate and preparation method thereof
EP0162547A1 (en) Sintered ceramic articles and method for production thereof
JPH05170547A (en) Production of sintered silicon nitride
JPH05117038A (en) Aluminum nitride sintered compact, its production and jig for burning using the same
JPS6210954B2 (en)
JP2002220282A (en) Aluminum nitride sintered compact and method of manufacture
JPS629548B2 (en)
RU2239613C1 (en) Method of manufacturing silicon nitride-based products
CN111875393A (en) Sintering aid, aluminum titanate ceramic precursor, aluminum titanate ceramic, and method for producing same
JPS6041634B2 (en) Method for manufacturing high-density silicon nitride reaction sintered body
JPS5943436B2 (en) Method for manufacturing dense β′-sialon sintered body
JP2916934B2 (en) Method for producing sialon-based sintered body
JPH01317672A (en) Stoke for low pressure casting
JPS5934676B2 (en) Method for producing a reaction fired product containing β′-Sialon as the main component
JPS5951515B2 (en) Manufacturing method of Sialon sintered body
JP2004277206A (en) Method of producing electroconductive ceramics
TWI381928B (en) Composition and use thereof
JPH06239665A (en) Method for sintering ceramic
JPH02307871A (en) Production of ceramic sintered compact
JPH05270917A (en) Sic sintered compact and calcining method thereof
JPH03237008A (en) Treatment of silicon nitride powder
JPS5934149B2 (en) Method for manufacturing dense β′-sialon sintered body
JPS5915113B2 (en) Method for manufacturing dense β′-sialon sintered body
JPS624351B2 (en)

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees